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%e consider a resonating-valence-bond state as a variational estim. ate for the ground state of a
Heisenberg antiferromagnet. %e derive an expression for the normalization of this ~ave func-

tion, which is a superposition of a very large number of singlet pair states, which ere then use to
sho~ that the singularities, correlations, and lo~-lying excitations of this quantum system can be
calculated from the partition function of a related dimerlike classical statistical mechanics prob-
lem. Possible calculational schemes are discussed.

The conventional understanding of spin systems in-
teracting by the Heisenberg antiferromagnetic Hamiltoni-a» ~gkSt". Sk, is that the ground state is close to the
Neel state with a staggered sublattice magnetization S
evident in the two-spin correlation function (Sl Sk)~ (-1)t "S~. The excitations are built upon this state
as spin waves. ' This is expected to be valid for cubic lat-
tices and large spin.

However, for spin- 2 and lowMimensional lattices with
significant frustration, this picture is incorrect. For in-
stance, the oneMimensionai Heisenberg antiferromagnetic
chain can be solved exactly, and the ground state is not of
the Neel type. 3 For this reason, Anderson' proposed that
in certain situations the ground state is actually closer to
one in which pairs of spins are bound into singlet states.
These pairs are visualized as valence bonds, and since in
general there will be several alternative ways in which to
pair the spins, the actual ground state will be a superposi-
tion over such products of singlet pairs —hence the
resonating-valence-bond (RVB) state. Subsequent nu-
merical work explored this possibility 5 s

In fact, beginning with the work of Majumdar and co-
workers, 7 9 and extended by Shastry and Sutherland, '~'2
many examples of spin systems have been found for which
the ground state is exactly a product of singlet pairs
(SP's). The resulting SP state is very similar to the spin
Peierls state, although in this instance stabilization is pro-
vided by lattice topolo instead of lattice distortion.
Shastry and Sutherland even found an exactly soluble
oneMimensional example with a doubly degenerate SP
ground state —hence an RVB ground state —which they
could exploit to calculate approximately the excited states
as solitons.

In this paper, we first introduce a method of calculation
for RVB states, thus extending the results of Ref. 11 to
cases of higher dimensionality and degeneracy. (Previ-
ously rules for calculation were presented in the early
work of Rumer '3 and Pauling. ' ) We then proceed to use
these results to relate the low-temperature properties of
the quantum RVB system to the critical behavior of a
classical thermodynamic system. This we feel is the most
significant part of this paper. In particular, we demon-
strate a relationship of the ground-state properties of the
RVB problem to a classical statistical mechanics problem
of the covering of a lattice by dimers first solved by

Kasteleyn, '5'6 and Temperley and Fisher. '7's These pa-
pers in turn made use of powerful techniques of Kac and
Ward '9

Recently, Andersonzc2' has proposed that the RVB
model may be important for the understanding of high-T,
superconductivity. These methods will apply as well to
this model.

As our principal example, we consider a two-
dimensional square lattice with 2N sites, and 4N bonds.
A dimer is simply a line drawn from a site to one of its
four nearest neighbors; we say the dimer sits on this pair
of nearest-neighbor sites. A dimer covering is when every
site is connected to exactly one of its nearest neighbors by
a dimer. This obviously requires N dimers, and covers 4

of the lattice bonds. We denote a particular dimer cover-
ing by an index a. The number of such coverings is'
ZD ge 1 exp(2NG/n) (1.791622. . .), where
G 1 —3 +5 — 0.915965. . . is Catalan's
constant.

Assume the dimers of a dimer covering sit on pairs of
nearest-neighbor sites (j,k). Then we associate with this
dimer covering a singlet-pair (SP) state 1|t, consisting of a
product over dimers (j,k) of the dimer covering a, of
singlet states [j,kl (t;)p —)Jtk)/K2. It only remains
to specify the phase (sign) of the wave function. The sing-
let [j,k] will be represented when necessary by an arrow
on the dimer (j,k) pointing from k to j. Then the conven-
tion for y, is that all arrows point right to left or down to
up. In Fig. [1(a)l we show such a state |it,.

