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A theoretical treatment of the zero-temperature exchange-enhanced susceptibility of paramag-

netic substitutionally disordered alloys within the random-phase approximation was presented in

the preceding paper II of this series). In the present paper that treatment is extended so as to al-

low the calculation of the local susceptibility in the presence of moments and/or large applied

magnetic fields and the calculation of the spontaneous and induced local magnetization. The clus-

ter treatment presented here is the first cluster theory to treat quantitatively the e8ect of moment

formation on the local susceptibility. Moreover, the techniques presented here are computational-

ly feasible even for the study of concentrated alloys and yield results for the size of local moments

as a function of their local environment. Interpolation schemes which allow one to calculate easi-

ly the magnetization and local susceptibility associated with any magnetic cluster configuration

also are presented. The use of the formalism presented is illustrated by applying it to the calcula-

tion of the magnetization and susceptibility of different configurations of Ni atoms embedded in

Pd and in exchange-enhanced effective media.

I. INTRODUCTION

The theory presented in paper I of this series' (hereaf-
ter referred to as I), like most previous theories for
the magnetic susceptibility of alloys, applies only to the
paramagnetic regime and only to linear response. In
particular, all alloy generalizations of the theory of local
exchange enhancement predict only the formation of
moments of unspecified size on every site when the local
susceptibility diverges within the random-phase approxi-
mation (RPA) on any site. They fail to predict either
the size of the moments or the local susceptibility in the
presence of those moments. Furthermore, the present
theories all fail to treat the dependence of the suscepti-
bility on the applied magnetic field.

Here, we generalize the theory presented in I, obtain-
ing the first theory of local exchange enhancement valid
on either side of the point at which the local exchange
enhancement reaches criticality within the RPA. The
resultant nonlinear, self-consistent cluster theory yields
the spontaneous and induced local magnetization on any
site as a function of the local chemical and magnetic en-
vironment of that site. Similarly, it yields a local suscep-
tibility X;J.(co) within the RPA which depends on the
chemical occupation of and the local moments on the
sites i and j and all other sites k in the vicinity of site i
or site j. Although the theory presented here, like all
other RPA theories, is not valid in the immediate vicini-

ty of the point at which the local exchange enhancement
achieves criticality, the theory is generalized further in
the following paper so as to include the efFects of quan-
tum and thermal spin Auctuations in a way consistent
with the results of renormalization-group theory. That
generalization makes the theory presented in I and here
valid for all values of the local exchange enhancement

and for a11 temperatures.
The theory presented here is specifically intended for

application to nondilute metallic alloys which contain lo-
cal moments displaying significant local-environment
effects. It is the first quantitative theory for the suscepti-
bility and magnetization of such alloys. Many such al-
loy systems exist, of which the best known are perhaps
Ni-Cu and Pd-Ni. The theory has been applied to Pd-Ni
by the authors and found to yield results in good agree-
ment with experiment. For alloys not containing local
moments, the theory presented in I is directly applicable,
and the generalizations presented in this paper are un-
necessary. For dilute alloys, the magnetization is given
more accurately by single-site self-consistent spin-
polarized alloy band calculations. ' Such calculations
also are appropriate for those concentrated magnetic al-
loys which display only minor local-environment
effects. " On the other hand, cluster self-consistent
spin-polarized alloy band calculations to determine mo-
ments as a function of local environment are not feasible
even on the fastest computers available today. Thus, for
the applications intended the theory presented here is
uniquely useful.

This paper is organized as follows. In Sec. II it is
shown that even in the presence of local moments there
exists an integral equation for the alloy susceptibility of
the same form as the basic equation of I. This result,
which is given for the first time here, allows one to use
the formalism of I to determine the local susceptibility
X,~ even in the presence of local moments and/or high
magnetic fields, provided that one knows the local mo-
ment (or magnetization) on each site for a given local
configuration of atoms. Because it would not be compu-
tationally feasible to calculate those moments for con-
centrated alloys using the techniques of self-consistent
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alloy band theory, a new, computationally feasible
scheme for their calculation is presented in Sec .III, thus
making the formabsm of Sec. II usable in practice.

In Sec. IV the formalism of Secs. II and III is applied
to the case of three difrerent local clusters of Ni and Pd
atoms embedded in pure Pd and in exchange-enhanced
el'ective media. First, the unenhanced local band sus-
ceptibilities I; ([iM„j ) are calculated as functions of the
local moments pk,' then, the thermodynamic equilibrium
local moments p& are determined self-consistently using
the formalism of Sec. III. Finally, the resultant local
exchange-enhanced susceptibilities X;i ( [P i, j ) are calcu-
lated and the change, 5X(0), induced in the uniform stat-
ic susceptibility, S(0), of the difFerent effective media is
found for each cluster.

In order to calculate the spontaneous magnetization
and the susceptibility of any alloy containing magnetic
moments which depend strongly on their local environ-
ments, one must determine the moments iMk and local
susceptibilities X;J([Pi j ) for a large number (-10 ) of
different configurations of atoms on clusters containing
30 or more atoms. Because that would be very time
consuming using calculations such as those presented in

Sec. IV, we have developed simple, physically motivated
interpolation formulas for the magnetization and local
susceptibility of any cluster embedded in an effective
medium as a function of X(0) and of the change, 5X~(0),
which would be induced in X(0) by that cluster in the
absence of magnetic moments and which is easily calcu-
lated using the formalism of I. These interpolation for-
mulas are presented in Sec. V. The parameters in those
formulas can be determined by fitting to the results of
self-consistent calculations such as those presented in
Sec. IV. Finally, a brief summary and statement of con-
clusions are presented in Sec. VI.

