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A new theoretical treatment of the magnetic susceptibility of substitutionally disordered alloys
is presented. This treatment goes beyond the existing treatments of the susceptibility of alloys in
several important respects, although in the present paper (I of this series) it is confined to zero
temperature and the random-phase approximation (RPA). Unlike treatments based on the single-
site approximation, it yields results for the exchange-enhanced local susceptibilities X ;;(w) as a
function of the local environment of sites i and j. Specifically, it includes the strong effects of the
nonlinearity of the dependence of the X;;(w) on local environments and the effects of short-range
order on the uniform susceptibility X(0,w). This treatment goes beyond all previous cluster treat-
ments of the susceptibility by treating exactly the embedding of a cluster in a given effective medi-
um. Even more important, it is the first cluster theory to include exchange-enhancement effects in
the embedding medium. Disorder in the exchange enhancement and in the local band susceptibili-
ty are treated on an equal footing. Finally, the formal connection between alloy band theory and
the random-phase-approximation theory of alloy susceptibilities is elucidated. In particular, the
problem of choosing the best self-consistency condition for the determination of the susceptibility
X(q,w) of the effective medium is considered in detail in light of the known results of alloy band
theory. In the following two papers of this series, the theory presented here is extended to treat
the local magnetization of alloys and the susceptibility in the presence of moments, and to include
the effects of quantum and thermal spin fluctuations in a manner consistent with the results of
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renormalization-group theory.

I. INTRODUCTION

This is the first of three papers which, taken as a
whole, provide a rather comprehensive theory of the sat-
uration magnetization and the temperature- and field-
dependent magnetic susceptibility of paramagnetic and
ferromagnetic substitutionally disordered alloys. Al-
though, as in all previous theories not based on the phe-
nomenological Heisenberg model, interactions between
magnetic clusters and the destruction of those clusters
by internal thermal spin fluctuations are not considered,
these three papers go beyond previously published
theories in several important respects. First, the effects
of disorder in the band susceptibility and of disorder in
exchange enhancement are treated on an equal footing
within a cluster theory which allows the exact embed-
ding of a cluster in a uniquely determined best
coherent-potential-approximation (CPA) effective medi-
um. Also, a simplified method for the calculation of
magnetic moments is presented, and the effect of mo-
ment formation on the susceptibility is treated quantita-
tively for the first time. Finally, the results of
renormalization-group theory for the temperature-
dependent susceptibility of a single magnetic impurity!
are extended phenomenologically to the case of magnetic
clusters in a concentrated alloy.
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In this first paper we present two alternative formula-
tions of the theory of the zero-temperature, low-field sus-
ceptibility within the random-phase approximation
(RPA). The first of these is a generalization of the
Lederer and Mills? treatment of local exchange enhance-
ment for a single impurity. The second is based upon
techniques developed by two of the authors® for the clus-
ter generalization of the coherent-potential approxima-
tion* and the inclusion of off-diagonal disorder (ODD)>¢
within the CPA. It allows the unique determination of a
“best” self-consistently determined effective medium.
Both formulations allow the treatment of disorder in the
intra-atomic Coulomb interaction, U (diagonal disorder),
and disorder in the local band susceptibility, I';; (ODD),
as well as the effects of short-range order. In the second
paper we present a new theory for the dependence on lo-
cal environment of the size of spontaneous moments and
of the local magnetization induced by high fields, and we
generalize the susceptibility formalism of this paper so as
to make it valid even in the presence of spontaneous mo-
ments and/or large applied magnetic fields. In the third
paper we modify the zero-temperature RPA theory of
the first two papers so as to include the effect of quan-
tum and thermal spin fluctuations in a way consistent
with the results of Krishnamurthy et al.! for the single-
impurity problem. In a fourth paper we present the re-
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sults of numerical calculations for Pd-Ni alloys based on
the theory of the first three papers and compare the re-
sults with experiment. The results found in that paper
confirm that the theory presented in the first three pa-
pers yields numerical results qualitatively superior to
those given by previous theories.

This series of papers was motivated by the vast
amount of experimental data on alloy systems which are
paramagnetic at some concentrations and ferromagnetic
at others, none of which has been treated satisfactorily
from a theoretical point of view. In particular, it was
motivated by the failure of all previous theoretical treat-
ments to explain, even qualitatively, the local susceptibil-
ity and magnetization of such systems, especially near
the critical concentration for ferromagnetism.” Only the
phenomenological treatment of Kato and Mathon® based
on the Ginzburg-Landau theory has been able to treat
even the uniform susceptibility qualitatively correctly
near the critical concentration, and no previous theory
has even attempted to treat the nonuniform local magne-
tization of such alloys. However, the theory presented
in these papers is applicable to all metallic alloys, al-
though it is perhaps of greatest value for alloy systems
which are paramagnetic at some concentrations and fer-
romagnetic at others, especially alloys such as Cu-Ni,
Pd-Ni, Pt-Ni, and Rh-Ni.

A cluster theory is required because no single-site
theory can describe the effects of local fluctuations away
from the uniform effective medium in which single
atoms are embedded. Furthermore, because in many
cases the local susceptibility, X;(w), depends very
strongly and nonlinearly on the local environment of the
sites i and j (and on the region between sites i and j),
fluctuations in local environment can greatly affect the
ensemble-averaged local susceptibilities, (X ,-j(w)), and
the uniform static susceptibility X(0), especially near the
critical concentration for any type of magnetic ordering.

We again remind the reader that the modification of
the RPA results obtained in the first two of this series of
papers so as to incorporate the effects of spin fluctua-
tions, as is done in the third paper, is in most cases not
merely a desirable improvement, but rather a fundamen-
tal and essential change. Thus, we caution the reader
not to use the results of these two papers for the suscep-
tibility X(w) without first incorporating the effects of
spin fluctuations. The reasons are as follows: As in all
RPA theories, the formalisms developed in these two pa-
pers yield a divergence in the local susceptibility X;;(0)
for all i and j whenever the local exchange enhancement
reaches a critical value in the vicinity of any site, k.
Within a single-site RPA theory this divergence gives
rise to a spurious divergence in the uniform static sus-
ceptibility, X(0), at some critical concentration c, to a
serious overestimate of X(0) for concentrations near ¢,
and to a spurious band ferromagnetism for ¢ >c¢. In
reality, there is no critical concentration at which the
static exchange-enhanced Pauli band susceptibility
diverges, and ferromagnetism for ¢ > ¢, arises from per-
colation among overlapping locally magnetic clusters in
which fluctuations decrease with increasing overlap. For
a cluster RPA theory, such as that presented here, the
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situation is even worse. Within such a theory there ex-
ists a different critical concentration, c(C,), at which
X(0) diverges for every inequivalent cluster
configuration, C,, which contains one or more possibly
magnetic atoms. Thus, such a theory must yield values
for X(0) which are significantly too large over a large
range of concentrations. In the limit of infinite cluster
sizes, any RPA cluster theory must yield an infinite sus-
ceptibility at all concentrations for any alloy system
which is magnetic over any range of concentrations. On
the other hand, as is shown in the third paper of this
series, the actual temperature-dependent susceptibility,
X,(0;T), associated with any given cluster of atoms, C,,
including the effects of local thermal and quantum spin
fluctuations, can be expressed solely as a function of
temperature and of the RPA cluster susceptibility,
XRPA(0), calculated using the formalism of these two pa-
pers.