These basis states are not orthogonal, and we now need
to calculate overlap matrix elements titty, between two
SP states y, and tltt, . We show yt, in Fig. 1(b), and in Fig.
1(c),we show the overlap c a+b. We see that the tran-
sition or matrix element graph c of Fig. 1(c) is made up of
closed loops u, each consisting of an even number 2L(u)
of links. This we call a loop covering c, since each site sits
on exactly one loop. A diagonal element c a+a is a loop
covering with loops all of length 2, and each loop of c sits
on a dimer of a.

We can evaluate the overlap of each loop u separately,
by summing over the spins. Clearly a loop of length 2
gives unity upon summing over spins, since the singlet
states are normalized. Consider a loop of length 2L(u).
Upon summing over spins, the only nonzero elements are
those corresponding to Neel states, where the spins alter-
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This is a particularly simple result.
It will be clear when we evaluate the energy matrix ele-

ments„ that it is to our advantage to maximize the number
of cross terms. Thus, we try as a variational wave func-
tion the RVB state y g, y„where the summation is
over all dimer coverings a, or equivalently over all SP
states y, . Then the normalization is

W'W-ZZV4V. -Z2")~(c)/2".
b e c

The weight w(c) is present because several different dimer
coverings a,b can lead to the same loop covering c a+b.
In fact for a loop u of length 2L(u), with L(u) greater
than 2, i.e., nonzero area, alternate links could come from
either a or b Thu. s )v(c) has a factor of 2 for each loop of
length greater than 2, or since P2(c) is the number of
loops of length 2 in c,

w\c) ~2 a(~) -a&(c)

O' 0' g22P(c) t'pic)/2~—

Qt ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~"""

The very important point we now want to make is that
all terms in the summation are positive, the number of
terms is exponential in N, so that we can interpret the log-
arithm of the weight as an entropy, and the summation as
a partition function. In fact let us define a more general
partition-generating function Z(x) by

Z( ) g2P(e)-Pg(c)( /2))v P(g)

*

FIG. l. (a) Shows the dimer covering a corresponding to the

SP state a„(b) shows the dimer covering b corresponding to the
SP state b; and (c) shows the loop covering c a+b correspond-
ing to the matrix element pic, .

nate signs around the loop. There are two such states, and
each has weight 2 ~(") from the singlet normalization.
The sign is positive, as can be seen from the following ar-
gument: Suppose we had picked the singlet phases to cor-
respond to all arrows going clockwise around the loop.
Then considering a Nml state the total phase would be
(—1) ("). However, our phase convention reverses exact-
ly half the arrows, and so differs by a phase (—l)~(").
Thus, the sign is positive.

Therefore, the final result for the matrix element
c a+b is yjy, ~2 2 ". The product is over all
loops u in the loop covering c. This result can be
simplified somewhat. Let P2t, (c) be the number of loops
of length 2L in the loop covering c, with P(c) as the total
number of loops. Then 2N gt, 2LP2t, (c), so

+)+ ~~2.2 t.(u) ~2)'(c) —)v-

Then we see that Z(0) ZD, Z(1) pter, Z(2) Zg.
Other selector variables will be added to this basic parti-
tion function as needed.

A second point, important for numerical work, is that
the weight for a loop covering c is a product of weights for
the individual loops u of c. Each loop has a weight of 2 if
it is of length 2, and 4 otherwise. (The overall factor 2
is not important. )

We wish to use this RVB wave function to make a vari-
ational estimate of the ground-state energy of the antifer-
romagnetic Heisenberg Hamiltonian H QNNe cr'. We
do ttot claim that the RVB state is necessarily the lowest-
energy state for the square lattice. We only use this sys-
tem to illustrate the technique, and assume that the RYB
state will be stabilized by other means, such as next-
nearest-neighbor interactions. The summation is over the
4N nearest-neighbor bonds. The variational estimate is
understood as E pe)tt/yt)tt 4W tJ cr'), where the
average is an average over all the 4W bonds, and au the
loop coverings c, with the appropriate weight.