(S,.) —=S,.+5(S,.&, (2.1)

of the z component of the spin associated with the orbit-
al m on the site i has a nonzero value, S;, even in the
absence of an applied magnetic field. Consequently, the
expectation value,

&n, &=n, +5&n, .&,

of the number operator n; contains a part,

n; =-,'n; +sgn[o jS, (2.3)

which depends on the sign of o even in the absence of an
external field. Also, the quantity n, =-n, &+n, &

can
depend on the magnitude of the local magnetization, and
hence on the apphed field, through charge-transfer
effects. Thus, the effective potential V, in the
Hartree-Fock (HF) one-electron Hamiltonian (A5) of I is
replaced by the spin-dependent potential

II. DERIVATION OF BASIC EQUATION FOR X;i (co )

The basic integral equation [Eq. (1.5) of I] which
serves as the basic starting point for all RPA-cluster cal-
culations of the susceptibility has previously been de-
rived only for the paramagnetic regime and only within
the approximation of linear response. %e show here
that an equation of the same form holds even in the
presence of spontaneous or induced local moments. The
derivation given here is similar to that given in Appen-
dix A of I for the simpler case of linear response in the
absence of spontaneous moments.

One starts from the same basic equations, Eq. (Al),
(A2), and (A4), as in Appendix A of I. However, the
presence of spontaneous local moments breaks crystal-
line symmetry so that the expectation value,

+ —,'U; 5(; )+ g [U,™,+(1—5 )[(U; —J,™); +(U; —
—,'J,™)5(; & jj, (2.4)

where o = —e. The equation for the local effective field,
iii,', is unchanged except for the replacement of (S; )
by 5(S; ) (the two are equal in the absence of local mo-
ments). For the model case of five equivalent d sub-
bands, the one-electron Hartree-Fock Hamiltoman as-
sumes the form

HF HFI =etc c ++V, n;-

h,' =h, +2u, 5(S;)e (2.8)

the potentials U; and u; are given by (9U, —4J, )/5 and
(Ui+4J;)/5, respectively, and the units (genus) =2 are
used for convenience.

From Eqs. (2.5)—(2.8), the incremental field-induced
changes in the local energy levels c.k are given by

——,
' g h,' (n, t n; i)e'"', — (2.5) 5ek ,'U„5(n—k )——

—,'sgn[o j[h„exp(ieit)+2u„5(S„)j .

(2.9)

VHP @{0)+ i 5( ) irgt—
I ET lO' 2 I I

V 0'=e;+ —,'U;n; —sgn[o ju;S;,

(2.6)

(2.7)

Thus, because (n, (co)) can be .expressed within the
RPA solely as a function of the energies ek (co) for the
same spin o and frequency ~, one finds the result

d(n; (e)))/dhj =e'"'g I,'i, '(co) f [5k' ~ui, gkj(co)]sgn[o j u„Ak, (co)j, — (2.10)
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I,'k'(ru)= ——,'c)(n; (co))/c)ck (co),

Xi,j (c.o)=2e ' 'd(Sk)/dh

(2.1 la)

(2.11b)

A& (co ) =e ' ' d ( nk (co ) ) /dh - . (2.1 1c)

—I g'(co)upAi, (co)], (2.12)

and

X,, (e~) = I P'(co)+ g [I,'k (co)ukXk, (co)

Upon evaluating Eq. (2.10) for spin up and for spin
down and adding and subtracting the resultant equa-
tions, one 6nds the pair of coupled equations,

A;/(co) =A';J '(co)+ g [A;'k'(co)ukXkj. (co)

I';J'(}pq } ) are known as functions of the pk. From the
Iluctuation-dissipation theorem, the I',,

' are given by
Cp

I';, '(co) =(2n ) 'Im d E 6, '(s)G t, '(e+co), (2.17)

where the Green's functions 6;&
' are calculated by band

theory in the presence of the local moments pz. Unfor-
tunately the presence of local moments considerably
complicates the calculation of the 6,' ', even for a known
distribution of moments pk, it becomes a self-consistent
iterative calculation. The self-consistent simultaneous
calculation of the p& and the 6 . ' by band-theoretic
techniques is an awesome task for other than very small
clusters. Thus, in the next section we develop a new,
more easily applied theory for the self-consistent calcula-
tion of the moments pk and the local susceptibilities

Aif (co)—U„A„,(co)], (2.13)
III. SELF-CONSISTENT SUSCEPTIBILITY

FORMULATION FOR THK DETERMINATION
OF LOCAL MOMENTS AND SUSCEPTIBILITIES

where

AP'(co):—g I P'(co)sgn[cr } (2.14a)

and

(2.14b)

Upon solving Eqs. (2.12) and (2.13) simultaneously, one
Ands the equation

X;J(ro)=I;~(co)+ g I;k(co)ukXk/(co), (2.15)

where

I;,(co)=I', '(co)

—g A'k'(~)U& [[&+I"'(co)v) '}„,A', "(co)
k, l

(2.16)

differs from the local band susceptibility I';J'(co) only if
the application of a magnetic Aeld on site j induces a
charge transfer on site i, i.e., only if substantial moments
exist on sites i and j or on sites in the immediate vicinity
of sites i and j. Equation (2.15) is identical in form to
Eq. (1.5) of I, which forms the basic starting point for
that paper. Thus, all of the forrnalisrn of I is applicable
even for very large magnetic fields and even in the pres-
ence of local moments, provided that one can calculate
the susceptibilities I; (co) defined by Eq. (2.16).

Because I';. ' and A',
' are spatially short ranged, very

nearly vanishing for sites i and j separated by more than
a third- or fourth-nearest-neighbor distance, the dimen-
sion of the matrix to be inverted in Eq. (2.16) for 1,~(co)
is not too large, typica11y less than, or of the order of,
50. Thus, the susceptibilities I,

&
can be found easily

once the moments pk in the vicinity of sites & and j are
known and once the local band susceptibilities

In this section a new formalism is developed for the
self-consistent determination of the equilibrium local
moments pk and the exchange-enhanced susceptibilities
X;, (co; [Pk } ), for a cluster embedded in an exchange-
enhanced host or effective medium. The formalism
developed here is not as well suited as is that of spin-
polarized self-consistent band theory ' '2 for determin-
ing very accurately the local magnetization of isolated
magnetic impurities. However, it is better suited to the
calculation of the local magnetization of concentrated
exchange-enhanced magnetic alloys and is the first for-
malisrn ever developed for the susceptibility of such al-
loys.