In this paper we assume that the band susceptibilities
r ;;""'(a)) which are the partial derivatives of the magne-
tization of the orbitals m on the sites i with respect to
the magnetic fields applied to the orbitals m’ on the sites
j in the absence of moments, are known. They can be
calculated from the equation

F;;'m’(w)z(a#im /aHjm’)l,u,m.,zo for L,m"s#i,m}
EF , ,
=(1/mIm [ deGI™(e)GI"™ (e+w), (LD)

provided that the Green’s functions G,»;-"'"' are known
from an alloy band calculation. Within a site represen-
tation one obtains the integral equation

XPm (@)= (@)+ 3 T (@uf " X5 (o),
k,m",m"'

(1.2)

which is derived in Appendix A. For a (2! +1)-fold
band one finds the result

S u"m =U;+21J; =21 + Du; (1.3)
in the simple limit in which /"™ =u; and in which the
J"™ =J,; are independent of m and m’. In this limit, if
it is also true that the matrix elements I'[;" (o) are of
the form

L7 (0)=8,,, TH*(w)+(1=5,,, )Fiids(y) (1.4)

one finds the result

Xj@)=3 X7 (w)

=Tj(0)+ 3 TylouX,;(w), (1.5)
k

where I'jj(0)=3,, ' I‘;;""'(co). In this paper we assume
the approximate validity of Egs. (1.2) and (1.4) (or,
equivalently, consider the case of a single nondegenerate
band) and take the well-known Eq. (1.5) as our basic
starting point. The s and p bands are neglected because
their exchange enhancement is known to be very small.
The formalism given in this paper is applicable in a
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straightforward manner to the solution of the exact Eq.
(1.2) for the Xf?""(w) with any number of bands and or-
bitals. However, in that general case the numerical
determination of X f;""'(co) requires substantially more
computational labor.

In Sec. II of this paper we generalize the local-
exchange-enhancement theory of Lederer and Mills? so
as to make it applicable to concentrated alloys and so as
to treat ODD on an equal footing with diagonal disor-
der, either within the geometric approximation or in the
general case. The treatment given in that section is
applicable to the treatment either of a number of impuri-
ties embedded in a pure host metal or of a compact clus-
ter of real atoms embedded in a given effective medium.
However, that treatment does not suffice for the best
self-consistent determination of an effective medium. In
Sec. III alloy band-theory techniques developed by two
of the authors® are used to develop alternative formal-
isms for the susceptibility. Both renormalized-interactor
and ¢-matrix formalisms are presented for the case of di-
agonal disorder and for that of ODD. The self-
consistent determination of a cluster-CPA effective medi-
um is considered in Sec. IV. Finally, in Sec. V our re-
sults are summarized and discussed critically.

II. GENERALIZATION OF LOCAL
EXCHANGE ENHANCEMENT

In this section we present methods for solving the sus-
ceptibility integral equation (1.5) for three different
classes of concentrated alloys. First, we consider the
case of diagonal disorder—the case of alloys for which
the unenhanced band susceptibilities, T';j(w), are identi-
cal for the constituent metals so that I';;(w) for the alloy
is translationally invariant, but in which the intra-atomic
Coulomb interaction, u,, differs for the different alloy
constituents (diagonal disorder). Second, we consider
the case in which the I‘,j’s, as well as the u;’s, can be
different for different constituents (diagonal and off-
diagonal disorder), but in which the band susceptibilities
must satisfy the relation

[T#3(e)P=T ") o), Q2.1

where 4 and B denote any two alloy constituents (the
J

X((—f,q ,Ct))_‘ (q,w) 8—~—'+N_12Xk1 8uk

where N is the total number of sites in the lattice and
where

X(qo)=T(qw)/[1-i(0)(w)] (2.5)

is the enhanced susceptibility of the host (or the effective

medium). The inverse FT of Eq. (2.4) is then given by
the expression
XU((I)) X +2X1k 6uk( )ij((f)) . (2.6)
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geometric approximation). Finally, we consider the case
of alloys characterized by both diagonal and general off-
diagonal disorder, with the I';;’s satisfying no particular
relation.

We consider the case of n impurities embedded in a
pure host, or its formal equivalent, the case of n real
atoms embedded in an exchanged-enhanced effective
medium. The formalism presented is a straightforward
generalization of the single-impurity local-exchange-
enhancement theory of Lederer and Mills.2 However, it
is the first cluster theory of alloy susceptibilities to treat
exactly the embedding of a cluster in either a pure host
or an effective medium. Also, it is the first such theory
to take account of exchange enhancement in the host or
embedding medium.

A. Diagonal disorder

Following Lederer and Mills, in this subsection we as-
sume the band susceptibility to be translationally invari-

ant,
—1
ry@=a-"[

where ) is the volume of the Brillouin zone (BZ) of the
lattice, R R R is the position vector from site j to
site i, and the mtegral is over the Brillouin zone.

It is useful to define the quantity du,(w)=u; —i(w),
where #(w) is the value of the intra-atomic Coulomb in-
teraction in the host or effective medium. For the case
of n impurities embedded in a pure host, u (w) is just the
value of u; in the host metal and is assumed to be fre-
quency independent, whereas for the case of a cluster of
n real atoms embedded in an effective medium, #(w) is
the frequency-dependent self-consistently determined
value of u; for the medium. In terms of du,(w), the in-
tegral equation for the susceptibility, Eq. (1.5), can be
written in the form

XU(CU) ,}(Cl))+u(m)zrlk

NGwe “Ridig, (2.2)

()
+EI‘ (@)8uy ()X (@) . (2.3

Upon taking the Fourier transform (FT) of this equation,
one obtains the expression

w)expli (TR, —q@"-R)] |, 2.4)

—

In order to invert this equation and solve for X;;(w),
we note that the sum over k extends only over the n im-
purity sites (or n real-atom sites in an effective medium).
Upon confining i to the subspace C of impurity sites, Eq.
(2.6) assumes the form

=

Xj(0)=X;(0)+X(0)8u(w)X;(w) 2.7)

where the vectors X (w) and X (@) have components
Xyj(@) and X,q(a)) respectlvely, and the matrices X(w)
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and Su(w) have elements X, (w) and 8u,, =8, du,, with
the sites k, /, and m confined to the subspace C. Equa-
tion (2.7) is easily inverted, yielding the solution

X ()= A (o)X, (0), (2.8)
or, equivalently,
Xij(@)=3[A o) ]yX;), 2.9
!
where the matrix to be inverted,
Alw)=1-X(w)du(w) , (2.10)

is defined only on the subspace C, so that the summation
over [/ in Eq. (2.9) extends only over that subspace. In-
serting Eq. (2.9) into Eq. (2.6), one finds the expression

X(w)=X(o)[1+6u(w) A~ (0)X(w)] 2.11)

for the exchange-enhanced local susceptibility. The uni-
form susceptibility is then given by the expression

X(@)=N""'"3 X;(0)
ij
=X(o) [1+N "X(0) 3 du (@) A~ @)1y |,
k,1

(2.12)

where X(w) is the uniform susceptibility of the host (or
the effective medium). Finally, the fractional change in
the uniform susceptibility introduced by the n impurities
(or the n real atoms in an effective medium) is given by

(@) /X(@)=N"X(0) 3 dur () A" @)]y . (2.13)
k,!

Equation (2.13) provides an easy method for the calcula-
tion of 8X(w) for any configuration of n impurities dis-
solved in an exchange-enhanced host (or effective medi-
um). The numerical calculation of 8X(w) involves only
the inversion of a single n X n matrix, provided that the
local susceptibilities, X ;j{@), of the host (or the effective
medium) are known. For the case of an isolated impuri-
ty on site 0 and for =0, Egs. (2.10)-(2.13) reduce to
the results of Lederer and Mills.

B. Diagonal and off-diagonal disorder
within the geometric approximation

In this subsection, the formalism of Sec. Il A is gen-
eralized so as to be made applicable to the case of disor-
dered alloys characterized by diagonal and off-diagonal
disorder within the geometric approximation. In gen-
eral, the off-diagonal band susceptibilities, I';;(w), de-
pend not only on the chemical occupation of the sites, i
and j, but also on the local environment of those sites.
In principle, it is possible to treat this general depen-

J

Xj(@)=n,(0)m;(@) [X;(0)+ 3 Xy(0)bufMw){[ ANw)] ™} Xjlo) |,
k,l
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dence T';j(w) on the local environment. However, al-
though the formalism for such a treatment is conceptu-
ally straightforward, its computational implementation is
quite difficult. Thus, in this subsection, as in all previous
treatments of ODD, I';;(w) is assumed to be a function
only of the occupation of the sites i and j; i.e., the ma-
trix elements I';;(w) are assumed to take on only values
of the type T4 (w), T*(w)=T}"0), and T}’(0). A
further great computational savings can be made by as-
suming that the local band susceptibilities, I';;(w), de-
pend on the atomic occupation of sites i and j only
within the geometric approximation of Shiba,’ Eq. (2.1).
Within this approximation one can write

Tj(@)=7()T;(0)n;(o), (2.14)
where
7:(0)=[T;(0)/Ti(®)]*®, (2.15)

and where I—“,-j(w) is the local band susceptibility of the
host or embedding medium. This off-diagonal disorder
is dominant for such isovalent alloys as Pd-Ni and
Pt-Ni, and the geometric approximation renders its
treatment feasible without the use of a supercomputer.

