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%e show that the resonating-valence-bond mechanism for high-T, superconductivity can lead
to s-wave- and d-wave-like superconducting order parameters. The critical temperature for )-
wave ordering is higher close to half-611ing. At low temperatures, a mixture of d and s waves
with a well-de6ned phase opens a full gap in the quasiparticle spectrum.

Following the discovery by Bednorz and Miiller' of
high-temperature superconductivity in rare-earth copper
oxides a number of theoretical ideas have been proposed
to explain the origin of this unexpected phenomenon.
Theoretical arguments2 suggest that the critical tem-
peratures above liquid nitrogen observed in the
(Yi-,B„)2Cu04-r (Ref. 3) cannot be understood in
terms of a phonon-mediated mechanism, and therefore
the pairing mechanism responsible for the superconduc-
tivity is of electronic origin. Varma, Schmitt-Rink, and
Abrahams suggested a charge-transfer excitation (exci-
ton) mediated pairing, while Hirsch4 and Anderson' pro-
posed a mechanism based on Bose condensation of tightly
bound singlet pairs in a large-U Hubbard model. Ander-
son' describes the high-temperature superconductors in
terms of a resonating-valence-bond (RVB) state which is
a resonant mixture of singlet pairs with an approximate
wave function
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creates an electron at lattice site r with spin up, n runs

over nearest-neighbor bonds, and PG is a Gutzwiller pro-
jection operator which eliminates doubly occupied sites.
At half-filling this wave function describes a singlet mag-
netic state lacking any obvious long-range order, a quan-
tum liquid of singlet pairs. Away from half-611ing the
pairs can Bose condense, giving rise to a rather large (of
the order of the exchange energy) critical temperature.
The Anderson mechanism for superconductivity was rein-
terpreted in terms of condensation of topological defects
(solitons) by Kivelson, Rokshar, and Sethna. Anderson's
qualitative ideas were put on more quantitative grounds
by the mean-field theory of Baskaran, Zou, and Ander-
son. Their order parameter
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is the pair amplitude of a singlet along a nearest-neighbor
bond from site i to sitej. Similar results were obtained in-
dependently by Ruckenstein, Hirschfeld, and AppelL9
These authors considered, however, a link-independent
pair amplitude (b;Jt) b leading to an s-wave-like order
parameter.

In this paper we show the following: (a) Anderson's or-

der parameter has two complex degrees of freedom which
correspond to an s-wave-like and d-wave-like self-
consistent 6eld. When both the s-wave- and d-wave-like
order parameters are nonzero, their relative phase be-
comes a dynamical variable. (b) In a pure exchange mod-
el, within mean-field theory, the d-wave state has a higher
transition temperature. This suggests that with the super-
conductivity obtained from doping, the resonating-
valence-bond (RVB) state can be reached as a strong-
coupling limit of the antiferromagnetic spin-fluctuation-
induced singlet pairing which has been discussed by
several authors. ' (c) At low temperatures, close to half-
filling, a mixture of s and d waves and a well-defined rela-
tive phase is energetically favored. The corresponding gap
function vanishes only at four points on the Brillouin zone.
This state opens a full gap in the quasiparticle spectrum.
(d) In Anderson's theory the s-wave and d-wave order pa-
rameters (and their mixture) are rather close in energy.
Microscopic details can favor the different types of order.
Pair-hopping terms will raise the transition temperature
of the s-wave state. The Coulomb repulsion will favor the
d-wave state. This suggests the possibility of inducing
transitions between the different superconducting states
by applying pressure or a magnetic field.

The model under consideration is the pure exchange
model treated by Baskaran, Zou, and Anderson,
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in the space of empty and singly occupied states. J is an
exchange energy, o' are the Pauli matrices, and i,j run
over nearest-neighbor sites on a square lattice. Decou-
pling the order parameter (b;~), Baskaran et al. s obtained
the mean-field equations:
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N is the number of sites, 1 —8 is the number of electrons
per site. T the temperature, and one assumes a tmo-
dimensional cubic lattice with dispersion ek —t(cosk„
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+cosk» ) which is partially justified by band-structure cal-
culations, and we set the lattice spacing equal to 1,

[(sk-p) + Ihk I
]' is the quasiparticle energy, t

and p are renormalized quasiparticle hopping matrix ele-
ments and chemical potentials. We use the crudest ap-
proximation for t, i.e., t tab, with tn a bare matrix ele-
ment, but a more-refined treatment along the lines of Ref.
12 is also possible. The only unusual features in this
mean-field equation are the smallness of the efl'ective hop-
ping matrix element and the short-range nature of the
pairing interaction in Eqs. (3) and (5) which is effective
only among nearest neighbors [(Vk k ) is just the Fourier
transfer of K~J. defined by K~t 1 for lattice sites of the
nearest neighbors, and K;J 0 otherwise]. Unlike weak-
coupling theory the summations in Eq. (4) extend over the
full Brillouin zone.