Because the local band susceptibilities, I;~(co; tpk }),
are functions of the moments pk on all sites k in the vi-
cinity of sites i or j, the theory to be developed must al-
low for the existence of general off-diagonal disorder.
Thus, as in Sec. II C of paper I, for the case of an n-site
cluster, C, embedded in an exchange-enhanced host or
efFective medium, one must allow 1"," to differ from the
local susceptibility, I;, of the host or effective medium
in which it is embedded for all sites i and j which lie in
an n+n'+n" site cluster, C', containing the cluster C,
all sites in the host or effective medium having substan-
tial induced moments and all sites connected to those
sites by nonzero matrix elements, I k&. This means that
in the formalism of this section all matrices to be invert-
ed must be of dimension n + n'+n", not just of dimen-
sion tl.

In the presence of applied fields, Hk, parallel to the z
axis on each site k, the equilibrium values, uk, for the z
components of the moments pz can be formally deter-
mined by minimizing the Gibbs free energy with the
fields 0& and the temperature T held fixed. This formal
procedure yields two possible equilibrium conditions for
the entire system at zero temperature:. either

[~«}ok })/~v, ](„„,=(„-,((H, ), )
=~
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for all i, or, by symmetry in the absence of external
fields,

[~E( I pk j ) j'~p j(I „)=(0) =0 (3.1b)

for all i, where. E is the total energy of the system. Of
course, for any system containing spontaneous moments
Eq. (3.1b) yields only an unstable local minimum in E.
Upon subtracting Eq. (3.1b) from Eq. (3.la), one can
write the resultant expression in the integral form

for the equilibrium moments pk, where the moments pk
are given by Eq. (3.3). For a cluster containing
r & n +n' inequivalent sites, Eq. (3.6) constitutes a set of
r coupled nonlinear integral equations to be solved self-
consistently for the set of r inequivalent local moments,
pk. For the special case of a pure material subjected to
a uniform magnetic field H, Eqs. (3.6) reduce to the sin-
gle equation

n+n' p. I I Hk I)

y f '
dp, a'E(Ipkj)jap, apj H, —,

J =1
(3.2)

f"'"'dp r '-(O;p)=H+up(H),
Q

where

(3.7)

Pk( IHk j ) ««& jPk= '

0 for k~j. (3.3)

I '(0;P) =N Q I',"(P)

~'~(IPk j)j'~P ~Pj=[& '(It k j)l j ~ (3.4)

Upon substituting Eq. (3.4) into Eq. (3.2) and using the
relationship

[& '(IPkj)];, =[r '(tPkj)];, —u;~;j, (3 5)

which follows from Eq. (2.15), one finds the set of equa-
tions

n+n' p, . (, tHI, I)

X f, dpj[r '(tpkj));, =H;+u;p;(IHkj)
j=1

(3.6)
I

This expression, although it appears to be more compli-
cated than Eqs. (3.1), is very useful in determining the
zero-temperature magnetization because at zero temper-
ature

is the inverse of the uniform static band susceptibility.
The exchange-enhanced local susceptibilities,

X; ( Ip„j ) can also be determined from Eq. (3.6) for co=0
(or for any co sufficiently small that the local moments
follow the applied fields H, adiabatically). Upon
differentiating Eq. (3.6) with respect to H, one finds the
equation

n+n'

X &, (Ipk j)t[r '(Ipk j)l;j+0;,({Pk j) j
j=l

=~,.+u, X,.(tp„j), (3.S)

where Pk is defined by Eq. (3.3) for kAj and Pk =Pl «r
k =j, the matrix p has matrix elements

n+n pI
&II(IPk j) 2 f dP'I [r (Pl~ ~PI I~PI~0~0»0) jil

I =j +1 dPj

+ij( IPk j ) I [r ( IPk j )+4( tPk j ) ul lij (3 9)

and u is a diagonal matrix with matrix elements
u,j=u, 5,". Upon writing Eq. (3.8) in matrix form, one
can easily invert it to find the result

It then follows immediately that the change, 5X(0, Ipk j ),
introduced in the q =0 component of the exchange-
enhanced static susceptibility, X(0), of a host or effective
medium by embedding a cluster in it is given by the
equation

n+n' n+n'+n"
snO;Ip„j)=X(0;Ip„j)—80)=&-' g g I[r '(Ipkj)+@(Ipkj) —ul 'j, —~«)

i =1 j=l
(3.10)

It is assumed here that the local band susceptibilities
r,j( tPk j ) are known at least approximately from model
alloy cluster' calculations performed for a set of fixed mo-
rnent distributions. The inversion of the matrix I for
any cluster embedded in an efFective medium is then
straightforward using the techniques of Sec. II of I. %e
first express 1 in the form

r(IPk j)=r[1+r '~r(IPk j)i (3.11)

~r(IPk j)=—r(IPk j)—r (3.12)

as a sum of the matrix band susceptibility, I, of the
medium in which the cluster is embedded and the matrix
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which has nonzero matrix elements 6I; only for sites i

and j both of which are in the cluster O'. Inverting Eq.
(3.11) yields the result

{3.13)

solution

'( [p.„))=I '{1—5I ([iM„ I }

X [1+1 '5I'( {iM„ I )] 'I '
j

which is analogous to Eq. (2.6) of I and thus can be
solved by the same procedure. One finds that it has the or, in site representation,

(3.14a)

I, rn„
ncc'

(3.14b)