Inserting Eq. (2.14) into Eq. (1.5), one obtains the re-
sult

+ 3 7:(@)T (@) (@)u Xy () (2.16)
k
Upon defining the quantity
§ii(0)=[,(0)]" X (0)[n;(@)]", 2.17)

dividing Eq. (2.16) by 7,(w)n;(w), and substituting Eq.
(2.17) into the resultant equation, one finds

£;(0)=T;(0)+3 Ty (o) (@) Puybi(0) . (2.18)
k

Then, upon defining the quantity

dufflw)=[n(0)Pu, —1(0) , (2.19)

which is analogous to the quantity du,(w), defined in
Sec. IT A, one finds that Eq. (2.18) assumes the form

£j(w)=T o) +i() % Ty (w)éj(w)

+3 Ti(0)duMw)é;;(w) . (2.20)
k

This equation for §;;(w) is exactly analogous to Eq. (2.3)
of Sec. ITA for X;(w), with 8u,(w) being replaced by
dufM(w), and thus can be solved in exactly the same way
that Eq. (2.3) was solved. One finds the result

(2.21)
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where A*M(w) is defined in exactly the same way as the matrix A(w) was defined in Eq. (2.10) of Sec. I A except for
the replacement of du(w) by 8u*f(w), and where the summations over k and / again extend only over the subspace C.

Thus, the fractional change in the uniform susceptibility is given by the expression

X (w)/X(@)=N""3 | X()duffw){[ AMw)]~ '}y

k,1

+m (@) =113 ({1 +X (o

X {28, +[m(@

Note that in the absence of off-diagonal disorder Eq.
(2.22) reduces to the corresponding Eq. (2.13) of Sec.
ITI A. Furthermore, although the form of this expression
is slightly more complicated than that of Eq. (2.13), it
provides an equally easy method for the numerical calcu-
lation of 8X(w)/X(w), requiring only the inversion of a
single n X n matrix.

C. Diagonal and general off-diagonal disorder

In this subsection the formalism of Sec. ITA is gen-
eralized so as to be made applicable to the case of disor-
dered alloys characterized by any type of disorder, in-
cluding general off-diagonal disorder. In contrast to the
preceding subsection, no particular relationship is as-
sumed to exist between the different possible values of

[';j(®), and those values are allowed, in principle, to de-

J

u () AM(w)

]_‘}km

)= 11X, (@) /X (@)}) (2.22)

pend on the local environment of sites i and j, as well as
on the chemical occupation of sites i and j.

As in Sec. IT A and II B, we consider the case of n im-
purity atoms embedded in a pure host, or of n real
atoms embedded in an effective medium. We also con-
sider that an additional n’ atoms of the embedding medi-
um are connected to the impurity atoms by matrix ele-
ments T, different from the matrix elements T}, of the
translationally invariant band susceptibility of the
embedding medium. In general, the number n’ of such
atoms will be large even for small n. We then assume all
matrix elements I';; to be equal to T;; if either site i or
site j lies outside the subspace C’ consisting of the n
sites occupied by impurity atoms and the additional n’
sites defined above, thus neglecting the dependence of
I';; on local environment if either site lies outside C’.

In this case Eq. (1.5) can be written in the form

X;j(@)=T;(w)+8T;( ©) 3 Ty (o)X j(0)+ 3 [#(0)8T j (0)+ Ty (0)8uy () Xy () (2.23)
k k
The FT of this equation is given by
X(@,q";0)=X(§0)84+N ~'@gw) 3 8T, (w)expli (§"R; —q"K,, )]
ILm
+N71E&Gw) S [#(@)8T (@) + Ty (0)8uy (@) Wy, (0)expli(G-R, —q''K,,)] , (2.24)

k,,m

\lvhere k, I, and m are confined to the subspace C’,
X(q;w) is the exchange-enhanced susceptibility of the
host (or effective medium) given by Eq. (2.5), and

w)=[1—-7(0)T(qw)]!

—_ =,

a(q;o

=X(q;0)/T(Go) .
The inverse FT of Eq. (2.24) is then given by

(2.25)

k

+3 @ () #(@)8T (o)
k,1

+fk,(w)5u,(a))])(1j(w) . (2.26)

In solving Eq. (2.26) it is necessary to invert a matrix
A(w), defined on the supercluster subspace C' of n +n’
sites. Following the same procedure as that used in solv-
ing Eq. (2.6) in Sec. IT A, one finds the result

ij(w)zz[A—l(ﬂ))]kl l—’u(a))+251m(w)5rmj(w) s
i m
(2.27)

where k, I, and m are restricted to the subspace C' and
the matrix A is defined by the equation

Alw)=1-a(w)[H(w)dT(w)+ T w)du(w)] . (2.28)

Finally, substituting Eq. (2.27) into Eq. (2.26), one ob-
tains the expressions
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X(0)=X(0)+&@){8T(0)+[1(w)8(w)+ Nw)du(w)] A~ w)[X(0)+&w)8T(v)]}

for the exchange-enhanced local susceptibility and

X (0)/X(0)=8T(w)/T(@)+N ~'a@(w) T {[6(w)8T(0)+ w)du(w) ] A~ o)1+ T ~ w8 ()]}
k.1

for the fractional change in the uniform susceptibility of
the alloy, where T'(w) is the uniform band susceptibility
of the host or effective medium.

It is clear that the computational application of the
formalism of this subsection is substantially more time
consuming than is that of Secs. Il A and II B, because of
the large dimensionality of the matrix A(w) to be invert-
ed. In order to apply this formalism without the use of
a supercomputer one must truncate the matrix elements
8T;; at distances of the order of third-nearest-neighbor
distances. The use of a supercomputer would allow one
to extend the 8";; to somewhat larger distances. In the
following section we present an alternative, more sophis-
ticated, but computationally more feasible formalism for
the calculation of X(w) and 8X(w)/X(w). That formal-
ism, which draws upon the techniques of CPA
theories™® for the band structure of alloys characterized
by off-diagonal disorder, involves the inversion of a
2n X 2n matrix rather than an (n +n')X(n +n') matrix.

III. APPLICATION OF ALLOY-BAND-THEORY
TECHNIQUES TO THE DETERMINATION OF X;;()

In this section we present an alternative formalism for
the solution of the susceptibility integral equation (1.5)
analogous to the cluster-CPA formalism of Ref. 3. In
Sec. IIIA we briefly compare the alloy-band-theory
equation of motion for Green’s function, G;;(w), with
the integral equation for X, (w) and discuss the
differences and similarities between those two equations.
We show that although the susceptibility equation is of a
different form, it can be transformed into a form exactly
analogous mathematically to that of the Green’s-
function equation. In Secs. III B and III C we develop
renormalized-interactor and t-matrix formalisms which
allow one to determine the exchange-enhanced suscepti-
bility of a cluster embedded in an effective medium for
the case of diagonal disorder. For this case the results
obtained using these techniques are identical to those
found in Sec. II. Finally, in Sec. III D these two formal-
isms are generalized so as to allow the I';;(w) to depend
on the chemical occupation of the sites i and j (ODD).
In the presence of ODD, these techniques do yield new
and more useful results than those obtained in Sec. II.

