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Integrable spin-1 Heisenberg chain with impurity
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%'e construct an integrable SU(2)-invariant model consisting of the Heisenberg chain of spin 1

interacting with an impurity of spin S. This generalizes previous results by Andrei and Johannes-
son for the spin-2 chain. The model Hamiltonian is diagonalized and the thermodynamics is ob-

tained. For ferromagnetic coupling at low temperatures the impurity susceptibility diverges as
T ~ and the impurity speci6c heat is proportional to T'~' for all values of the impurity spin S.
For antiferromagnetic coupling and T=O the impurity susceptibility diverges proportionally to

~
1nH

~

as H ~0 if S= 2, while if S & 1 the impurity spin is only partially compensated for by the

S =1 chain.

Since Bethe proposed a procedure' (now known as
Bethe ansatz) to diagonalize the Hamiltonian for the iso-
tropic spin- —, Heisenberg chain, many important proper-
ties for this model have been obtained in numerous con-
tributions. Several integrable generalizations of the
isotropic S =—,

' Heisenberg chain were found: (a) the an-
isotropic chain, ' ' (b} the SU(2)-invariant chain of ar-
bitrary spin S," ' (c) systems of arbitrary number of
components and SU(N) symmetry, ' 2 and (d) the
spin- —,

' Heisenberg chain with an impurity ' of arbitrary
spin S. In this paper we construct the Hamiltonian of
the spin-1 chain with SU(2} symmetry interacting with
an impurity of arbitrary spin S, extending in this way
the work by Andrei and Johannesson, '

The spin-1 chain with SU(2) invariance in the absence
of impurity is given by

N g W

m, = y a„„+,——y [(S„.S„+,) —(S„S„+,) ],
n=l n=l

gf = ——T(0) ' =&0+&;„,.J,dT(A, )

2 dA,
(2)

Note that % and T(A, ) commute for all values of A, . The
transfer matrix T(A, ) is obtained as the trace over a ma-
trix product carried out in the auxiliary space Vc (space
of spin 1)

where S„arespin-1 operators, X is the length of the
chain, and periodic boundary conditions are assumed,
Sz+, ——S&. The impurity is assumed to be located on
the mth link, i.e., between the mth and (m + l)th sites,
and interacts with both neighboring sites. The interac-
tion must be of a special type to preserve the integrabili-
ty of the model. If the impurity spin S equals 1, the sys-
tem reduces to a homogeneous chain of (%+ I) links.
The form of the interaction is given below.

Following, for instance, Refs. 13, 14, 17, and 21 we
consider a set of commuting transfer matrices T(A. }

yielding the Hamiltonian according to the relation

T(A, )=Tr [8"' (A)R'"', (A, ) R"',(A)R'I, )(A)R'" (A) R''I(A, )] .

The matrices 8 o
" are local vertex weights acting on the

space built up by the direct product of the auxiliary
space Vo and the local space V. carrying the spin S of
the jth site. A necessary and suScient condition for the
commutativity of the transfer matrices for different A,

values is the Yang-Baxter triangular relation

8, 2(A, )R, 3(A, +P)82 3(P)=82 3(P)R f 3(A, +P)R
&

2(A, )

A quite general solution for these matrices valid for arbi-
trary spin spaces has been given in Ref. 13. Specializing
their result for SU(2) and all spins equal to 1, we obtain
for Z,",'(X)

I

R ~0" (A, ) =(2+A, —A, )+2(A, —1)So Si —2(So Si)

This vertex weight generates the Hamiltonian (1) in the
absence of impurity.

