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Behavior of an Ising model with randomly mixed classical and quantal spins
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The observation that deuterons tunnel much less than protons in tunneling mediated phase
transitions suggests that it might be useful to look at disordered quantum-spin models in which
the disorder resides entirely in the size of the quantal fluctuations. As an example, we consider a
system of randomly mixed classical and quantum-mechanical (tunneling) spins. The mean-field
theory phase diagram shows that sufficiently dilute quantal spins cannot lead to zero-temperature
disorder. In addition, our analysis of the infinite transverse field limit suggests that the critical
behavior must differ from that of the pure classical problem.

There are numerous examples of hydrogen-bonded
solids that undergo order-disorder phase transitions in-
volving significant proton tunneling. Ferroelectric materi-
als of the KDP(KH,PO,) class are typical in this regard.
One knows that it is, in fact, tunneling that controls the
proton rearrangement in these substances largely because
of two experimental observations: First of all, by increas-
ing the pressure the order-disorder transition can be made
to occur at zero temperature’— indicating the primary
role of quantum effects.® Second, at any lower pressure
the transition temperature can be increased dramatically
simply by replacing all the mobile protons with deu-
terium—a result consistent with the finding that the
relevant deuterium tunneling frequencies are typically or-
ders of magnitude less than the proton ones.! This last
observation, however, is sufficiently intriguing in its own
regard that it prompts one to wonder what happens to the
phase transition with a quenched random mixture of H
and D. Indeed, it is this question which motivates this
Brief Report.

A rigorous treatment of KDP-like crystals is somewhat
involved, both because of the ice-rule correlations and be-
cause the elementary fluctuating degrees of freedom are
not really single protons.! Nonetheless, it is revealing to
study the problem in the context of a commonly used
model which ignores such subtleties: the Ising model in a
transverse field,* defined by the Hamiltonian

H=-J Y ofoi—X.K;o} , (1)
Gp j

where o? and o* are Pauli matrices, J is the interaction
between “spins,” K is the transverse field at lattice site j,
and the first sum is over nearest-neighbor lattice sites.
Normally, all the K;’s are set equal to a single tunneling
integral K, which is then taken to describe the tunneling
process which switches the proton between two possible
states at a lattice site, flipping the spin. If this K were
zero, we would recover the classical Ising model, but as K
is increased from zero, it is known that the critical tem-
perature decreases until 7. =0 for K =K.

The version of the model we propose is an Ising model
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in a random transverse field. That is, the values of K at
each site are now distributed according to a probability
distribution:

P(K)) =(1—x)8(K)) +(x)8(K, —K) |, @)

with x the concentration of quantal spins (protons with
tunneling integral K) and 1 —x the concentration of clas-
sical spins (deuterons with tunneling integral 0).°> Hence,
we are considering a quenched disordered system in which
the randomness resides entirely in the quantal part of the
problem, a situation which, itself, automatically raises
some intriguing questions. For our model in particular,
we would like to know if there will continue to be a critical
K value for all concentrations of quantal spins or only for
sufficiently large x. And, if the latter, what is it that
determines the critical x value?

Before we try to answer these questions, it is worth not-
ing some easily recognizable limiting behaviors. For ex-
ample, for both x =0 (no quantal spins), and K =0 (no
tunneling), the system reduces to a pure, classical Ising
model. When x =1 the system becomes a pure quantal Is-
ing model. An even more interesting behavior is obtained
by letting K — oo. Physically, this limit corresponds to in-
creasing the tunneling frequency of quantal spins, which,
presumably ought to make then effectively less coupled to
the nontunneling (classical) spins.® We can make this
idea more precise by considering the partition function for
the system:

Z=Trexp(—BH) .

The (partial) trace over the quantal spins can easily be
carried out in the limit K— oo by splitting the Hamiltoni-
an as

H=Hy+Hg ,

where H includes interactions between classical spins,
whereas Hgnm contains the interactions between different
quantal spins and that between classical and quantal spins
as well as the transverse fields acting on quantal spins.
Because spin operators at different sites commute, and
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since Hg contains only o° matrices, Hq and Hgnm also
commute, so that the partition function can be written as

Z =Trqlexp(—BH) Zgm] ,
where
Zqm=Trqmexp(—BHgm) .