A. Comparison of the equations for X;;(®) and for G;;(w@)

In a site (or cluster) representation the single-particle
Green’s function, G;;(®), satisfies the equation of motion

(3.1a)

ij

k

or, in matrix form,
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(2.29)
(2.30)
[
Glo)=g(@)[1+WG(0)] . (3.1b)
Here,
gilw)=(w—eg;)"! (3.2)

is the “bare” Green’s function (or locator) for the site (or
cluster) i. In a site representation all of the quantities in
Eq. (3.1a) are scalars; in a cluster representation with n-
site clusters, they all are n Xn matrices with elements
Gij,ap=(Gijlap  8iap=(8i)ap and Wy ,z=(Wy ),
where a and B run from 1 to n. Upon rewriting Eq.
(1.5) in matrix notation,

X(w)=T(o)14+uX(w)], (3.3)

one finds that this equation is of the same form as Eq.
(3.1b) for G(w). However, it differs in that '(®w) con-
tains nonzero off-diagonal elements, whereas g(w) is di-
agonal, and in that u is purely diagonal, whereas W is
purely off diagonal. Thus, solutions of Eq. (1.5) cannot
be obtained directly by analogy with the alloy-band-
theory solutions of Eq. (3.1). However, as we now show,
Eq. (1.5) can be transformed to a form directly analo-
gous to Eq. (3.1).
One can reexpress Eq. (3.3) in the form

Sw)=g(0)[1+W(w)9(w)], (3.4)

which is identical in form to Eq. (3.1b) of alloy band
theory, by multiplying Eq. (3.3) by u, adding a unit ma-
trix on both sides, and introducing the matrices

Sw)=14+uX(w), (3.5)

glo)=[1—uy(0)]™', (3.6)
and

Ww)=u[lN(w)-y(o)], (3.7

where ¥ (w) is the diagonal part of I'(w),
vijlo)=T;(®)5;=y,(0) .

The matrix g(w) is purely site diagonal (or cluster diago-
nal), g,;(0)=98,;¢;(®), and has the same relation to $(w)
as g(w) has to G(w) in alloy band theory, and the matrix
W(w) is purely off diagonal, as is W. Thus, one can
determine €(w) for a cluster embedded in an effective
medium by using standard techniques® of alloy band
theory and then find X(w) from Eq. (3.5). However, this
procedure does not necessarily yield the best self-
consistency condition for the determination of X(w) for
the effective medium; procedures for determining X(w)
are discussed in detail in Sec. IV.
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B. Renormalized-interactor formalism for X;; (@)
for the case of diagonal disorder

In this subsection we modify the alloy-band-theory
renormalized-interactor formalism of Gonis and Gar-
land® so as to use it to derive an equation for X;(e) for
sites i/ and j in the cluster for the case of diagonal disor-
der. In the interactor formalism one solves Eq. (3.4) for

g,’,’(ﬁ)) ?, 0)) [1+2 w,k gk,(w) (3.8)
J

A,(CL))E -_ 12 w‘k((l))gk Wk, CL))+ 2 2
k (i) k (0 | (£i,k)

is independent of the chemical occupation of the site (or
cluster) i. The factor u;~', which appears on the right-
hand side of Eq. (3.10), and which has no analogy in al-
loy band theory, is introduced here in order to cancel
the factor u; in Eq. (3.7) for W, (w). Note that the in-
clusion of this factor in the definition of A;(w) renders
A; independent of the chemical occupation of the site (or
cluster) i.

In order to determine $,;(w) from Eq. (3.9b) and,
hence, obtain X;(w), one must somehow determine
A;(@). In order to do that, we follow the usual pro-
cedure of embedding the site (or cluster) O in an effective
medium. Then, because Ay(w) is independent of the oc-
cupation of the site (or cluster) 0, Ay(w) is equal to A(w),
the renormalized interactor for the pure, translationally
invariant effective medium. Placing effective medium on
site (or cluster) i, as well as on all other sites, one finds
from Eq. (3.9b) the result

AMw)=7 o)z 0)-8x' )], (3.11)
where #(w) denotes the value of u;(w) for the pure
eﬁ‘ecti‘ve medium and Z(w) and $ylw) are given by the
equations

Zlw)=[1—a(o)y(0)]™! (3.12)
and

Goolw) =1+ () Xppl@) , (3.13)
with Xyo(w) obtained as the FT of the quantity

X(q,0)=T(q,0)[1—7(0)(gw)]"". (3.14)

Upon substituting Eq. (3.11) into Eq. (3.9b), one obtains
the result

Gool@)={g5 @) —uot ")z N0)—Fx )]} ".

(3.15)

Then, upon inserting Egs. (3.12) and (3.13) into Eq.

(3.15), one finds the equation

Gool@)=[1—uo ~Nw)+uohd "0)8x"(0)]",

(3.16a)
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by performing a perturbation expansion of the last term
on the right-hand side of Eq. (3.8) in powers of W(w).
As is shown in Ref. 3, one finds the result

g”(a))=9l[l+u‘A,(CO)g”(w)] N (39&)
or, equivalently,
Gilw)=[gi o) —u;A;(0)] " (3.9b)
Here, the fully renormalized interactor,
‘W,k(co)yk( ‘Wk,(w)gz,(w)wl,( o)+ s (3.10)

or, equivalently , in terms of the site (or cluster) quanti-
ty, Suglw)=uy—ilw),

Gool@)=Gpol@)[ 1 —8u gl Xpolw)] ™! . (3.16b)

Finally, using Eq. (3.12) one obtains the desired equa-
tion,

X0l @) =X ol @)[ 1 —8u ()Xol )] !

=[1—=Xpo(@)duy(w)]™ Hgolw) . (3.17)

Within the cluster subspace, this equation for the suscep-
tibility is equivalent to Eq. (2.9), found in site representa-
tion in Sec. II purely by FT techniques. Although this
technique does not yield a formula for X;;(w) valid out-
side the cluster subspace, the -matrix theory of the next
subsection does yield such a formula valid for all i and j.

C. T-matrix formalism for X;; ()
for the case of diagonal disorder

In this subsection we derive the ¢ matrix for the
exchange-enhanced d band local susceptibility, X;;(w),
for the case of diagonal disorder for a single site (or clus-
ter) embedded in an effective medium. We use that ¢
matrix to rederive Eq. (2.11), which, unlike Eq. (3.17), is
valid for all of the elements of X(w), not only the
cluster-diagonal elements. The t-matrix formalism for
X;j(w), which we introduce here, is exactly analogous to
the usual ¢-matrix formalism for the Green’s function,
G;(w), of alloy band theory.

One can rewrite the susceptibility integral equation

(2.6) in the matrix form
X(0)=X(0)+X(0)du(w)X(w) , (3.18)

where the matrix elements X (w) are determined by
Fourier transformation from X(q, ), which is given by

Eq. (3.14). In analogy with the ¢ matrix for G;;(e), one

can define the t¥ matrix for X,; (o),
t“(w)=8u(w)+du(w)X ()t () , (3.19)

in terms of which Eq. (3.18) assumes the form
X(0)=X(0)+X()t" ()X (0) . (3.20)

Upon inverting Eq. (3.19), we find
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t“(w)=8u(w)[1-X(w)bu(w)] ™!

=8su(w) A Nw), (3.21)

and substituting this expression into Eq. (3.20), we ob-
tain the final result,

X(0)=X(0)+X(@)dulw) A~ (o)X o), (3.22)

which is identical to Eq. (2.11) which was found in Sec.
II by FT techniques.

D. Renormalized-interactor and 7-matrix formalisms
for X;;(w) for the case of off-diagonal disorder

In this subsection, we present a generalization to the
case of off-diagonal disorder of the alloy band formal-
isms developed in Secs. III B and III C for the case of di-
agonal disorder. In the geometric approximation, dis-
cussed in Sec. II B, the method of Shiba’ is easily applied
to the calculation of X;;(w), yielding exactly the same re-
sults, Egs. (2.20) and (2.21), as were obtained in Sec. II B.
Thus, we confine our discussion in this section to the
more general case in which the matrix elements of the
bare alloy band susceptibility, I';;(w), depend only on
the chemical occupation of sites / and j, but in which the
geometric approximation does not hold. In that case,
the use of the formalism of alloy band theory allows one
to obtain a new, possibly superior, solution of the equa-
tion of motion (3.3) for X(w). In this subsection we use
the alloy band theory of Blackman, Esterling, and Berk®
(BEB) for binary alloys, 4,_.B., as reexpressed by
Gonis and Garland® to derive an alternative to Eq. (2.28)
in which the matrix to be inverted is a 2n X2n matrix
rather than an (n +n')X(n +nr’) matrix. As is shown
in Appendix B, the generalization of this theory to mul-
ticomponent alloys is straightforward.