A second vertex weight, E.o'[ &], is needed to intro-
duce the impurity. In order to preserve the integrability
the vertex Ros(A, ) (note that the index m only indicates
its location in the lattice) is required to satisfy the tri-
angular relation

R" (A, )R'"(k+p, )R" (Jtl)

=z', (p, )z I",(a+p, )z I', (x) . (6)

It is easy to verify that
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R,",()(,) =[s(s+ I )+x—x']+2(x —i)s, s—2(s, s)'

where o are the Pauli matrices, S =cr/2
The transfer matrix T(A, ) can now be obtained using

expressions (5) and (7) in Eq. (3). In order to construct
the Hamiltonian describing the interaction of the chain
with the impurity of spin S, it is actually only necessary
to consider

T"(A ) =Tro[R (')" +) (A )R(')'(', )(A )R (')" (k)],
since the impurity can interact only with the neighbor-
ing sites. The matrix product and the trace are evalu-
ated in the auxiliary space Vo and &;„,is obtained via

~int ~ 2~m, m + i

where %' is given by

(10)

for So ——1 and arbitrary spin S is a solution to Eq. (6).
Note that for S =1 this expression reduces to R"'(A, ),
Eq. (5), and for S =—,

' we reproduce'

R"")(~)=(-'-~)+~ S

J ~» i(
dT'(A, )

2 dA,

Since &' and T'()(, ) commute, they can be diagonalized
within the same basis of eigenstates. Since &' is invari-
ant under the permutation of the sites m and m + 1, the
eigenstates should have well-de6ned parity. The total
angular momentum J=S +S +,+S and its z com-
ponent are good quantum numbers of T'()(, ). Due to
parity it is convenient 6rst to sum S and S +, to give
S', the quantum numbers for S being 0, 1, and 2. The
use of this basis makes the inversion of T'(0) straight-
forward and all matrix elements of and hence of &;„,are
obtained.

The Hamiltonian operator %;„,is most conveniently
written as linear combination of products of irreducible
tensor operators for the spins S, S +&, and S. %e fol-
low the delnitions of Refs. 24 and 25. The irreducible
tensor operators of the spin operators S and S are
denoted by C (S) and T (S ), respectively. Since S
and S +, are spin 1 operators, k is restricted to the
values 0, 1, and 2. The rank E is restricted to E &4 if
S g2, to E &3 if S=—,', to E &2 if S=1 and E &1 for
S=-,', The Hamiltonian is then given by

4 E
a(E,k), k2) g (K —QE Q i(EEOO)

E=O k), k2 ——0

k, kz

X g g (ki qi kqq2 ~
k, k2KQ)C(2(S)T '(S )T '(S,),

(5] )
= —k

t (II) p
= —k

2

(12)

where the Clebsch-Gordan coefFicient constraints
Q=q, +q2. The permutation invariance of the sites m
and m +1 imposes E+k&+k2 to be even and

I

t

a(rC, k„k)) =a(Z, k„k,).
The matrix elements of Jt;„,are straightforwardly ob-

tained by means of %igner-Eckart's theorem

(SS'JM (%,„,)SS'JM)
4

( 1)K+5 +J+s[(2S»+ 1)(2S»i+ 1)])/2

1
S S' J

(S~[C ~[S) y a(X,k, , k, )

ki, k2 ——0
S S*' E

(13)

This expression involves standard 6j and 9j symbols and ( (( (~ ) denotes a reduced matrix element. The coefficients
a(K, k(, k2) are now determined by comparing the matrix elements from (13) with those obtained via T (A, ). The
values of a(E,k), k2) as a function of the impurity spin are given in Table I. All coefficients other than those indicat-
ed vanish. Note that a (0,0,0) is irrelevant, since it just adds a constant to the Hamiltonian. The coefficients inserted
into Eq. (12) yield the impurity interaction Hamiltonian for arbitrary impurity spin S.

Our next step consists in diagonalizing the Hamiltonian &=&0+&;„,. The procedure used is standard' ' ' ' '

and we closely follow Ref. 17, such that not all the steps are presented in detail. %e introduce the monodromy ma-
trix as product of (2X2) matrices R "g) of the type given by Eq. (8) using an auxiliary space of spin —,

' [we drop the
supraindex ( —,

' )]

(14)
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whose trace over o is T (A. ). Note that S,= =SN= 1, except S; which is arbitrary. T (A, ) commutes with the
transfer matrix T(A, ) defined by Eq. (3) as can be shown by using Eq. (6}. Hence T(A, ) and T (A, ) can be diagonalized
simultaneously. The matrix product I (A. ) can be written as

r

A(A, ) 8(A, )I-'"'= C(X) D() )

where C(A, ) and B(A, ) act as raising and lowering operators on the spin space consisting of the direct product of the
spin states S, , . . .,S,S; ~,S +„.. .,SN. The operators A(A, ), 8(A, ), C(A, ), and D(A, ) obey commutation relations
given in Refs. 17 and 21. Let

~
((}) be the ferromagnetic state with maximum z component, i.e., with all spins aligned.