IV. SAMPLE NUMERICAL CALCULATIONS
OF LOCAL MOMENTS AND CLUSTER

MAGNKTIZATIONS AND SUSCEPTIBILITIES

In this section we present sample calculations of the
nucleating local magnetic moments, the magnetization
density and total cluster magnetization, the local suscep-
tibilities X,J( {p„) ) and the quantity 5X(0; [iMi, I ) for three

simple magnetic configurations of Ni atoms embedded in
Pd and in efFective media representative of dilute Pd-Ni
alloys. The derivation of the parameters used in these
calculations will be presented along with our complete
results for the magnetization and susceptibility of Pd-Ni
alloys in paper IV. For pure Pd the uniform static band
susceptibility, 1 (0), was chosen to be 1.2 states/eV atom
of which 0.9808 states/eV atom were associated with the
d band and, hence, were to be exchange enhanced. The
choice of the value 11.2 states/eVatom for the total
exchange-enhanced susceptibility, X(0), of Pd then led to
the value 0.9285 eV for the intraatomic Coulomb repul-
sion, u '"', on Pd atoms.

The values of the matrix elements I ';"' of the suscepti-
bility of Pd were required to satisfy the sum rule

g I,', ' = I '"'(0)=0.9808 states/eV atom (4.1)

where I ' is found by taking the Fourier transform of
I '(q). For any cluster, the use of Eqs. (3.12) and
(3.14) in Eqs. {3.6)—(3.9) completes the determination of
the zero-temperature equilibrium local moments P„, the
exchange-enhanced local susceptibilities X,"({P,k I) and
the quantity 5X(0; {P&j) in terms of the unenhanced lo-
cal susceptibihties I; ( {pk I ) and the band susceptibihty
I'{q) of the host or effective medium in which the cluster
is eiTlbedded.

sets of values of the I; are shown in Table I; there, I"„
represents the value of I"," for any pair of sites which are
nth nearest neighbors of one another. The third set was
used in the calculations reported here; the other sets give
very simi1ar results.

Values of the band susceptibilities I';1'({iMk I) were
determined from model tight-binding band calculations
for magnetic clusters of three atoms embedded in un-
magnetized Pd. The results for the diagonal matrix ele-
ments I; on Ni sites were expressed as a function sole-
ly of the moment p, on that site. The matrix elements

' and I;" ' for nearest-neighbor pairs of atoms
were expressed solely as a function of the moments on
the sites i and j. Finally, the matrix elements I," for
nearest-neighbor Pd atoms were expressed as a function
of the moments on the sites i and j and of the moment
of the third site of the cluster. The values of I; were
then calculated from Eq. (2.16); they were found to be
almost independent of the value chosen for the poten-
tials U; used in calculating charge transfer, within reason.
The value Ui=3. 24 eV was used for both Pd and Ni
atoms. The parameters of the band structure were
chosen so as to give the correct values for I (0) and
X(0), the correct inverse range, a, of X(q), the correct
number of d holes for Pd and the correct saturation mo-
ment, 1pz, ' for Ni atoms in dilute Pd-Ni alloys. Final-
ly, the results of these calculations were generalized by
assuming the ratios I';~ (p;,pj )/I",J (0,0) to be the same
for nearest and second-nearest neighbors, by invoking
the geometric approximation,

(I Pd-Ni)2 I Pd-Pdl Ni-Ni
ij cr ij a ij0.

and by averaging over the moments on all of the nearest
neighbors of sites i and j in calculating I;. . To illus-

X(q)=x X(0)/(a +q (4.2)

and to yield an exchange-enhanced susceptibility of the
form

TABLE I. Values of the single-spin local band susceptibili-
ties, I;»:—1 „, for sites i and j which are nth nearest neighbors
in pure Pd.

determinedd by neutron-scattering experiments, ' with
~=0.3 A . For simplicity of notation, throughout the
remainder of this paper, the superscript in I ';

' and u '"'
is omitted. Although Eqs. (4.1} and (4.2) do not suffice
to determine the I", uniquely, it was found that different
approximations for the I, consistent with Eqs. (4.1) and
(4.2) all yield the same final results within 3—4%. Four

Parameter
set

0.2791
0.2584
0.1948
0.1372

0.0513
0.0520
0.0611
0.0703

0.007 95
0.01640
0.008 80

0

I l Iq
C, states/e V atom)

0.0016
0
0
0
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trate our results for the moment dependence of the band
susceptibihties I;,(p;,pi), we show in Fig. 1 the moment
dependencies of IN'(p, ) and of IN1'N'(p„pi) for
nearest-neighbor sites i and j having equal moments.

The two primary possible effects responsible for the
enhancement of the local susceptibility and/or the for-
mation of local moments on impurity atoms or clusters
in an exchange-enhanced effective medium are

(i) an increased Coulomb integral, u, , on the impurity
sites, and

(ii) an increase in I," if either one or both of the sites i
and j are impurity sites.

In previous treatments of exchange-enhanced alloy
susceptibilities, for simplicity the second e8'ect has usual-
ly been neglected. However, in Pd-Ni alloys the second
effect is very large because the value of the site spectral-
weight function, A;(co), is much greater at the Fermi
level for Ni sites than for Pd sites, owing to the very
small number of d holes in Pd. Our calculations, to be
reported in paper IV, indicate that the concentration
dependence of the susceptibility and magnetization of
Pd-Ni alloys can be explained almost entirely on the
basis of the second effect, with no enhancement of the
Coulomb integral on Ni sites. Thus, in the numerical
calculations presented here any possible enhancement of
u; on Ni sites is neglected.