Blackman et al. showed that in alloy band theory the
off-diagonal disorder associated with randomness in the
transfer matrix elements, W,;, can be transformed into
diagonal disorder by the introduction of 22 matrices
provided that the W,; depend only on the chemical occu-
pation of sites / and j. Upon introducing the
configuration-space matrices (we consider explicitly the
case of binary alloys),

x;Gjlo)x; x;G;lwy,

Gjlw)= %G (0%, 9,G @)y, |’ (3.23)
x,'gA(CU) 0
g‘((l))E 0 yng(CD) ’ (3.24)
and
wAd WwAB
iy ij
Wy=wae wes |- (3.25)

where the projection operator, x; =1—y;, is equal to 1 if
the site i is occupied by an atom of type A4 and is zero
otherwise, one finds that the equation of motion (3.1) as-
sumes the form
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in site representation or
Glo)=glw)[1+ WG(w)]

in supermatrix form. Here and in the following, a single
underline denotes a 2X2 matrix in configuration space,
whereas boldface type together with an underline
denotes a matrix in site representation whose matrix ele-
ments are BEB 2X2 matrices. Note that the matrices
_u_/U are translationally invariant, so that Eq. (3.26) is for-
mally analogous to the equation for the alloy Green’s
function in the presence of only diagonal disorder, with
the only disorder arising from the projection operators
in g,»(w).

This formalism cannot be applied directly to the in-
tegral equation (3.3) for X(w) because the matrix, I'(w),
which carries the off-diagonal disorder does not always
occur sandwiched between two diagonal matrices. How-
ever, we show here how it can be used with either the
renormalized-interactor formalism of Sec. III B or the -
matrix formalism of Sec. IIIC. We consider the
renormalized-interactor approach. The BEB formalism
can be directly applied to Eq. (3.4) of Sec. III B, which is
exactly analogous to Eq. (3.1) of alloy band theory.
Upon introducing the 2X2 matrix generalizations,
9i(w), g/(0), and W;;(w), of the scalars §;;(w), g;(w),
and W;;(w) in analogy with the definitions (3.23)-(3.25),
one can rewrite Eq. (3.4) in the form

So)=g(0)[1+W(w)S()] .

Here, the site-diagonal matrix g¢;(w) is given by the
equation

(3.26b)

(3.27)

Zi:'(w)?—[l-—l,'_("))]Al

=14y y(0)g (o), (3.28)
where
xut 0
U=\ g pu® (3.29)
and
yHw) 0
vl=1| vBw) (3.30)

Note that the matrices W;(w) and y(w) are now
translationally invariant. Thus, for the case of a cluster
embedded in an effective medium, one can define the

corresponding matrices, W;;(») and Y(w), for the
effective medium to be equal to W;; and y, respectively.
Any self-consistency conditions on the effective medium
can always be satisfied by an appropriate choice of U(w)
provided that one allows u(w) to be only cluster diago-
nal, rather than site diagonal. The only disorder remain-
ing in Eq. (3.27) is the diagonal disorder associated with
zilo).
Upon generalizing the renormalized-interactor formal-
ism of Sec. III B, Eq. (3.9a) assumes the form
Silo)=g;(0)[14+uy;A(0)G;(w)], (3.31a)

or, equivalently,
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Gilw)=[1l—gi(0)u;Aj(0)] 'g;(@), (3.31b)

where the fully renormalized interactor is defined by the
equation

A (w) AMB(w)

Ailw)= AP w) APB(w)

=1

(3.32)

In order to solve Eq. (3.31b) we follow the procedure of
Sec. IIIB, embedding the site (or cluster) O in an
effective medium characterized by an effective renormal-
ized interactor, A(w), given by the expression

Aw)=1 "o)[g )-8y '], (3.33)

where #Z(w), z(w), and Qoo(m) are the 2><2_matrix gen-
eralizations of the scalars #(w), z(w), and (), with
7Z(w) and Sy(w) defined by Egs. (3.12)-(3.14). Note
that the matrix @(w) now can have off-diagonal matrix
elements in both site space and configuration space, in
contrast with Sec. III B, although it remains cluster di-
agonal.

Upon substituting Eqgs. (3.33) and (3.28) into Eq.
(3.31b) and inverting the resultant equation, one finds
the expression

Fwl@) ' =[1-uoy(@)]
X {1—gol@)uol ~ ()
[——~l

After performing some straightforward algebra and rein-
verting this equation, one obtains the result

@)—8 (@) ']} . (3.34)

9 ool 1—8u4(@)X gol)] ™, (3.35)

where Z ool@) is the 2X2 matrix generalization of the
scalar X(w). Then, expressing g (w) in terms of
X ol@), one finds the result

Xoolw)=[1

which is equivalent to Eq. (3.17) of Sec. III B for the case
of diagonal disorder. However, Eq. (3.36) is defined in a
different space than is Eq. (3.17), with a 2n X2n rather
than an n Xn matrix to be inverted. The physical sus-
ceptibility, X (@), is given by the equation

2 2
=3 3 [Xplo)
a=1 B=1

—X gol@)duo(@)] X plw) , (3.36)

lg » (3.37)

and the physical susceptibility of the effective medium is
given by

Xijlw

J (3.38)

2
E ,/(a))]aﬁ

nM~

Finally, upon generalizing the r-matrix formalism for
X(w) presented in Sec. IIIC by introducing 2X2 ma-
trices, as was done within the renormalized-interactor
formalism, one can rewrite Eq. (3.20) in the form

X(0)=X(0)+X(o)t0)X(o) . (3.39)

Because scattering occurs only on the single site (or clus-
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ter) i, which is embedded in the effective medium, one
may write

i(oo(a))=gw(w)+gm(w)gx(w)_foo(w) , (3.40)

where 1¥=1 §,. By substituting Eq. (3.36) for Xp(w) into
Eq. (3.40), one finds

X)) =8uy(0)[1—Xpo(@)dup(@)] ™!

=8up(w)dg () . (3.41)

Now, upon substituting Eq. (3.41) into Eq. (3.39), one
finds the result,
(3.42)

Zij

Xj(@)=X;;(0)+Xo(0)bus(0) 45 (0)Xg(0) ,

which is analogous to Eq. (2.11) of Sec. II A for the case
of diagonal disorder. However, the matrix 4 4(w) to be
inverted here is a 2n X2n matrix, rather than an n Xn
matrix. Note that Eq. (3.42) gives the susceptibility
X ;j(w) for any two sites (or clusters) i and j in the crys-

tal, whereas the more restricted susceptibility equation

(3.36) gives the local susceptibility only within the em-
bedded cluster, 0. Note also that Egs. (3.41) and (3.42)
could be obtained directly by generalizing Egs. (3.18)
and (3.19) of Sec. III C because our introduction of 2 X2
matrices has transformed the off-diagonal disorder in
() into diagonal form, leaving only a disorder in u(w).
Finally, the physical uniform static susceptibility, X(0),
of the alloy is given by the equation

X0)=N"'3 2 Z [X;;(0

Lj a=1 B=1

=X(0)+N"'3 3 [X(0)6u,(0)4

a=1 B=1

o H(0)X(0)],5 ,

(3.43)
where

X(0) N*‘zx,j 0) and X(0)= “‘zx,,

1V. SELF-CONSISTENT DETERMINATION
OF THE EFFECTIVE MEDIUM

In this section we discuss, and examine briefly,
different possible self-consistency conditions for deter-
mining the effective medium in which a site or cluster is
to be embedded. The equations presented here are given
for the case of diagonal disorder only, but can be im-
mediately applied to the case of off-diagonal disorder by
simply adding an underline under every quantity in each
equation, i.e., by replacing each matrix, M, by the corre-
sponding supermatrix, M. As was shown in detail in
Sec. III C, the case of off-diagonal disorder becomes ex-
actly analogous to the case of purely diagonal disorder
upon introducing the appropriate supermatrix generali-
zations.