Baskaran and co-workers assumed an order parameter
d, (cosk„+cosk»). Here we notice that the most

general even-parity solution of Eq. (4) is of the form

t4 -sco+ Cz,

where Cc cosk~+cosk» and C2 cosk„-cosk» are s-
wave-like and d-wave-like cubic harmonics, a fact which
follows from the separability of the kernel in Eq. (5) and
explore the consequences of a nonzero d. In particular, we
show that the d-wave-like order parameter has a higher
critical temperature and study the relative stability of the
two superconducting phases.

The linearized equation for T,

tanh [(ek.—tt )/2T, ]
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has two even-parity gap eigenvectors Cn(k') and C2(k')
which belongs to the +1 and —1 representations of the
cubic group, respectively. The transition temperature for
condensation in each channel T,(i) is of the form

the s-wave and the d-wave transition temperature as a
function of filling is shown in Fig. 1. For very strong cou-
pling, J/t- I, the s- and d-wave states are almost degen-
erate but the d wave still has a slightly high T,. For
weaker couplings, J/t ~ 0.2, the d-wave state is much
more favorable than the s wave whose transition tempera-
ture becomes negligible for b» J/t.

A more-realistic effective Hamiltonian should include
pair hopping terms, ij and jl being nearest neighbors on a
square lattice:
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Performing a canonical transformation, Hirsch has
shown that the Hubbard model in the limit of large on-site
repulsion is equivalent to the sum of Hamiltonians (3) and
(9) with tpH of the order of Jb. In this case tpH is positive,
reflecting the fact that allowing the pairs to hop reduces
the kinetic energy. This effect favors the s-wave state. Qn
the other hand, starting from a more-detailed model of the
copper oxygen planes where the relevant single-particle
states are admixtures of Cu and Q orbitals, one can show
that the s- and d-wave states have different Coulomb elec-
trostatic energies. This effect can be modeled with the
Hamiltonian of Eq. (9), but with a negative value of tpH

which favors the d-wave state. The net effect of Eq. (9) in
mean-field theory is to replace J in Eq. (8) by

J+tpH(3 —2i), i 2 and 0 for the d-wave and s-wave
channels, respectively.

We investigate the low-temperature properties of the
pure exchange model, substituting the order parameter
Eq. (6) in the free energy:
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The subscripts i 0, i 2 denote s-wave and d-wave quan-
tities, respectively. At half-filling the d and s eigenvectors
have the same critical temperature since
Ie(T,p 0) I2(T, tt 0). Notice that Cn(k') vanishes
when sk. 0 while C2(k') has two lines of zeros which in-
tersect the Fermi surface ak p at two points. Close to
half-fiBing the kernel tanh[(sk. —p)/2T]/(ak. —p) has its
maximum very close to the line where the order parameter
vanishes lowering the value of ln relative to l2. This sug-
gests that close to half-filling the d-wave solution has a
higher transition temperature. This point is not complete-
ly obvious due to the strong-coupling nature of the prob-
lem which extends the integrals defining I; over the full
Brillouin zone.

We studied numerically Eqs. (4)-(8) and compared
T,(0) and T,(2). J/t is a coupling measuring the relation
strength of the pairing interaction and the kinetic energy.
We find that in the mean-field approximation weak cou-
pling favors d-wave superconductivity. A typical plot of
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8
F16. 1. D (solid line) and S (dotted line) critical tempera-

tures in units of t versus proximity to half-5lling 8 in the pure
exchange model for J/t 0.145 (lower curves) and 1/t 1.0
(upper curves).
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where s and d are the amplitude of the s- and d-wave or-
der parameters and e is their relative phase. Minimizing
numerically Eq. (10), we find that at low temperatures a
mixture of s and d waves with relative phase close to

irl2 is energetically favored. At half-filling and zero
temperatures, s d, leading to a gap function of the form

(cosk, +i cosk~ ),
which only vanishes at four points in the Briiiouin zone.
This is to be compared with the pure s and the pure d
states which vanish along lines in Brillouin zone. A realis-
tic two-dimensional Fermi surface will generically inter-
sect the zeros of the pure s and pure d gap functions, but
will not generically intersect the four points where the
mixed state of Eq. (11)vanishes.