For a magnetic cluster containing n sites grouped into
r & n shells or partial shells, with the moment on every
atom in any given shell, a, being the same by symmetry,
the numerical calculation of the spontaneous local mo-
ments p on the atoms of each shell is performed itera-
tively as follows. First, one chooses an initial set of mo-
ments, [P ), and determines the resultant cluster
band-susceptibility matrices I ( jp I ) and I '( Ip, I )

from Eqs. (2.16) and (3.14), respectively. Then, by fitting
the [I '(Ip j )],, to even multinomials in the p 's, one
can integrate Eq. (3.6) analytically. Upon solving the
resultant set of r coupled nonlinear algebraic equations,
one then obtains a new set of moments, p . This pro-

0.7-

and

X(IP I)=2[[1—I'(Ii ])u] 'JJIJ(IP I» (4.4)

respectively, where I —= g, I,&. Beyond the cluster, for
the shells with agr, the effects of asymmetry were
neglected and the moments and uniform™field susceptibil-
ities in the embedding effective medium were approxi-
mated by the Yukawa expressions'

P~ =Pa(H =0)R ~ exp( FR ~ )— (4.5)

X (IPk J)= fdP o(H)/dH]R ' exp( i7R )+X(0)—,

(4 6)

respectively. Here, R~ is the distance of the o.'th shell
from the center of the cluster, F was determined by
fitting the susceptibility of the effective-medium to the
form

cedure is then repeated iteratively until one attains self-
consistency.

In principle, one can determine the spontaneous mo-
ments on every atom of any cluster by following this
iterative numerical procedure. However, in practice the
highly nonlinear nature of the equations to be solved
simultaneously, the large number of shells in a cluster,
typically r ~ 10, and the existence of different self-
consistent solutions which correspond only to local mini-
ma in the total energy lead to serious numerical
diSculties. We have found that nonlinearities and satu-
ration effects are important only for those Ni atoms
which nucleate a magnetic cluster or polarization cloud
and for the Pd atoms which are first- or second-nearest
neighbors to those Ni atoms. Thus, we have used the
nonlinear Eqs. (3.6) and (3.9) to calculate the spontane-
ous moments P; and the uniform-field susceptibilities
X;=—g X; only for those sites. For all other shells

within the cluster, the spontaneous local moments and
uniform-field susceptibilities were calculated within
linear response theory from the equations

(4 3)

0.5

0.2

0.0

g Z pR p
' exp( t7R p )[X—ii( [Pk ] ) —X(0)]

dpo(H)
dH g Z&R p exp( —2i7R p)

P

(4.&)

and Po(H =0) then was determined from a least-squares
fit of Eq. (4.5) to the local moments on the outer shells
of the cluster. The derivative dP, O(H)/dH was evaluated
using the expression

FIG. 1. Local diagonal, I 0', and o6'-diagonal, I, ' ', band
susceptibilities as functions of the Ni moment„ for a cluster of
three nearest-neighbor Ni impurities vnth the same moment
embedded in the fcc Pd lattice, with U =3.24 eV.

where the sums over p extend over all shells in the clus-
ter for which the linear Eqs. (4.3) and (4.4) were used,
and Z& is the number of sites in the pth shell.

The total giant moment associated with the cluster
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was then calculated using the formula

p= g Z P +[16~PO(~ =0)/a ] J„dr r exp( —xr),
a=1 rt

1

0.42 ~
-~Nj

I
l

i l I
I

l
l

I

Pd or effective
medium atoms with no

Ni nearest neighbors

(4 &)

where the second term gives that part of the total mo-
ment which arises from the polarization of the efkctive
medium in which the cluster is embedded. Here,
a =3.889 A is the lattice constant of Pd,

0.50—

wPd atoms vvith~
one or more Ni

nearest neighbors

R„=(Z„+,R„+Z„R„+i }/(Z„+Z, + i )

is the radius of the embedded cluster, and Rz is the
effective radius of thc polarization cloud. The actual
magnetic polarization clouds follow the Yukawa form
(4.5) even approximately only for a few angstroms. The
nonanalyticity in 1 (q) which gives rise to oscillations in
1 (r} also gives rise to oscillations in X(r) and, hence, to
an effective cutofF' radius 8& for magnetic polarization
clouds in Pd-Ni alloys. The cutoff radius RN was calcu-

0
lated to be approximately 9.0 A by using percolation
theory to fit the experimentally observed' critical con-
centration of magnetic polarization clouds for fer-
romagnetism. That cutoiY radius corresponds to a polar-
ization cloud containing %=210 atoms. Finally, the
change, 5X(0„'Ip„j ), induced in the static uniform
exchange-enhanced susceptibility, X(0), of the effective
medium by embedding the cluster was calculated from
Eq. (3.10).

To illustrate the type of results obtained using the nu-
merical procedure described above, we present here the
results of model calculations performed for each of three
simple clusters, each embedded in pure Pd and in vari-
ous efkctivc media. The first cluster consists of three
nearest-neighbor Ni atoms together with Pd atoms on
the 44 sites (12 shells) which are first or second neigh-
bors to any of the Ni sites. The second consists of three
neighboring Ni atoms arranged in a straight line togeth-
er with Pd atoms on the 30 atoms (seven shells} which
are 6rst or second neighbors to the central Ni site
and/or nearest neighbors to one of the end Ni sites. The
third consists of four nearest-neighbor Ni atoms together
with Pd atoms on the 40 sites (but only four inequivalent
shells) which are first or second neighbors to any of the
Ni sites.