In a single-site theory one considers the case of a sin-
gle site embedded in a translationally invariant effective
medium characterized by the effective intra-atomic
Coulomb potential, #(w). In such a theory one can in-
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troduce a formalism equivalent to either the locator (or
renormalized interactor) or the propagator (or t-matrix)
formalism employed in the single-site CPA (SSCPA) of
alloy band theory, as has been shown in Sec. III. The
self-consistency conditions which correspond to those of
the SSCPA band theory are immediately obvious. In
such a theory of the susceptibility, #(w) can be deter-
mined either by the locator condition,

(Xgol@))ss=Xop(@) , 4.1
or by the propagator condition,'°

(tY(w))ss=0, (4.2)
where the symbol, ( - - - )55, denotes an ensemble aver-

age over the occupation of a single site. It is obvious
from Eq. (3.20) that the conditions (4.1) and (4.2) are ex-
actly equivalent, just as the locator and propagator self-
consistency conditions are exactly equivalent within the
SSCPA in alloy band theory. Furthermore, by proofs
analogous to those of alloy band theory, these conditions
give rise to an analytic effective potential, #(w), even for
the case of off-diagonal disorder, and give analytic local
susceptibilities, X ;j{@), in the absence of long-range mag-
netic order.

The exact ensemble-average alloy susceptibility over
all alloy configurations can be expressed in the general

form
X())=X(0)+X(){T" o)X (») , (4.3)

where TX(w), the total T matrix for the alloy susceptibil-
ity, describes the scattering due to the difference between

the intra-atomic Coulomb potential of the real, disor-

dered material and the effective potential, @(w), of the
effective medium. Upon expanding the total TX matrix
in terms of the single-site ¥ matrices, one can rewrite
Eq. (4.3) in site representation in the form

(X,-j(w)>=i7,-j(a))+ zf,-k(wﬂt,f(a))))zkj(w)
k

+ 3 Xl ()X ()
k,l1+k

X t,X(a))))\_/,j(w)+ R (4.4)

Then, imposing the condition (4.2), it is obvious from
Eq. (4.4) that (X;(w)) is equal to X;;(w), correct up to
terms of order {(¢)t{*)*). Thus, the SSCPA provides the
best single-site approximation to the alloy susceptibility,
just as it provides the best single-site approximation to
the single-particle alloy Green’s functions, G;;(@).

In cluster theory one considers the case of a compact
n-site cluster embedded in an effective medium, which
may either be determined self-consistently or be chosen
in some other way. Unfortunately, the problem of
choosing the proper effective medium into which to
embed an n-site cluster of real atoms is much more criti-
cal in determining the ensemble-averaged uniform sus-
ceptibility of an alloy than in determining an alloy densi-
ty of states. One reason for the criticality is that X(w)
for the alloy cannot be calculated even in principle solely
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from the elements, (X,-j(w)), of the ensemble-averaged
susceptibility matrix for the embedded cluster, whereas
the alloy density of states n(w) is in principle equal to
the spectral-weight function A4;(w) for any site in the
embedded cluster. Thus, X(w) depends explicitly on the
embedding effective medium, whereas n(w) depends on
it only to the extent that it affects the spectral weight
Ao(w) on the central site of the embedded cluster.
Second, for strongly-exchange-enhanced alloys the
dependence of X;(w) on the local environment of the site
i is much more nonlinear than is the dependence of
A;(w) on local environment. Third, and probably most
important, unlike the dependence of A4;(®) on local envi-
ronment, the dependence of X;(w) on local environment
is very long ranged for strongly-exchange-enhanced al-
loys.

Because one must consider large clusters (n R 55) in
any accurate calculation of the susceptibility of
strongly-exchange-enhanced alloys, for simplicity we
consider here only site-diagonal cluster theories, within
which the intra-atomic Coulomb potential, # (), of the
effective medium is chosen to be not only cluster diago-
nal but also site diagonal. We consider three different
self-consistent site-diagonal cluster theories which are
analogous to existing cluster band theories: the self-
consistent central-site approximation (SCCSA),'! the
self-consistent boundary-site approximation (SCBSA),'?
and the t-matrix self-consistent central-site approxima-
tion (TMSCCSA). Within the SCCSA one imposes the
single scalar condition

(Xool@)) c =Xpol@) , (4.5)

where O denotes the central site of the cluster and the
symbol (---). denotes an average over all
configurations of the cluster. On the other hand, within
the SCBSA one replaces the condition (4.5) by the condi-
tion

X (@) c=Xpol@) , (4.6)

where n denotes a boundary site in the cluster, with the
boundary defined in some convenient way. Finally, in
the TMSCCSA one imposes the single scalar condition,

(th>C=O’ (4.7)

where 0 denotes the central site of the cluster C, and t*
is the cluster ¢ matrix. It can be shown'’ that the
TMSCCSA always yields analytic results and thus is a
theory at least in principle superior to the SCCSA and
the SCBSA.

In addition to considering the three site-diagonal self-
consistency conditions discussed above, Egs. (4.5)-(4.7),
we also consider here the self-consistency condition

X(@))c=X0),

or, equivalently,
.AT—l 2 <XU(CD))C=i(w) s
ij

(4.8a)

(4.8b)

where the sum over i and j runs over all sites and is not
limited to the cluster C. This new self-consistency con-
dition, along with the conditions (4.5)-(4.7), reduces the
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case of only diagonal disorder to the usual SSCPA self-
consistency conditions (4.1) and (4.2) in the limit of a
single site, as is obvious from Egs. (2.11) and (3.42).
Also, for the case of geometric off-diagonal disorder, the
condition (4.8) is very nearly equivalent to the conditions
(4.1) and (4.2), as is shown by Egs. (2.26) and (2.27).
Further, this condition has two apparent advantages
over any of the site-diagonal conditions, Egs. (4.5)-(4.7).
First, it is a condition directly on the quantity X(w),
which one wishes to calculate. Second, because X(w) de-
pends much more sensitively on & than does Xy @), Egs.
(4.8) should determine # much more sensitively than do
any of Egs. (4.5)-(4.7).

However, there exist two other criteria for choosing
the best self-consistency condition. Both of those cri-
teria favor the TMSCCSA condition, Eq. (4.7). First is
the criterion of analyticity. Of the cluster-theory self-
consistency conditions, Egs. (4.5)-(4.8), only Eq. (4.7)
satisfies that criterion. Second is the numerical criterion
of rapid convergence toward the final correct value of
X(w) with increasing cluster size. It is apparent that the
value of X(w) should approach its final value most rapid-
ly with increasing cluster size for the case in which X(w)
[or #(w)] is determined primarily in terms of quantities
evaluated near the center of the embedded cluster; with
increasing cluster size those quantities must converge to
their final values more rapidly than the same quantities
evaluated near the edge of the cluster. One can immedi-
ately discard the SCBSA, condition (4.6), on the basis of
this criterion. Also, this criterion argues against the use
of the condition (4.8). Of the two remaining conditions,
the SCCSA condition and the TMSCCSA condition,
both are favored by this criterion because both are ex-
pressed in terms of the ensemble average of a matrix ele-
ment evaluated at the cluster center. In order to com-
pare these two conditions in terms of this criterion, we
express the SCCSA condition, Eq. (4.5), in the form

<X00(w))C-i;OO((‘))

=[X(0){du(@) A" w))X(@)]p=0 4.9)
and the TMSCCA condition in the form
(18 (@) =[(8u(w) A" ®))c]p=0, (4.10)

where all matrices are defined only over the space of the
cluster C and where the matrix A(w) is defined by Eq.
(2.10). It is clear from Egs. (2.10), (4.9), and (4.10) that
for fixed #(w), the quantity {t§(w)) converges to its
final value more rapidly with increasing cluster size than
does {(Xgo(®)) . This conclusion is supported by the re-
sults of model numerical calculations.

