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Large-n IIsssst of the Heisenberg-Hubbard model: Implications for high-T, superconductors
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The Heisenberg-Hubbard model is solved in the large-n limit to gain insight into its relevance
to the copper-oxide materials. A gapless disordered ground state is found for the Heisenberg
model. Electronically induced orthorhombie-tetragonal symmetry breaking is observed as a func-
tion of doping, with the greatest tendency towards superconductivity occurring in the orthorhom-
bic phase.

Anderson' has proposed that the correct model to de-
scribe the Cu02 planes in the high-T, superconductors is
the two&imensional Hubbard model witItottt phonons:
only the electrons in the outer d orbitals of the Cu2+ ions
are retained, and the 0 ions are ignored entirely. The
electron density is believed to be 1 for pure LazCu04 and
decreases with Sr or Ba doping. Adjusting the 0-
deficiency in YBa2Cus07-„should adjust the Ming fac-
tor in this material as well, although in a less obvious way
(due to the presence of the CuO chains). It is well known
that in the limit U/~ t

~
&& I for a half-filled band the mod-

el reduces to the Heisenberg antiferromagnet, with no
charge transport. Estimates suggest that U= 5 eV, t = I
eV, and indeed undoped La2Cu04 seems to be an insula-
tor well described by the Heisenberg modeL The doped
compound La2 sSrsCu04, with electron density 1 -b, is
superconducting for b=0.15. Meanwhile, an ortho-
rhombic to tetragonal structural transition occurs at ap-
proximately the same value of b, with the orthorhombic
phase being stable at lower b.

It is clearly very important to understand whether the
Hubbard model can produce this behavior. Anderson and
collaborators3" have developed a language and a mean-
field theory for understanding these phenomena based on
the notion of "resonating valence bonds. " Almost nothing
is known rigorously about either the s 2 Heisenberg
model or the Hubbard model on a square lattice.

Diagonalization of small systems5 suggests that the
Heisenberg model Neel orders at T 0. Indeed Neel or-
der has been observed in some La2Cu04 samples. Recent
experimental studies of the two-dimensional magnetic
correlations have also been performed. It is possible that
the Neel order is purely a three-dimensional effect and the
twoMimensional system might not order, even at T 0.

A related issue is the nature of the gap for spin excita-
tions. Experimental indications of a linear low-tem-
perature specific heat have been reported suggesting a
gapless Fermi surface as was predicted by RVB theory. 3 4

A theorem due to Lich, Schultz, and Mattis seems to im-
ply' that either gapless excitations or broken translation-
sI symmetry occurs.

In this paper we attempt to shed light on these issues by
applying a systematic approximation to the Heisenberg

and Hubbard models based on the large-n limit. " We re-
place the two spin components of the electron by n
"flavor" components, and let n become large. In lowest
order in 1/n we essentially perform a Hartree-type factori-
zation. However, unlike other mean-field theories, in this
approach systematic calculations of corrections (in higher
powers of 1/n) are possible. We do not make any a priori
assumptions about symmetry breaking. Furthermore, the
lowestwrder calculation is the exact solution of a physical-
ly sensible model (albeit not the right one). If n 2 is
suSciently large we should expect our conclusions to be at
least qualitatively correct. Alternatively, certain phase
transitions may occur as a function of n.

We begin by discussing the Heisenberg model in the
large-n limit. In the ordinary (n 2) case, we may write
the HeisenberII interaction in terms of electron operators
as S;.SJ ( 2 )c;tc;ttcltttcj, + constant. (Repeated flavor
indices such as a and P are summed over the two spin
components. ) To obtain the Hilbert space of the spin
model, rather than an itinerant electron model, we must
project out states with one electron on each site. We gen-
eralize this to arbitrary n by writing the interaction the
same way but letting the spin indices a and P run from 1

to n and projecting out states with n/2 electrons per site,
assuming that n is even. (The model with one electron on
the even sublattice and n —1 on the odd sublattice is also
interesting and will be discussed elsewhere. ) For the ordi-
nary (n 2) antiferromagnet, an arbitrary singlet state
can be represented by a valence bond diagram in which
each site is attached to precisely one other site. For gen-
eral n, we must draw n/2 valence bonds eminating from
each site. (For general n, a valence bond represents a di-
agonal sum over electron and hole indices on two different
sites. ) Thus, there will be, in general, a large number of
valence bonds on each link. In the ordinary (n 2) case,
when the Hamiltonian acts on a link not containing a
valence bond it annihilates the two bonds terminating at
the ends of the link and creates a bond on that link and
another (non-nearest-neighbor) bond between the two
disconnected spins. The same is true for arbitrary n. Al-
though there are n/2 bonds terminating at each site, act-
ing with the Hamiltonian anmhilates only two bonds and
creates two new ones, with a linear superposition of all the
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FIG. 1. Definition of the four X's consistent with invariance
under translation across a diagonal.