The eigenstates of T = A +D with M spin Sips are then given by

$(&i, . . ., A,xr)= ff 8(A,k)
~
P), (16)

where the parameters A, k i A——k /2+ —,
' satisfy

A. —2ij
A +2i

A. —AI —2iJ

Aj —A, +2i
'

(l~j)

A —2Si

Aj+2Si

Here S is the impurity spin. Within this basis also T(A, ) is diagonal with eigenvalue

(17)

A, —Al, +q
A(A, ;A, , , . . ., A, }=g, ( —A, +3k, —2) [A, —A, +(2A, —1)S—S ]

(A, —A, k
—

—,
' )(A, —A,k+ —,')

(A, —A, ')~[A, —A,
' —2+2S']

Ak

, ( —k —k ) [A, —A, —(2A, —1)S—S ] .+

The energy eigenvalue is obtained via Eq. (2),

E = —— In A( A, ; A, , , . . ., A,~ )
J

k.=0

I

»n. =Ga»[(1+g„,)(1+q„„)]—2~—S„,G,

n =1,2, . . . and rlo
—0 . (22)

Here the centered asterisk denotes a convolution and

= —J g 2
+const, (19)

j ]A+4
—1

G(A) = 4cosh —A
2

(23)

~here the parameters A are obtained from a self-
consistent solution of Eq. (17). The impurity contribu-
tion to the energy arises from the first factor in Eq. (17).

The thermodynamic properties of the model are ob-
tained in complete analogy to Ref. 17. In the thermo-
dynamic limit the solutions of Eq. (17) lie in the complex
plane and form strings length n

A,
" =A,"+i(n +1—2a), a=1,2, . . ,n, .(20)

i)„(A)=exp[@„(A)/T],
which satisfy nonlinearly coupled integral equations

with real rapidity A". and n =1,2, . . . . A string excita-
tion of order n represents a bound-magnon state of n
magnons. In thermal equilibrium the properties of the
system at 6nite T and in a magnetic field H are described
by the energy of these elementary string excitations
8„(A). It is convenient to introduce the statistical
weight of these excitations,

These equations are completed by the asymptotic condi-
tion

lim —Inil „(A ) = =2XO,
1 2H

n~co Pl T (24)

Here F'"'(0,0) is a constant given by

F'"'(0,0)=
—Jln2 for k =—',

2

—J for k&1. (27)

From Eq. (25) we have that the free energy due to the
interacting impurity is F' '(T, H). Here F's' for S~1 is

where H is the magnetic field. The free energy of the
model can be written as

F ~F[1)+p(S)

where

F'"'(T,H) =F'"'(0,0)—T I dA G(A) ln[1+g „(A)].
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(X,k„k,}

(0,1,1)

(0,2,2)

(1,1,0) ',

(1,0,1)

a(K, kl, k~)

—v'3~—2S +2S —1

S(S+1}
8&& 2S'+2S+1

1S S(S+1)

&6S(S 1)
2S +2S —1

S2(S 1 )2

Impurity spin S

S) 1

S

(1,1,2)
'

(1,2, 1}

+
5 S2(S + 1 )2

(2,2,0)
'

(2,0,2)

8&& S'+S —1

3 S(S+1)

TABLE I. Coef5cients a(j:,kl, k2) of the interaction Hamil-
tonian. The coeScients have the symmetry a (E,k„k,)
=a(K, k&„k2) and a(0,0,0) is irrelevant. All coeScients not
listed in the table vanish.