We conclude that of the three site-diagonal self-
consistency conditions considered, the TMSCCA condi-
tion is the best from all points of view. We also have
found that the TMSCCA self-consistency condition is
definitely preferable to the condition (4.8) with respect to
the criteria of analyticity and of rapidity of convergence
with increasing cluster size. We believe that on balance
these arguments for use of the TMSCCA condition, Eq.
(4.10), outweigh the arguments for the use of the condi-
tion (4.8).

Having suggested a best method for the determination
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of a self-consistent cluster-CPA effective medium, we
must issue a caveat to the reader. Unlike the case for al-
loy band calculations, the averaging over clusters con-
taining as many as 55 or more atoms embedded in an
effective medium can lead to large errors in the calcula-
tion of the exchange-enhanced susceptibility. This is
especially true for very-highly-exchange-enhanced hosts,
such as Pd, near the critical concentration for fer-
romagnetism. In the worst case, that of Pd-Ni alloys,
for 55-site clusters embedded in a self-consistent effective
medium it leads to an overestimate of the susceptibility
by a factor of order 2 at the critical concentration. This
difficulty arises from the extremely nonlinear dependence
of the local susceptibilities X;;(w) on the local environ-
ments of the sites / and j, coupled with the extremely
long range of X;; in such alloys. One obtains substantial-
ly better values for the susceptibility of Pd-Ni alloys
near the critical concentration by considering successive-
ly larger numbers of Ni atoms embedded in pure Pd
than by performing a cluster-CPA calculation. On the
other hand, for alloys such as Ni-Cu, for which the criti-
cal concentration is not very close to either one or zero,
the cluster CPA appears to be the best technique for the
calculation of the susceptibility. The different methods
of actually performing calculations are discussed in de-
tail and illustrative actual results are given in paper IV
of this series.

V. DISCUSSION AND CONCLUSIONS

The formalism presented in this paper represents a
substantial advance over all previous theories for the cal-
culation of the exchange-enhanced magnetic susceptibili-
ty of substitutionally disordered alloys. Furthermore,
this paper is unique in that it establishes a link between
the formalism of alloy band theory and that of alloy sus-
ceptibility. With the exception of the phenomenological
Landau theory of Kato and Mathon,? all such previous
theories can be obtained from the formalism presented
here by making the appropriate approximations. By
considering only the case of isolated single impurities in
an exchange-enhanced host one arrives at the theory of
Lederer and Mills*> or Engelsberg et al.'* By consider-
ing the case of single atoms embedded in a self-
consistently-determined CPA effective medium one can
arrive at the results of Harris and Zuckermann,'® Kato
and Shimizu,” Hasegawa and Kanamori,'® Levin
et al.,"” Fukuyama,'® Inoue and Shimizu,' or, in princi-
ple, those of Hirooka and Shimizu.?® By virtue of the
very nature of single-site averaging, none of those
theories can incorporate local-environment effects, which
we have found numerically to be very important, or can
correctly incorporate the effects of short-range order. In
particular, those theories yield a qualitatively wrong
concentration dependence of the static uniform suscepti-
bility, X(0). These problems can be overcome by using
the full cluster formalism presented in this paper. It is
important to realize that approximations to the method
presented here can easily destroy its integrity and useful-
ness; the previous cluster theories of Brouers et al,*' and
of Van der Rest,”? which represent approximations to
the present formalism, failed to include exchange
enhancement in the effective medium or to treat exactly
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the embedding of a cluster within a given effective medi-
um.

The theory of Kato and Mathon is the only previous
theory of the exchange-enhanced magnetic susceptibility
of alloys not to be included, at least in principle, in the
present formalism. That phenomenological theory did
go beyond the present paper in several respects, but gave
unphysical results which could be corrected only by
abandoning self-consistency and introducing extra pa-
rameters. However, by combining the results of papers
II and III in this series of papers with the formalism of
this paper, one can regain all of the advantages of the re-
sults of Kato and Mathon without sacrificing the advan-
tages of a self-consistent, more nearly first-principles for-
malism. Furthermore, our numerical results, to be
presented in paper IV of this series, are qualitatively su-
perior to those of Kato and Mathon.

The present theory is written in a local or Wannier
representation, which may suggest its use with a tight-
binding or interpolation-scheme Hamiltonian. But, it
can be used with values of the I';; obtained by Fourier
transforming the results of any band calculation of the
r™™'(q) for the different components of the alloy to be
studied. The intra-atomic Coulomb interactions u; for
the different components of the alloy can be determined
from self-consistent local-density theory?® using standard
band-theory calculational methods for pure elements.
More accurate values of the u; could be calculated using
self-consistent alloy band-structure techniques®* or by
correcting the values for the pure elements using an ap-
proximation such as the f-matrix approximation of
Hirooka and Shimizu.?® Thus, the present formalism in
principle can be used for a purely first-principles calcula-
tion of X(q) for any substitutionally disordered alloy in
the absence or neglect of local moment formation.

On the other hand, the values of u; and of the I';; for
one or more of the components of an alloy can be treat-
ed as variable parameters or can be determined by exper-
iments on the alloy components. For example, u; and
the T';; for pure Pd can be estimated from the band-
calculated value for I'(0), the experimental value for
X(0), and the range, A, of the magnetic polarization
clouds induced in pure Pd by isolated Fe impurities.
Calculations show that different sets of values for the T';;
consistent with the same values for I'(0) and A yield
essentially indistinguishable results for the static suscep-
tibilities, X,-j(O), for Pd-Ni alloys.25 In practice, for a
highly-exchange-enhanced alloy one must leave one pa-
rameter adjustable in order to obtain good agreement
with experiment for X(0). Usually, it is most convenient
to allow this free parameter to be the Coulomb interac-
tion u; of that alloy component for which u; is the larg-
est. That is because the value X(0) for such an alloy typ-
ically depends very strongly on that value of u;; for ex-
ample, in Pd-Ni alloy a 0.1% variation in the value of u;
on Ni atoms produces a change in X(0) as large as
20%.%

This paper does leave several major problems un-
resolved. First, the use of the RPA in this paper pre-
cludes the treatment of spin-fluctuation effects and,
hence, leads to an overestimate of X(0) at all concentra-
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tions for any alloy system. For alloy systems which pos-
sess a critical concentration for ferromagnetism, that
overestimate is serious near that concentration; for such
alloy systems, X(0) approaches infinity at all concentra-
tions as the size of the clusters treated approaches
infinity. Also, the temperature dependence of the sus-
ceptibility is not treated in this paper. Both of these
problems are resolved, at least in major part, in the third
paper of this series, in which the effects of quantum and
thermal spin fluctuations are introduced in a manner
which vyields results consistent with those' of
renormalization-group theory for the case of an isolated
impurity.

Second, the formalism of this paper does not allow
one to calculate the susceptibilities X;;(@) in the presence
of induced magnetization or spontaneous local moments.
Thus, it is directly applicable only to alloy systems, such
as Rh-Pd, in which no local moments are formed and
only to the calculation of the low-field susceptibility.
However, this problem is resolved in paper II of this
series. In that paper a new formalism is introduced for
the calculation of induced and spontaneous local mo-
ments and magnetizations, and the formalism of this pa-
per is extended so as to allow the calculation of the sus-
ceptibilities X;;(w) in the presence of known local mo-
ments.