The relative phase between the s and d order parame-
ters can be understood in terms of a simple Landau-
Ginzburg expansion:
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The only term involving the phase is the last one, and
since as is positive, this favors a relative phase of e tr/2.
This mixed state is particularly interesting since in spite of
its anisotropic character it opens a full gap in the quasi-
particle spectrum in quahtative agreement with recent
measurements of the temperature dependence of the
penetration depth. '

In the Baskaran, Zou, and Andersons (BZA) theory
the mean-field transition temperature stays finite as one
approaches half-filling. The true superconducting transi-
tion temperature is driven to zero by the phase fluctua-
tions of the order parameter. Implementation of this idea
requires a more-sophisticated treatment of the BZA auxi-
liary boson field, and it is outside the scope of the mean-
field theory for the pairing of the Fermi operators. At
half-filling the finite transition temperature is to be inter-
preted as the onset of strong singlet pairing. The spin ex-
citations of the magnetic insulator can then be described
as quasiparticle-quasihole excitations with dispersion Ek.
This quasiparticle dispersion is calculable from the mean-
field theory and is given by Ek Since the m. ixed state per-
sists up to half-filling, our analysis does not support the

existence of a pseudo-Fermi surface in the insulating
state. Our mean-field solution gives a quasip article
dispersion relation Ek J(cos k+cos k~)'t2, which van-
ishes at four points on the Fermi surface.

At half-filling ai -az, and therefore close to half-filling
ai and a2 are fairly close in value, suggesting that one
could induce transitions between the pure d-wave (tt2 & 0,
ai & 0), pure s-wave (ai & 0, a2 & 0), and the s-d mixture
(a2 & 0, ai & 0) as a function of pressure or of applied
magnetic field.

In this note we suggested, on the basis of a mean-field
analysis, that a very local pairing like the pairing interac-
tion in Anderson's RVB theory, proximity to half-filling,
and strong coupling favor a transition to a d-wave-like
state. At low temperatures the superconducting order pa-
rameter is a mixture of s and d waves with a well-defined
phase and a full gap. Two obvious limitations of the
mean-field analysis is that it treats the double occupancy
constraint in a very crude approximation and ignores fluc-
tuations of the order parameter. These effects are prob-
ably very important very close to half-filling, and handling
them properly will require a more-sophisticated theoreti-
cal treatment. Given these limitations, it is important to
verify our suggestion by studying variationally more-
general RVB wave functions'

I y) -PG ZC(,'+„Ctt,d(n)
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with a link depend-ent pair wave fu-nction d(n), and to
look for evidence for pure and mixed anisotropic s- and
d-wave pairings in quantum Monte Carlo simulations of
the Hubbard model.

I would like to thank Jialin Liu for his patient guidance
and support in the use of MIT computer facilities and
Nick Read for a thorough critical reading of the
manuscript. Stimulating discussions with A. Millis, C. M.
Varma, D. Rokshar, and J. Sethna are also gratefully ac-
knowledged. A. Ruckenstein pointed out the effect of
pair-hopping terms on the critical temperature. This work
was supported by National Science Foundation under
Grant No. DMR-8521377 and by the Alfred P. Sloan
Foundation.

'J. G. Bednorz and K. A. Miiller, Z. Phys. B 64, 188 (1986).
2C. M. Varma, S. Schmitt-Rink, and E. Abrahams (unpub-

lished).
3M. K. %'u, J. R. Ashburn, C. J. Torry, P. H. Hor, R. L. Meng,

L. Gao, Z. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev.
Lett. 58, 908 (1987).

4J. E. Hirsch, Phys. Rev. Lett. 54, 1317 (1985); J. E. Hirsch
(unpublished).

sP. W. Anderson, Science 235, 1196 (1987).
6P. W. Anderson, Mater. Res. Bull 8, 153 (1973).
7S. Kivelson, D. Rokshar, and J. Sethna (unpublished).
86. Baskaran, Z. Zou, and P. %. Anderson, Solid State Com-

mun. (to be pubhshed).
9A. Ruckenstein, P. Hirschfeld, and J. Appell, Phys. Rev. 8 36,

857 (1987).

OD. Scalapino, J. Hirsch, and E. Loh, Phys. Rev. B 34, 8190
(1986); K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys.
Rev. B 34, 655$ (1986);Okawa and Fukuyama, J. Phys. Soc.
Jpn. 53, 12 (1984).

"J.Yu, A. J. Freeman, and J. H. Xu, Phys. Rev. Lett. 58, 1035
(1987);L. F. Mattheiss, ibid. 58, 1028 (1987).

26. Kotliar and A. Ruckenstein, Phys. Rev. Lett. 57, 1362
(1986).

~3D. R. Harshman, G. Aeppli, B. Batlogg, R. Cava, E. J. Ansal-
do, J. Brewer, %. Hardy, S. R. Kreittman, G. Luke,
D. Noakes, and M. Scuba (unpublished).

'4S. Kivelson, D. Rokshar, and J. Sethna (private communica-
tion) have diagonalized small systems at half-filling and
reached conclusions consistent with our analysis.