%e found moments of approximately 0.4p&, 0.4JM~,

and 0.6pz, respectively, on the central Ni atoms in these
three clusters, depending only weakly on the embedding
medium for the clusters, in agreement with the value
0.5pz found experimentally by Chouteau' for the aver-
age moment on the Ni atoms in such clusters and a fac-
tor of 2 smaller than the saturation moment of 14M~ sug-
gested by the neutron-scattering data of Cable and
Child. ' Because the Ni atoms in the 6rst and third
clusters are arranged in central compact subclustcrs, the
zero-temperature equilibrium local moments, p, „, in
those clusters depend primarily on the distance, R„,
from the center of the cluster to the shell n in which
they are located, not on the orientation of the atoms in
shell n with respect to the central Ni subcluster. The
values of those moments are shown in Figs. 2 and 3 as a

0 1 l 1 I i l 1 l l l i l 1 l

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
R„/a

FIG. 2. Distribution of the zero-temperature spontaneous
local moments, p,„, as a function of the ratio of distance away
from the cluster center to the Pd lattice constant for a cluster
containing a nucleus of three nearest-neighbor Ni impurities
surrounded by 44 Pd atoms and embedded in pure Pd (open
circles) and effective media with P(0)/P(0) equal to 4 (closed
circles) and 6 (open squares), respectively.

l
'
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OA 0.6 0.8 1.0 1.2 1A 1.6
R„/a

1.8 2.0

FIG. 3. Distribution of the zero-temperature spontaneous
1ocal moments„p„, as a function of the ratio of distance away
from the cluster center to the Pd lattice constant for a c1uster
containing a nucleus of four nearest-neighbor Ni impurities
surrounded by 40 Pd atoms and embedded in pure Pd (open
circles) and effective media with g(0)/+{0) equal to 4 (closed
circles) and 6 (open squares), respectively.

function of the ratio of R„ to a, the Pd lattice constant,
for the 6rst and third clusters embedded in pure Pd and
in effective media with uniform static susceptibilities,
j(0), 4 and 6 times that of pure Pd, X(0).

Figure 4 shows the variation of the total giant mo-
ment p associated with the first cluster as a function of
f(0)/f(0) for the cases in which the giant polarization
cloud associated with the cluster (i) is efFectively cut off
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FIG. 4. Giant cluster moment nucleated by a nearest-

neighbor Ni triplet plotted vs the ratio of the uniform suscepti-
bility of the effective medium in which the cluster is embedded
to that of pure Pd. The giant polarization cloud is allowed to
extend out to infinity {solid line), and to distances of 9.95 k
(280 sites} (dashed line), and 9.0 A (210 sites} (dash-dotted line),
respectively.

at distances Xiv=9.0 A (N =210 sites) or Rx, =9.95 A
(N =280 sites) by Ruderman-Kittel-Kasuya- Yosida
(RKKY) oscillations in X(r), or (ii) is allowed to extend
to infinity. It is seen that cutting ofF the clouds at a
finite range has a large efFect on the calculated magneti-
zation, but that the calculated magnetization depends
only relatively weakly on E. Figure 5 shows the varia-
tion of the calculated giant moments for each of the
three clusters as a function of X(0)/X(0) for the case in
which the polarization clouds are assumed to contain
only 210 sites, as was found from percolation theory to
be the case at the critical concentration for ferromagne-
tism in Pd-Ni. For values of X(0)/X(0) of the order of

8-12, which are appropriate for the range of Ni concen-
trations (1.65 &c &2.2 at. %) over which the value of p
is determined most accurately, the calculated values of p
are in good agreement with the experimental value of
17 pg.

The ratio X„/X(0) of the local susceptibility of atoms
in the nth shell to that of atoms in pure Pd is shown in
Fig. 6 as a function of the ratio 8„/a of the radius of
the nth shell to the Pd lattice constant for the third, and
most magnetic, cluster embedded in pure Pd and in
efFective media with X(0)/X(0) equal to 2, 4, and 6. Be-
cause the local band susceptibilities, I;~, are much larger
for Ni atoms than for Pd atoms and because the local
moments on the Ni atoms are far from saturated, the lo-
cal susceptibilities on the Ni atoms were found to be
substantially larger than those on the close-in Pd atoms.
The two diferent values shown at f5' „/a = 1.3 for
X(0)/X(0) equal to 4 and 6 correspond to the n =4 and
n =5 shells, which are inequivalent although they have
the same radius. The slightly higher values of X„,which
are for the shell n =4, were determined nonlinearly,
whereas X5 was calculated within linear-response theory.
The abrupt changes in P„ found at the cluster boundary
(8„/a = 1.4) are approximately proportional to
X(0)/X(0) and arise primarily from the change in the
values of ti and/or the I," as one passes from Pd to
efFective medium. Figure 7 compares the values of X„/X
for the first cluster, with a nearest-neighbor Ni triplet, to
those for the third cluster, with a nearest-neighbor Ni
quartet, with both clusters embedded in an efFective
medium with X(0)/X(0) equal to 6. The values of X„/X
would be 1 and 6, respectively, in pure Pd and in pure
efFective medium with X(0)/X(0)=6. Note that those
values are substantially afFected both by partial magneti-
zation of the atoms and by changes in their local envi-

I '
I '

I '
t l

I 1 I ' I & I

24' Pd ~fffestive Medium

20—

=: 12-

0
0

x(o)/7(o)

I 1 I 1 I 1 I 1 I ) I 1 I

Q.4 Q.B Q.a 1.0 1.2 1.4 1.6 1.8 2.Q
R,/a

FIG. 5. The giant eftective moment nucleated by a nearest-
neighbor Ni triplet (sobd line), a linear chain Ni triplet (dashed
line), and a nearest-neighbor Ni quartet (dashed-dotted line),
plotted vs the ratio of the uniform susceptibility of the effective
medium in which the clusters are embedded to that of pure Pd.
For each of the clusters, tbe giant polarization cloud was al-
lowed to extend only over a volume containing 210 sites.