We now examine particular matrix elements @Jeer cr'y„
for a loop covering c a+b. We distinguish three cases,
illustrated in Fig. 2, where a dashed line represents the
operator a" cr': (a) the dashed line is on a covered link of
c; (b) the dashed line connects disjoint loops of c; (c) the
dashed line connects two parts of a single loop of c.

It is clear that case (a) gives s, times the matrix ele-
ment yjyr„where s, —3 is the singlet energy. Using
simple identities, one can also establish that for case (c)
we likewise have s,

pj's„while

for case (b) the phases on
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may interpret y
('» as the Boltzmann factor e

and so we are to evaluate the energy in the limit of high
temperature. The entropy as a function of energy E is

simply the logarithm of the partial sum over all loop cov-
erings c with E(c) E. Free energy is related to the parti-
tion function in the usual way.

We will push the analogy with statistical mechanics
further. Suppose the Hamiltonian had not been homo-
geneous and isotropic, but instead the interaction on
different classes of bonds, such as horizontal and vertical,
had different strengths J,. Then it would be reasonable to
weight the different classes of dimers in the trial wave
function with different activities z, . We then construct
the partition function

Z(x y {z j) y 2 (x/2)&-P( ) yE(,J)g 6(, )

FIG. 2. (a) Demonstrates two examples of case (a), when the
term in the Hamiltonian coincides with a link of the loop cover-

ing; (h) demonstrates an example of case (h), when the term in

the Hamiltonian connects t~o disjoint loops of the loop covering;
and (c) demonstrates an example of case (c), when the term in

the Hamiltonian connects t~o sites of a single loop of the loop
coveDng.

each disjoint piece cancel, so we have zero. [If we were to
consider another lattice with cycles of bonds of odd

length, such as the triangular lattice, then the matrix ele-
ment for case (c) would be + a, pj's„depending on
whether the dashed bond divides the loop into even or odd
subloops. ]

Thus, we have established that

WlHW. -XE(u) WlW"

where the summation is over all loops u in c a+b. The
quantity E(u)/s, is the length of the loop u plus the num-

ber of bonds connecting two sites on the loop. It is very
important for numerical work that the energy E(c) of the
loop covering c can be expressed as a sum of the energies
of individual loops, by E(c) Q„E(u). Also, these results
confirm the assertion we made earlier, that the presence of
cross terms lowers the energy. Thus, our final result is

yE( )22P(c) —Pg( )/2N

Let us now extend our definition of the partition function
to

Z( ) +2P(~) P&(~)( /2)&-P(c)yE(e)

Then we end with the tidy expression for the variationai
estimate of the ~~~~gy E -ainfz(l, y)]/()y ~P

The analogy with statistical mechanics is clear. We

The quantity G(s,c) is the number of times a link of type
s occurs in the loop covering c. Then applying the varia-
tional principle, we determine

E({J,j,{.,j) -a»V(i, y, {,j)]/ay I,-, .

Finally, we are to choose z, so that E({J,j,{z,j) is a
minimum. Thus, we have an energy minimum principle,
rather than a free-energy minimum principle.

Now it is reasonable to suppose that singularities of the
resulting E({J,j) occur when the corresponding z, move
across the singularities of Z(l, I, {z,j), since the energy is
just another thermodynamic function, and it is really the
nature and singularities of the correlations themselves
which are fundamental.