Note that Z 4, is, for general X, still a function of classical
spins; however, as K— oo, it is easy to see that Zg,
reduces to the constant [2cosh(8K)1*". Therefore, in the
extreme quantum limit our problem reduces to a classical
(site) diluted Ising model. As x is increased, the critical
temperature is depressed, until 7, =0 for 1 —x =1 —x,,
the site percolation threshold for classical spins.

Based on this evidence, we can expect a phase diagram
resembling that presented in Fig. 1. In order to get the
quantitative results for this phase diagram (which are ac-
tually presented in the figure) we perform a simple mean-
field-theory calculation. The most elementary version of
mean field theory*® is obtained by replacing the fluctuat-
ing variables corresponding to the neighbors of a tagged
spin by a constant molecular field m, which is subsequent-
ly identified with the average magnetization of the system.
A self-consistency equation is then obtained by requiring
that the expectation value of the tagged spin be equal to
m. However, in problems involving quenched disorder,
one has to resort to slightly more sophisticated methods™
in order not to miss phenomena such as percolation.

One of the most efficient methods is based on an ap-
proximate application of the Callen identities®!° to quan-
tal spin systems.!! In this approach, one still calculates
the average of the tagged spin (oo while fixing the values
of all the other spins. However, instead of replacing the

kT/Jz
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FIG. 1. Temperature-concentration-tunneling integral phase
diagram for an Ising model with a fraction x of quantal spins
and fraction 1 —x of classical spins. The results shown are for
coordination number z =6. Note that the tunneling integral is
plotted as tanh(K/Jz) in order to map the whole 0 < K < oo
range into (0,1). The ferromagnetic phase resides under the
critical surface ABCDE and the paramagnetic phase sits above
the surface.

neighboring spins by a constant, an improvement is ob-
tained by replacing them with classical fluctuating spin
variables S; = * 1, where j=1,...,z indexes the nearest
neighbors of the spin. The problem is then reduced to cal-
culating (o) for a single quantal spin in a fixed, external
(longitudinal) field —J X S;. The straightforward result
is

2 12
+(ﬂK)2J

tanh [ [ﬂJ 2] S;
(of) = ’

75 s,-] L@
p2

2

1/2
+(ﬁK)2]

[ﬂlz S;
Jj=1

At this stage one can make use of the nontrivial algebra
of classical spin variables. The idea is to rearrange the
right-hand side (RHS) of the equation (without making
any approximations) into the form'°

RHS=RUS}}) = A(BJ,pK)v "

+BBJ,BKIw P+ -+ | (4)
where
U(l)-zsj, p@ = Z SiSiSk, ... . (5)
J i<j<k

This process can be carried out systematically by observ-
ing that general functions of z spin variables form a Hil-
bert space provided we define an inner product by

(f,g)-g:]f({sj} )g({s;h) . (6)
J
) L@

It is easy to show that v M @ . are orthogonal func-
tions with respect to this inner product, so that we obtain

A-(R,v(”)/(v(l),v(”) ,
@)
B=(R,v®)/0® @) .. .

The calculation of sums over spins involved in evaluating
the inner products can be further simplified if the func-
tions depend only on v m =Y S.. In this instance we can
sum over distinct values of v 1’ weighting the terms by
appropriate combinatorial factors. In general,

z |z
Tr(Zs)=-X [k]f(Zk—z). ®)
s} k=0

To finish the calculation, we have to average Eq. (3)
over both the spin configurations and the disorder (trans-
verse fields). Given the form of Eq. (4) though, this
averaging reduces to averaging v, v?, ..., over spins,
and A4, B, ..., over disorder. The mean-field theory is
then obtained by factoring the spin moments

W Dymzm, (0P =z(z—1)z—-2)m’/6,...,
so the self-consistency condition reads
m=zAm+z(z—1)z—2)Bm3/6+0(m>) , (9)

where the overbar indicates an average over the disorder.
The final equation for the critical surface is

1=z4 , (10
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which, with the aid of Egs. (3) and (5)-(8) can be written as

Z

k=0

1=27"%2% [z](2k—z) l(l —x)tanh[pJQk —z)1+x(2k —

This algebraic equation can easily be solved numerical-
ly, and the results for z =6 are shown in Fig. 1. Our re-
sults confirm the expected behavior, giving in particular a
zero-temperature (percolation) transition at x. =0.47 for
K/Jz =00, As the transverse field is reduced, the zero-
temperature critical concentration is increased until for
x =1 (the pure transverse Ising model) we obtain a criti-
cal transverse field of K./Jz=0.78. For both x =0 and
K/Jz =0 (the pure classical Ising model) the critical tem-
perature is 7./Jz =0.85. We can get an idea of the rela-
tive accuracy of our approximations by comparing these
figures with known series results:'> For a simple cubsic lat-
tice (z=6), (x/)*"*=0.69, (K./Jz)*"==0.85,
(T./Jz)*"==075. The quantitative accuracy of the re-
sults can be further increased by using a larger spin clus-
ters; alternatively one can employ path-integral methods
to provide a better treatment of the quantal spins on the
exterior of the cluster.®