FIG. 6. Distribution of the zero-temperature exchange-
enhanced local susceptibilities [normalized to 7{0)]as a func-
tion of the ratio of distance away from the cluster center to the
Pd lattice constant, for a cluster of four Ni impurities embed-
ded in pure Pd (open circles), and in three effective media with
g(0)/X(0) equal to 2 (closed circles), 4 (open triangles)„and 6
(open squares), respectively.
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FIG. 7. Distribution of the zero-temperature exchange-
enhanced local susceptibilities [normalized to X(0)] as a func-
tion of the ratio of distance away from the cluster center to the
Pd lattice constant, for two different clusters, each embedded
in an effective medium with X(0)/g(0)=6. The first cluster
contains a nearest-neighbor Ni triplet (closed circles} surround-
ed by 44 Pd atoms; the second cluster contains a nearest-
neighbor Ni quartet (open circles) surrounded by 40 Pd atoms.

ronment. Finally, Fig. 8 shows as a function of the uni-
form static susceptibility of an effective medium the frac-
tional change, 5X(0;)u)/X(0), induced in that susceptibil-
ity by the embedding of each of the three clusters con-
sidered here.

V. AN ANALYTIC INTERPOLATION
SCHEME FOR p AND 5X(0;p)

The numerical procedure for the determination of the
giant cluster moment p and the incremental susceptibili-

100-

ty 5X(0;p), which was presented and illustrated for three
simple clusters in Sec. IV, in principle can be applied
directly to a large representative sample of clusters with
X(0) determined self-consistently so as to determine the
susceptibility and magnetization of any alloy system.
However, that would involve the direct calculation of p
and 5X(0;p ) for hundreds or thousands of local
configurations of atoms, most of which mould involve
clusters much larger and much less symmetrical than
those considered in Sec. IV. Because of the highly non-
linear nature of the procedure developed in Sec. IV, that
mould be impractical in most cases. Therefore, we have
developed simple interpolation schemes for the calcula-
tion of p and 5X(0;p ) for any cluster. These interpola-
tion schemes give p, and 5X(0;p, ) as siinple analytic func-
tions of the uniform static susceptibility, X(0), of the
effective medium in which the cluster is embedded and
of 5X(0)/X(0), the fractional change in X(0) induced by
the cluster, as calculated within the linear RPA. Using
the techniques of paper I, that requires only the inver-
sion of a single n g n matrix for an n-site cluster, for ei-
ther diagonal or o6'-diagonal disorder.

For either diagonal or off-diagonal disorder, the ex-
pressions for 5X(0)/X(0) derived in I are inversely pro-
portional to the determinant of the matrix A(0) to be
inverted. For an embedded nonmagnetic cluster the
determinant of A(0) is positive. For a sequence of in-
creasingly more nearly magnetic clusters the inverse of
the determinant decreases, vanishing at the critical point
for moment formation and then becoming increasingly
more negative for more and more strongly magnetic
clusters. Thus, for a sequence of magnetic clusters,

~

5X(0)
~

' must vanish at the point at which p van-
ishes, and in general should be a smoothly varying
monotonic increasing function of p. Also, by symmetry

~

5X(0)
~

' must be an even function of p, . In particu-
lar, p, must vanish linearly with

~

5X(0)
~

', as for a
uniform ferrornagnet, and must approach a saturation
value, p„ for a fixed cluster size and fixed X(0), as

~
5X(0)

~

' becomes large. Thus, p should be given to a
good approximation by an equation of the form

0—
p =p, , tanh[MOX(0)/E

/

5X(0)
/
pi], (5.1)

where the moment Mo is a function of X(0). The factor
of X, the total number of sites in the material, appears
because 5X(0) is defined in such a way that it is propor-
tional to X '. For clusters of more than 30 atoms, p,
depends only weakly on cluster size for clusters contain-
ing a fixed number of Ni atoms, nN;, and can be written
in the form

I .=Ps +("Ni —3)(PNi —@Pa) i
(3)

(5.2)

I

4 5 6
~(0)/~(o)

FIG. 8. The fractional change in the nonlinear exchange-
enhanced uniform susceptibility per site introduced by embed-

ding a nearest-neighbor Ni triplet (open circles), a linear chain
Ni triplet (open triangles) and a-nearest-neighbor Ni quartet
(open squares) in an e8'ective medium, plotted vs g(0) jg(0).

where p,' ' is a function of X(0) and where

PNI —Pea =0.64Pa.
Equations (5.1) and (5.2) were found to provide excel-

lent 6ts to the values of p calculated for the three clus-
ters considered here with the parameters p, and Mo
given by the formulas

p,"'=
I 12.5+ 13 tanh[1. 6X(0)/13X(0) ] I &
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FIG. 9. The giant e8'ective moment nucleated by the three
Ni clusters embedded in pure Pd {open circles} and in three
efkctive media with g(0)/7{0) equal to 2 {closed circles), 4
(open triangles), and 6 (open squares), respectively, plotted vs

the inverse of the fractional change in the zero-temperature
susceptibility associated w'ith these clusters. The curves are the
best fits of Eq. (S.l} to the values of p for the three clusters.

nological parameters.
In order to make Eq. (S.4b) useful, one must investi-

gate the dependence of X«and 5I „(0;p) on p„ I (0),
5X(0), X(0), and nN; The parameter N «should be of
the order of, but somewhat smaller than, the sum of the
number of atoms in the embedded cluster and the num-

ber of atoms within a correlation length of the embedded
cluster. Fortunately, it turns out that 51„(0;p)depends

on X,&
in such a way as to leave only a weak dependence

of 5X(0;p, ) on N, i. The parameter 5I,i(0;p) must be an

even function of p by symmetry and thus can be expand-
ed in the form

5r„(o;p, ) =5r„(o)—r(o)(b p, '+d p'+e p'+ . ),
(S.S)

where 5r«(0), b, d, e, . . . are parameters which in

principle can depend on both I (0) and 51,i(0). Howev-

er, these parameters have been found to be essentially
constant for fixed I (0), so that they may be regarded as
functions only of r(0). Upon setting the cluster moment

p, equal to zero in Eq. (S.4b), we find that 5I,i(0) is given

by the equation

Mo ——[88+37.SX(0)/X(0)]pa . u r(0)+&«[&5X(0)/X(0)]
5I',i(0)/r{0)= (S.6)