To calculate the ground-state energy as a function of the
X's we must sum the energies of the lower branch ( since
the band is half filled) and then add the term quadratic in
X. We have done a computer search and find two locally
stable minima. The first one, which we refer to as the
Peierls phase, has only one of the four X's nonzero. Each
spin forms a dimer with one of its nearest neighbors;
hence the electronic spectrum is completely localized, with

gapaE+ (k) + iXi.
The second phase, which we call the flux phase, has all

four X's equal in magnitude and the sum of the four
phases, the flux, is n. There is only one gauge-
inequivalent state of this kind. Choosing the gauge in
which all the X; )X(e'*t", the electronic spectrum be-
comes

E(k) ~
~
2X

~
[cos2k„+cos2ky] '

Note that the gap only vanishes at k (+n/2, +' n/2). It
vanishes linearly here, and the low-energy theory is the
(2+1) dimensional relativistic free fermion quantum-
field theory. Consequently, the spin-correlation function
drops off as 1/(distance)4. Note that the translational
symmetry appears to be broken because of the nonzero
phase, since X~ and X3, for example, are oriented in oppo-
site directions (see Fig. 1). This phenomena is a gauge ar-
tifact however, since we can always find a gauge transfor-
mation that makes X~ and X3 real. The constraint on the
number of particles implies that only particle-hole excita-
tions are permitted with gapless modes at (0,0), (n, o),
(O, n), (n, n).

These results are consistent with the Lieb-Schultz-
Mattis theorem. ' In the Peierls phase the symmetry of
translation by one site is spontaneously broken, and in the
flux phase there are gapless excitations of wave vector
(n, O).

We have, in fact, checked that these solutions are local
minima with respect to arbitrary space dependent var-ia-
tions of X. We find that the Peierl's phase is slightly lower
in energy, the energies per site being —nJ/8 and—0.11SnJ.

We have also solved the general Hubbard-Heisenberg

possible ways of doing this. Thus fluctuations in the rela-
tive number of valence bonds on each link are suppressed
at large n. This bond number becomes a classical quantity
in our large-n approximation. One attractive feature of
these models is that the Lich-Schultz-Mattis theorem
generalizes to arbitrary n

We solve the model at large n by a path-integral meth-
od. This allows us to introduce the valence bond operator

(J/n)c;, cj, by a Hubbard-Stratonovich transforma-
tion. At large n we may ignore its fluctuations. The
Hamiltonian can be written as

[(n/J) (X&, ~
'+(c,.c;.X,J+H c )1 .. .

i,j)
An additional Lagrange multiplier field must be intro-
duced to enforce the constraint on the number of electrons
on each site. However, it plays no role to leading order at
large n and will be dropped in this simplified discussion.
We now simply minimize the ground-state energy (or free
energy) with respect to the classical numbers X;;. A
subtlety arises because of gauge invariance. The exact
conservation of the particle number at each site implies
invariance under phase rotations of the cJ's with arbitrary
space and time dependence'3 cj cjexp(i8J) Xt.rans-
forms as Xik~ Xjk exp[i(8t 8k) j. -Thus, the phases of
X'k I X k I exp(i8tk) act as components of the gauge field.
The sum of the 8jk's around an elementary plaquette is
gauge invariant; it corresponds to the magnetic flux
through the plaquette. Compact gauge symmetries are
not broken in lattice gauge theories. Gauge-equivalent
saddle points must be averaged over so that only gauge-
invariant quantities have nonzero expectation values. In
particular,

XjtkXJk (J/n)'(cg~, ct, )(e~pckp) ~SJ 8k+const

may be nonzero. (n/J )XjkXp, is the number of valence
bonds on the link jk, a classical number for large n [For.
n 2 the number of valence bonds on any link is at most
one, but we may interpret (n/J )X kXJk as the probability
of a valence bond lying on the link.

It is tempting to assume that XtJ has a uniform real
value on all links. In this case, the reduced Hamiltonian is

simply the standard tight-binding model with hopping pa-
rameter X. However, as discussed below, this is not the
minimum energy configuration. Due to the Fermi surface
instability (which results from perfect nesting in the
tight-binding model), the energy can be reduced by allow-
ing X;J to have an alternating part. The reduced Hamil-
tonian is then a tight-binding model with a nonuniform
hopping parameter. We will assume the simplest form of
X consistent with a locally stable minimum. This con-
figuration has a unit cell of length J2, corresponding to
symmetry of translation across diagonals of the original
square lattice. This symmetry permits four independent
X's as shown in Fig. 1. We must calculate the dispersion
relation for the tight-binding model with these nonuni-
form hopping parameters. Because there are two ine-
quivalent sublattices, this dispersion relation has two
branches,

E+ (IC,Ky) + (X)exp(ik„)+X2 exp(iky)

+X3exp( ik )+X)exp—( iky ) ( . —
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model in the large-n limit. The Hamiltonian is

H - g [t (c~~,,+cjoy c;,) + (J/n)ctcpc, ~pc,,]
(i,j)

+ (U/n)g(c;tc;. —n/2) '.