with neighboring spins being antiparallel, that is, spins
pairwise compensate each other giving rise to no net
magnetization as H~O. An impurity of spin S ~ —, can
only be compensated by one antiparallel neighbor giving
rise to a net magnetization of S——,'. %e call this a par-
tial spin compensation in analogy to a similar situation
occurring for a magnetic impurity of arbitrary spin S
coupled by an exchange interaction to an electron gas
with spin —,

' (see, e.g., Ref. 26). A spin- —,
' Kondo impuri-

ty forms a singlet with the conduction electron spin den-
sity giving rise to no net magnetization as H~O. On
the other hand, an S y —,

' Kondo impurity is only partial-
ly compensated by the conduction electron spin density
(of spin —,') yielding an impurity magnetization of (S ——,

'
)

as H~O at T=O.
Properties of the chain without impurity, E"'(T,H),

have been discussed previously in the literature. ' ' ' '

%e limit our discussion to the impurity. At high tem-
peratures the driving term in Eq. (22) can be neglected
and it is straightforward to obtain the free spin free ener-
gy6, 17

(2, 1,1)

(2,2,2)

(3,2, 1)

(3,1,2)

(4 2 2)

&30
—S +S —2

S(S+1)
8&70 S'+S —2

21 S(S+1}

—
—,&210/S {S+ 1)

32&'70

35

+' '(T,H) = —T injsinh[(2$+1)H/T]/sinh(H/T)] .

The low-temperature properties depend on the sign of
the coupling constant J. For J po (antiferromagnetic
coupling) the free energy in the limit T~0 and for small
fields H yields (J= + 1 )

F" '(O, H)= —ln2 — H
I

lnH I—
~3 7T3

H 11—
2 lnH

ln flnH
f

4 ln20

r'"(O, a) = —ln2 —2(S ——,
' )a —Sa/1~+

S ~ —,
' (spin- —,

' anti-ferromagnet) .

Note that a spin- —,
' impurity in a spin- —,

' chain just corre-
sponds to one more link in the chain and the corre-
sponding zero-6eld susceptlb111ty 1s a constant. Fol
S & —,

' the magnetization is finite and equal to S—
—,
' as

H~0. %'e may regard the antiferromagnet as a system

not just the free energy per spin of a SU(2) Heisenberg
chain of arbitrary spin S, as incorrectly claimed in Ref.
21 for the spin- —, Heisenberg chain with impurity. Note
that the driving term of our integral equations (22) is al-
ways at n =2, while it is at n =2S for the Heisenberg
chain with arbitrary spin S.

For the spin- —, Heisenberg antiferromagnet with im-

purity we obtain, evaluating Eqs. (20) and (21) of refer-
ence 21 along the lines of the previous paragraph, for
the free energy of the impurity in the limit
T 0 (J =+1),
r""'(O,a)= —ln2

2HF"'(O, H) = —1 — 1—
lnH

ln
I
lnH

I

2+

S= 1 (29)

F'"(O H) = —1 —2(S —1)a—2S + S &1
lnH

y' '-4$ I I (X '+1M/X'+ . ),J
T2

(30)

where X =In(2
I
J

I
/T), and the specific heat follows

C —1.6$(2T
I
J

I

)' +0(T) . (31)

In summary, we have presented an integrable model of

Hence we obtain a logarithmically diverging susceptibili-
ty for S=—,

' as H~O, a constant 7 if S =1 and H~O
(spin compensated impurity) and a partially compensated
impurity spin if S&1. As mentioned above, these re-
sults resemble those of an impurity of arbitrary spin S
coupled by an exchange interaction to an electron gas
with spin —,

' (Ref. 26). For ferromagnetic coupling
(J & 0) the susceptibility diverges as T~o according to
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an impurity of arbitrary spin S interacting with a
Heisenberg chain of spin 1. The Hamiltonian is SU(2)
invariant and the model is a generalization of both,
hlghcr-sp1Q Hclscnbcrg chains aIld Andrel and

Johannesson's ' spin- —,
' Heisenberg chain with impurity.

The model is integrable by construction; we obtained its
Bethe-ansatz solution and discussed some of its proper-
ties.
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