What should clearly be the next step once the global
phase diagram is known, is to discuss the critical behavior
of our system. For pure quantum spin systems, the criti-
cal behavior is well understood: although it is true that at
zero temperature, the transition becomes a (d+1)-
dimensional classical one,'* at any finite temperature
quantal fluctuations become irrelevant and the system
crosses over to d-dimensional classical behavior.'* In
renormalization-group (RG) language, the system flows
away from the zero-temperature “quantal” fixed point
(T'=0, K=K_), and towards the “classical” fixed point
(T=T&,K =0) under rescaling. A similar behavior has
been established for other pure quantum-mechanical mod-
els'* and even for disordered quantal models.!> As a
consequence it is now widely believed that quantum-
mechanical effects can be ignored in the study of critical
phenomena at finite temperature. For our system, since
for both x =0 (the pure classical Ising model) and x =1
(the pure quantal Ising model), the behavior at finite tem-
perature is indeed classical, one would naively expect the
situation to remain unchanged at intermediate concentra-
tions. However, such a conclusion is in direct conflict with
a heuristic criterion advanced by Harris'® which predicts
that the disorder alters the critical behavior whenever the
specific-heat exponent a for a pure system is positive, as is
indeed the case for our system. '’

Presumably the best way out of this dilemma would be
to do an explicit renormalization-group calculation. Al-
though we will not do so in this paper, it is still possible to
reconcile these ideas by using a simple stability analysis
for the various fixed points. The two fixed points already
present in the pure limit are zero-temperature “quantal”
fixed point (D in Fig. 1), and the “classical” fixed point (C
in Fig. 1). Note that for more general x, the whole criti-

Z)tanh{[ﬂJ(2k—z)]2+(/3K)2} 12 b
[Qk—2z)2+(K/))2] 1/2

cal line ABC corresponds to a single physical system,
namely the classical pure Ising model, and should there-
fore be considered as a single fixed point. When disorder
is introduced by mixing classical and quantal spins, a new
“percolation” fixed point (E in Fig. 1) appears at
K/Jz =oo, corresponding to the fact that our system
reduces to the diluted classical Ising model in that limit.
Fortunately, the classical diluted Ising model itself has
been thoroughlsy investigated over the years by a variety of
RG methods.!® These studies have been able to confirm
the Harris criterion and establish the relevance of disorder
for this problem, giving a flow away from the pure fixed
point (4). Since our proof of the equivalence of our sys-
tem to a diluted classical Ising model when K/Jz =oo is
exact, we have demonstrated the instability of the pure
classical fixed point in at least one direction (which is
enough to make it irrelevant). We can therefore conclude
that the critical behavior does differ from the classical Is-
ing behavior; randomness, even in the form of quantum
fluctuations, represents a relevant perturbation in this sys-
tem.

To sum up, in this paper we have considered the inter-
play between quantum mechanics and disorder with an
example of randomly mixed classical and quantum-
mechanical spins. We verified by explicit construction of
the phase diagram that there is a critical concentration for
quantal spins and we used the relationship between K = oo
limit and a disordered classical problem to establish the
relevance of quantal fluctuations. There are, of course, a
number of questions that remain to be answered, both in
the framework of our model and beyond. One should cer-
tainly perform explicit RG calculations on our systems,
both for weak disorder and near percolation, in order to
determine the actual critical behavior. From a somewhat
broader preceptive, it might also be interesting to look at
rather different types of theoretical models with random
quantum-mechanical fluctuations, say, for example, a
Heisenberg model with spins obeying random commuta-
tion relations. Beyond being of theoretical interest, the
effects of randomness directly coupled to the size of
quantum-mechanical fluctuations are clearly of concern in
many experimentally realizable systems, including not
only partially deuterated ferroelectrics'® but also strongly
disordered superfluids.”® One might even expect this kind
of randomness to be commonplace for quantal degrees of
freedom in glasses.
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