These fits are shown in Fig. 9 for X(0}/X(0}equal to 1,
2, 4, and 6. The values of N 5X(0)/X( 0) used in per-
forming the Sts were calculated using the values
5p—:u N;

—u =1.276 eV for the case of diagonal disorder
and 5=0.S36 for the case of o(F-diagonal disorder within
the geometric approximation; these values, which have
been found to give a best 6t to the experimental
concentration-dependent Pauli susceptibility of Pd-Ni al-

loys, gave essentially identical results.
%e next consider the determination of the incremental

susceptibility 5X(0;p) as an analytic function of 5X(0),
X(0), and nN;. For simplicity, we make the approxima-
tion of only o6'-diagonal disorder. ' For a homogeneous,
translationally invariant material, within the RPA one
can express the change, 5X(0), induced in the exchange-
enhanced susceptibility by a change in the band suscepti-
bility, I (0), in the form

5X(0;p, ) 5r{0;p)/r{0;p)
X(0;p) 1 —ur{0;p)[1+5r(0;p)/r{0;p)]

By analogy with this expression we write the incremental
susceptibihty 5X(0;p), ensemble averaged over all clus-
ters having the same size and the same giant moment, p,
in the phenomenological form

5X((}p) X«5r,}{0;p}/r(0}
X(0) 1 —u I (0)[1+5I«(0;p)/r(0)]

where X„ is the effective number of sites in the cluster
SIld

5I,i(0;p) =—I",i(0;p) —1"(0) .

Here, p is to be treated as an independent variable, not
necessarily equal to the equilibrium moment on a clus-
ter, and N«and 5I „(0;p) are to be viewed as phenome-

Upon substituting Eq. (S.6) into Eq. (S.S) and taking
the limit of small moments so that one may neglect
terms of order p and higher in Eq. (S.S), one may use

the familiar result

5X(0;p ) ———,
' 5X(0) (S.7)

from the Landau theory of phase transitions and may
use the asymptotic form,

p'-~0
~
&5X(0)/X(0)

~

of Eq. (S.l), to obtain the result

(S.8)

b =3M«[1 —ur(0)][Mou I (0)] (S.9)

Upon requiring I,i(0;p) to vanish at the point at
which p reaches its saturation value, one obtains the fur-
ther equation,

which serves as a constraint on the coeScients of the
terms of higher order in p. %e found the series expan-
sion (S.S) for 51,i(0;p) to converge rapidly, requiring at
the most terms up through order p to obtain good con-
vergence. Thus, upon substituting Eqs. (S.6), (5.9), and
(S.lo) into Eq. (S.S) and then using Eq. (S.S) in Eq. (S.4b),
one obtains a two-parameter analytic expression for
5X(0;p)/X{0) for any magnetic cluster as a function only
of r{0),X(0), 5X(0), which is easily calculated, and N„,

dps+eps+fps+ ' ' '

N«+ & 5X(0)/X(0)
bp, , (S.1—0)

N„u I (0)+X5X(0)/X(0)
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Our numerical results for 5X(0;p)/X(0) are shown in

Fig. 10 as a function of
~

5X(0)/X(0)
~

' for X(0)/X(0)
equal to 1 and 2 and for n&; ——3. Of course, from Eq.
(5.7) X(0;p) diverges as p as p approaches zero, just as
does X(0). That is because the efFects of spin Auctua-

tions have not been included in this paper or in paper I.
In the next paper in this series, we will show how the
e6'ect of spin Auctuations is easily incorporated in the
present formalism.

VI. CONCLUSION

I l I ( I

0 .004 .006 .008,0 IG

~«&(o)/&(o)I

FIG. 10. The fractional change in the zero-temperature uni-
form nonlinear exchange-enhanced susceptibility as a function
of the inverse RPA incremental susceptibility associated with
magnetic Ni clusters embedded in pure Pd (dashed line) and in
e6'ective medium with J(0)/g(0}=2 (solid line). The open
squares, open circles„and closed circles refer to the values for
the straight line triplet, compact triplet, and compact quartet,
respectively.

I

.002

which is known approximately. Furthermore, this ex-
pression is independent of N, ~

to second order in p, be-
cause it must satisfy Eq. (5.7) of Landau theory to that
order, and depends only weakly on X,~

even for mo-
ments as large as O. Sp, . %e found that the formula

Nd ——[5+13.3X(0)/X(0) ]nN;,

which is consistent with other estimates of X,~, such as
that given by percolation theory at the critical concen-
tration for ferromagnetism, allows a good 6t to our cal-
culated values of 5X(0;p) for all effective media for the
three clusters for which full numerical calculations were
performed.

%e have generalized the formalism of the theory of
the exchange-enhanced susceptibility of alloys so as to
make it applicable to the nonlinear regime in which local
moments are formed. We have then developed a tech-
nique based on that generalized formalism which allows
the numerical calculation of (1) the total giant moment p,

of any magnetic cluster embedded in an effective medi-

um, and (2) the change 5X(0;p) in the susceptibility of
the medium which is induced by embedding the cluster
in it. %e have illustrated the use of this technique by

applying it to three dift'erent simple magnetic clusters of
Ni and Pd atoms embedded in Pd and in di6'erent

effective media. However, although this technique is

much easier to use than would be the techniques of self-

consistent spin-polanzed alloy band theory, it is still
difFicult and computationally time-consuming for the
large clusters ( & 30 atoms) which must be considered in

calculating the susceptibility and magnetization. There-
fore, we have also developed parametrized, physically
motivated simple analytic expressions for p and 5X(0;p)
for any cluster embedded in an effective medium. These
analytic expressions allow one easily to calculate p and
5X(0;p ) for many thousands of local atomic
configurations after determining the two parameters in

each expression by Atting them to the results of full nu-

merical calculations for a small number of atomic

configurations.
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