We again make the X;t Hubbard-Stratonovich transfor-
mation to eliminate the Heisenberg interaction. A second
Hubbard-Stratonovich transformation must also be made
to eliminate the Hubbard interaction. This second vari-
able (the analog of the Lagrange multiplier needed for the
pure Heisenberg model) again plays no role to leading or-
der in 1/n and is dropped from the following discussion.
We thus end up with the same reduced Hamiltonian as
before except that the effective hopping parameter is now
Xij+fo

H j(n/J) (X;, ) '+[c,,c;,(X;,+t)+H.c.ll.
i,j)

0.25-

Q25

FIG. 2. Approximate phase diagram of the n ~ ~
Heisenberg-Hubbard model as a function of Heisenberg ex-
change constant and doping,

We have again performed a computer search for the
minimum with the same symmetry assumption as before
(leading to the four independent X's). The phase diagram
depends on t/J and on the doping b, defined by the num-
ber density ~ n(1-8). At b 0 (half filling) we find a
Fermi surface instability for arbitrarily small J/t which
makes X have an imaginary or nonuniform part. At large
J/t a partially dimerized, or Peierls state, has lowest ener-

gy (one of the X's is larger in magnitude than the rest).
Thus, the number of valence bonds (n/J ) (X~ is larger
on one type of link on than the others. This state may be
called a bond-centered charge-density wave, since we
should probably regard the electron wave functions as be-
ing concentrated on the link when they form a valence
bond.

For smaller J/t the ground state has all X's equal with a
nonzero phase. This breaks the translational symmetry
since neighboring parallel bonds, e.g., X~ and X3 have op-
posite orientation. This state is not dimerized, however,
because the number of valence bonds (n/J ) ~X~ is the
same on all links. Rather, the symmetry is broken by a di-
amagnetic current fiowing around the plaquettes in an al-
ternating sense. [Note that the current on the link kl is
i(ck,ct, ct,ck, ) i(n—/J)(Xkt -Xkt).] Only at t 0, the
pure Heisenberg case, does this current become an unob-
servable gauge artifact.

At suSciently large doping (which becomes exponen-
tially small for small J/t), this instability disappears, and
the ground state has a real, uniform X. This corresponds
to a simple Fermi-liquid state, as proposed by Anderson
and co-workers. '3 4 The only effect of the Heisenberg in-
teraction is the renormalization of the effective hopping
term.

We also found a fourth phase at intermediate doping.
(See Fig. 2.) The X's are real and X~ X2WX3 X4 (or
X~ X4&X2 X3). Thus the links with a higher valence
bond (or electron) density (for example, X~ and X2) form
zig-zag lines through the lattice. These "strong bonds"
should have an excess electron density, and hence an ex-
cess negative charge. The weak bonds (e.g., X3 and X4)
should have a net positive charge. If we regard this

charge excess as residing in the vicinity of the 0 atom in

the middle of the Cu bond, then neighboring 0's on strong
bonds repel each other. This could lead to shifting of the
0's off the Cu planes in an alternating fashion, as ob-
served in the orthorhombic phase of La2 „Sr CuOq.
However, this phase may imply a distortion of the Cu lat-
tice of a type which is not observed. The strong bonds
should get shorter, and the weak ones get longer, due to
the attraction or repulsion of the Cu ions by the charge
excess on the links. This would distort the square Cu pla-
quette into a "kite"—a four-sided figure with pairs of ad-
jacent sides equal in length —which differs from the ob-
served distortion of the square into a rhombus.

Although off&iagonal long-range order does not occur
in the large nlimit, t-he tendency towards it, as a function
of doping, can be related to the "stiffness" of the phases of
the X;t's. This stiffness determines the rigidity of the su-

perconducting order parameter. We find the stiffness is
largest in the "orthorhombic" phase and goes rapidly to
zero in the tetragonal phase.

We also find that the phase diagram evolves continu-
ously with temperature. Our results are consistent with
general theorems about symmetry breaking in two-
dirnensional systems since we only find breaking of
discrete lattice symmetries. A breaking of the continuous
symmetries, corresponding to antiferromagnetic and su-
perconductivity, may occur at T 0 for sufIlciently small
n More deta.ils about the stiffness of the superconducting
order parameter, the dependence on temperature, and the
likely variation with n will be given elsewhere

Our most important result is perhaps the discovery of a
possible disordered gapless phase for the Heisenberg mod-
el, which is consistent with the Lich-Schultz-Mattis
theorem. We expect that a phase of this type is possible
for n 2. It may become the true ground state for small
enough n (lower in energy than the Peierls phase) if Neel
order does not occur. %e also found that, for large n, a
Fermi-surface instability always introduces a gap for half
filling, destroying the Fermi-liquid phase. Thus at small
doping the specific heat should be exponential (Peierls
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phase) or quadratic (flux phase). This instability can be
removed by doping or by other efkcts such as second
nearest-neighbor couplings. Once the Fermi-surface in-
stability has been removed, the specific heat becomes
linear. We also found an electronic mechanism which
might drive the orthorhombic distortion. Finally, we
found a dependence of the rigidity of the superconducting

order parameter on doping which agrees qualitatively with

the observed dependence of T, on doping.
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