To go further, let us consider the partition function
Z(x, 1,{z,j ). We have agreed that it is the singularities of
Z(1, 1,{z,j ) which determine the phase diagram of the full
problem. But Z(x, 1,{z,j) extrapolates between the ex-
actly solvable dimer problem ZD({z,j) and Zg({z,j) as
end points, when x varies between 0 and 2. In fact, the
case of small x can usefully be viewed as a slight dilution
of the pure dimer problem. It seems to us a reasonable
conjecture that the physical problem for x 1 might then
be in the same universality class as the dimer problem.
Right or wrong, this is a very interesting conjecture, for
the homogeneous dimer problem on a square lattice is
equivalent to the Ising model at the critical point. Howev-
er, a lattice system at the critical point has algebraic de-
cay of correlations, while a lattice system off the critical
point has exponential decay of correlations. As we shall
soon see, exponential decay is associated with an energy
gap for the low-lying excitations. It is not until we destroy
the translational invariance of the dimer system by alter-
nating the bond strengths that we move from the critical
point. The dimer problem in general is soluble, and the
nature of the correlations is sensitive to the exact form of
the lattice.

We now wish to estimate the low-lying excitations, so as
to determine the nature of the dispersion curves. Suppose
that we break a singlet, and leave two up spins in its place.
In order that we not have to break another singlet, the
separation between the two spins must be odd. We now
examine the overlap between two such states. The corre-
sponding loop covering c a+b will now have loop seg-
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ments connecting pairs of spins, one from each of the
states a and b. Therefore, the distance between two such
spins must always be even. Since there is no obvious ener-

gy advantage to pairing in the two-dimensional problem, a
situation very different from the one-dimensional case, for
now we assume this to be so, and consider each overturned
spin individually. Thus, we try a trial wave function

y(k) -gee'k'yr, (r),

where y, (r) is the state with the overturned spin at r, and
otherwise a dimer configuration a. (The second spin from
the broken singlet we place at infinity. ) Then our varia-
tional estimate is

E(k) -ain[Z(l, y [ k)]/ay [, ,

where

Z(1
~
k) ~g g ik(r r') g-22'(c) -Pz(c) E(c)/2N

r' c(r,r')

The notation g,(„.) denotes a sum over loop coverings
with a loop segment of even length between r and r '. Nor-
malizing by subtracting off the ground-state energy, we
arrive at the final result:

m(k) -E(k) -E-ainS(k (y)]/ay (,-&

-S'(k
i 1)/S(k (1),

where S(k ( y) is the structure factor, equal to the Fourier
transform of the pair correlation function g(r ~ y):

~ 2P(c) —P2(c) E(c)
~C&r,r')~

22p(c) -pg(c) E(c)
Mc

This formula bears a striking resemblance to Feynman's
theory for the excitations in superfluid liquid helium,
where the peak in the structure factor is responsible for
the roton minimum.

A general feature of our dispersion is that, since g(r ~ y)
is zero unless r is even, ro(k+ir/a) co(k) where a is the
lattice constant. Thus the dispersion relation is charac-
teristic of a sublattice of even sites and lattice constant
42a. Further, if the ground state were to have long-range
order and thus a nonzero interfacial tension and exponen-
tial decay of correlations, a simple calculation for long
wavelength or small k would verify an energy gap as in
Ref. 11. However, arguments2z indicate that instead the
ground state is in the same universality class as the pure
dimer problem, and thus at a critical point. Thus, we ex-
pect gapless excitations, as found by Baskaran, Zou, and
Anderson 2' for a mean-field RVB state.

Similarly, by introducing vacancies into the magnetic
system, and allowing them to hop from site to site, we may
treat the strongly repulsive Hubbard model near a half-
filled band by the same techniques.

Nore added. After this manuscript was submitted for
publication, it was pointed out to us that a similar ap-
proach has been taken by Iske and Caspers. They, how-
ever, are more interested in numerical evaluation of gen-
eral RVB states, and less in the partition function analogy
we advocate. The following points in their paper support
our simple RVB state: (1) our state gives a reasonable es-
timate of the energy; (2) this estimate is not significantly
improved by longer-ranged spin pairs or changes of phase;
(3) our state has the correct phase by a theorem of
Marshall.
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