Two remaining problems have not been treated either
in the existing literature or in this series of papers. The
first is the effect of internal thermal spin fluctuations in
magnetic clusters or spin-polarization clouds, which are
here assumed to be ferromagnetically aligned internally.
That assumption leads to an overestimate of both the
magnetization and the susceptibility at elevated tempera-
tures. The second is the effect of random interactions
between magnetic clusters or spin-polarization clouds,
which can induce spin-glass behavior. This effect has
been totally ignored in this series of papers and in all
other papers not based on the Heisenberg model. How-
ever, it is in principle amenable to treatment using an ex-
tension of the formalism presented in this series of pa-
pers.
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APPENDIX A

In this appendix we give a detailed derivation of Eq.
(1.2). Neglecting the effects associated with the s-d hy-
bridization between the d bands and conduction bands
and interatomic Coulomb and exchange interactions, the
electronic structure of an alloy can be described by the
degenerate Hubbard Hamiltonian,
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where i and j are site indices and m and m’ are band in-
dices. The transfer terms, ;™ , describe the hopping of
electrons from band m’ on s1te J, to band m on site i,
and can in general depend on the band indices m and
m’, the relative displacement and chemical occupation
of sites i and j, and their local environment. The site-
diagonal electronic energies, €,,, and the intra-atomic
Coulomb and exchange interactions, U/"™" and J™', de-
pend on the chemical occupation of site i, its local envi-
ronment and the band indices m and m’. The last term
represents the Zeeman energy resulting from a time- and
space-dependent external magnetic field applied parallel
to the z axis.

As was recognized by Caroli et al.?’ and by Dworin
and Narath,?® the Hamiltonian in Eq. (A1) is not invari-
ant under rotation in spin and coordinate space. How-
ever, the terms necessary to restore these symmetries do
not affect the physics of the problem and, hence, are
neglected here.

The expectation value of the z component of the in-
duced magnetic moment of the orbital m on site i in the
presence of the field is equal to

(i ) =81p S ) =(gup /20 N1 =0y ), (A2)
Here, {n,,,) is given by
Ry ) =1m,, +sgn{c}(S,,) , (A3)

where 7, is the time-independent average value of n,,,
in the absence of a field and where {S,,, ) vanishes in the
absence of an applied field. The enhanced (or interact-
ing) local susceptibility, X};—""'(w), represents the linear
response of the alloy when electron-electron interactions
are taken into account and is defined by

X;;!m'(w)zd (:u'im >/dem’e —iot

=2d(S,, ) /dh,,e """, (A4)

where H,.=gugh;, and where the units (gug =2
have been taken for convenience.

However, in the simplest approximation, the effects of
exchange interactions can be investigated within a gen-
eralized molecular field approximation which is
equivalent to a time-dependent Hartree-Fock (HF) (or
RPA) approximation. In this approximation, any prod-
uct of number operators n;,,.n,;, ., in the Hamiltonian
(A1) is replaced by the corresponding single-particle
time-independent operator,

(nima )nim'o'+nimo< nim'a‘> .

Making this approximation in the Hamiltonian (A1), one
obtains the HF (or RPA) expression

(g.uB /2) zHlm
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and

hiir?:him“f'z [Uimm<sim>+ 2 Jimm,<Sim’> ]e—iwl

m'#m
Ehim +22uimm‘<‘sim')e et ’ (A7)
with
mm'=(2——8mm’)Uimml'—(]'—Bmm‘)‘]imm’ (A8)
and
mm‘=8mm'Uimm’+( 1 —Smm')‘]l'mm’ * (A9)

This HF Hamiltonian describes a multiple band of elec-
trons moving in the effective potential, ¥'HF, and subject
to the spatially nonuniform effective magnetic field, A ¥,
which gives rise to an inhomogeneous magnetization.
The first two terms in this Hamiltonian give the alloy
band structure, namely, the local spectral weight func-
tions,

A mm’ ( )_

ijo

“'Im[Gy ()],
the partial densities of states,

—l mm
na 2 Aua (@)

and the total density of states,
oc@=N""'3, A"™w)=3n™ o),

l m m

etc., where N is the number of atoms in the crystal, and
hence determine the local unenhanced (band) susceptibil-
ities, I'/J™', which are determined from the Hamiltonian
(AS5) with the effective field, #£T, replaced by the applied
field, h;,,. The last term in Eq. (A7) for the effective
field, hf,,,, just gives rise to the enhancement of the local
susceptibility, X Z“'"

The expectation value of the spin, (S, ), thus can be
expressed either in terms of the applied fields,
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Inserting the expression (A10a) for {S,, ) into Eq. (A7)
for hf,',f,, substituting the resultant expression into Eq.
(A10b), and then equating Eq. (A10a) and (A10b), one
obtains the integral equation

XPm(o)=Tr )+ 3 ™ oul " X5 ™ (o).
m',m'""

(A1D)

Equation (A1l) is the starting equation, Eq. (1.2), for
the derivation of the results presented in this paper. It is
clear that all of the results of this paper carry over to
the case of a nondegenerate band upon replacing u; by
U, everywhere in the paper and that they carry over to
the case of the most general (2/ 4 1)-fold band upon re-
placing all scalar quantities in the paper by the corre-
sponding (21 +1)X (2] + 1) matrices.

APPENDIX B

In this appendix we generalize the binary alloy theory
of Sec. III to multicomponent alloys with general ODD.
First we consider the generalization of the band-
theoretic results, Eqgs. (3.23)-(3.26), and then we show
how this generalization applies to the calculation of the

susceptibility of m-component alloys with disorder in the
L.
We consider a system consisting of m kinds of atoms,
A, A,, ..., A,, distributed in some fashion over the N
sites of a regular lattice with corresponding probabilities
€1,y ...,c,. Clearly, the concentrations c, satisfy the

sum rule

cp=1. (B1)
1

ﬁMs

The site-diagonal elements of the alloy Hamiltonian, ¢,
can assume any one of the values, Eap€ay - €y s in
m

correspondence with the kind of atom occupying site i,
and the off-diagonal elements W;; can assume the values

Wi dats = W,‘j’ﬂ, depending on the chemical occupation of
s1tes i and j. Following BEB,’ we separate diagonal and
off-diagonal disorder through the introduction of projec-

tion operators x;,, a=1,2,...,m, which satisfy the re-

lations

xiaxiﬁzxiaaaﬂ (B2)
and

D Xig=1 (B3)

a=1
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for any site i in the lattice. In the m-component
configuration space defined by the x,,, the appropriately
generalized forms of the 2X2 matrices given in Egs.
(3.23)-(3.25) are given by the expressions

X; G,jx}l X; G,ij2 X Guxj
x; G,Jx] x,Gyx;, 0 ox Gyx;
Q,’jE , (B4)
X G,J i) x,-mG,»j i x,-mG,-jxjm
x,]gA1 0 0
0 x,-ng2 0
&= : : : (B5)
A
0 0 x; g "
and
Wi}l W,'}Z Wl'l’m
,4/1'3'1 WS.Z u/l‘llm
W= . (B6)
1 m2
Wi Wi Wi

With these definitions, the equations of motion for the
Green’s function, Egs. (3.26a) and (3.26b), remain valid.
Only the interpretation of the matrix elements of the su-
permatrices in Eqs. (3.26b) and (3.27) is to be changed
from 2X2 to m Xm matrices. The entire discussion fol-
lowing Eq. (3.26) now carries through in terms of m Xm
matrix elements. In particular, upon introducing the
m X m matrices

x; U 4 0 0 - 0
0 xu™ o 0
u;= , (B7)
0 0 X; u Am
y" 0 o0 0
0o ¢y o 0
y= . . (BS)
0 0 0 y i
and
A}l AIIZ e A’lm
AZ] A[ZZ A[Zm
A= : : ) (B9)
Aml AmZ Amm
I



37 THEORY OF THE MAGNETIZATION AND ... . L. ...

and noting that the sums in the equations corresponding
to Egs. (3.37) and (3.38) should extend to m rather than
to 2, one easily derives Eq. (3.42) in terms of superma-
trices of m X m matrices. In particular, in place of Eq.
(3.43) one easily obtains the following expression for the
uniform static susceptibility of the alloy,

3625
XO=N"'3 3 3 [X;(0)]4
ij a=1 B=1
=X(0)+N""'3 3 [X(0)8uy(0)
a=1 B=1
X A 5 (0X(0)] 5 (B10)
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