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We apply renormalization-group methods to study the density of Yang-Lee zeros at the edges of
the gap in Ising systems with correlated random-T, impurities. The impurity correlations are as-
sumed to fall off at large distances as ~R ~‘?~% (8> 0). Both short- and long-range spin interac-
tions decaying as ~R ~'9*° (0 < o < 2) are considered. We find that the edge singularities are de-
scribed by a new fixed point in the underlying ¢°-field model with imaginary coupling and imaginary
correlated random fields. We obtain the edge exponents to leading order in the € expansion, where
€=d_, —d with d,=8+6 for short- and d. =40 + 0 for long-range interactions which do not obey

any apparent dimensional reduction rule.

I. INTRODUCTION

It has been recognized for some time that the analytic
behavior of the magnetization M (H,T) as a function of
the magnetic field H can be related to the asymptotic dis-
tribution of the Yang-Lee zeros' (i.e., zeros of the parti-
tion function in the thermodynamic limit) in the complex
magnetic-field plane. For a purely imaginary field the
zeros occur along the field axis forming a gap for
|H | <H,, H =H_(T), within which the magnetization
is an analytic function of T and H. The singular behavior
of the density of Yang-Lee zeros at the edges of the gap,
which appear to be branch points for the magnetization,
is crucial to understanding the observable behavior of
magnetization as a function of the real field and tempera-
ture. This has been first pointed out by Kortman and
Griffiths? and studied in detail by Fisher® who termed
these branch points the Yang-Lee edge singularities.
Fisher® has also shown that the Yang-Lee edge singulari-
ty is essentially a critical point, where the behavior of the
magnetization, which is determined by the density of
zeros, can be described by a new exponent &, i.e.,

m~|H—H,|%, (1

where m =M —M (H_,,T) and & is related to the critical
exponent & of a ¢ theory with imaginary coupling,
whereas the critical behavior at T=T,, H =0 is de-
scribed by a ¢*-field model.

Recently Cardy* and Cardy and McKane® have applied
field-theoretical methods to study the distribution of
Yang-Lee zeros in a dilute Ising model. A unique feature
of random systems is the existence of tails in the distribu-
tion of Yang-Lee zeros above the critical temperature of
the random system 7.(p), where p <1 is a measure of
randomness. These tails are responsible for the nonana-
lytic behavior of the magnetization as a function of the
field at the point H =0 in the temperature range
T.(p)<T <T,(1), where T.(1) is the critical temperature
of the pure system. Such nonanalytic behavior of the
thermodynamic functions is known as the Griffiths singu-
larities.® Cardy* and Cardy and McKane® have applied
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the instanton technique for some range of parameters to
describe the form that the Griffiths singularities take in
these systems. The main point of their approach lies in
the fact that the underlying ¢* theory with imaginary
coupling and imaginary random fields, which describes
the Yang-Lee edge singularities in this case, is equivalent
to a (d —2)-dimensional normal ¢* theory with real cou-
pling, which has real instantons.’

The equivalence of a ¢*- (or ¢°-) field theory with
Gaussian random fields and a normal theory in d —2 di-
mensions has been proven to be the consequence of super-
symmetry.®® Similarly, in the perturbation expansion for
the critical exponents a dimensional reduction rule ap-
plies to all orders. In the case of non-Gaussian distribu-
tions of random fields, however, and in particular if the
random fields are spatially correlated such that their
correlations decay with distance as ~R —d=9 g0, the
breaking of the supersymmetry and the absence of any
apparent dimensional reduction rule has been demon-
strated both for Ising!® and Potts'' models.

In the present work we consider an Ising model with
correlated random-T, impurities, where the correlations
fall off at large distances. Both the cases of short- and
long-range spin interactions will be discussed. To de-
scribe the Yang-Lee edge singularities in the presence of
correlated disorder, we map the model onto a corre-
sponding ¢>-field model, which has an imaginary cou-
pling and imaginary correlated random fields. Applying
the € expansion to leading order, we find that the edge ex-
ponents describing the singular behavior of the density of
Yang-Lee zeros belong to a new universality class.

Another type of correlation occurs in the case of “line”
defects,'>~!* where the impurities are perfectly correlated
in the e€;-dimensional subspace and random in the
remaining spatial dimensions. Recently Ma, Halperin,
and Lee' have argued that such a model describes the
critical properties of strongly disordered superconductors
and the superfluid “He on Vycor glass. (In this case the
€,-dimensional subspace represents the ‘‘time” coordi-
nates for the classical analogue of the original quantum
model, and €, is eventually set to 1.) We argue that the
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problem of Yang-Lee edge singularities for this type of
correlated disorder reduces—with the appropriate di-
mensional shift—to the problem with uncorrelated disor-
der studied earlier.*?

Kaufman and Kardar!® have recently shown that the
Ginzburg criterion, governing the crossover from classi-
cal to nonclassical critical behavior, indicates that the
critical region is expanded in the presence of correlated
or uncorrelated random fields. A similar analysis applied
to the ¢*> model suggests that the nonclassical regime in
the Yang-Lee edge-singularity problem is broadened by
the imaginary correlated random fields.

It should be noted that in random-field systems the €
expansion, which assumes the dimensionality d close to
the upper critical dimensionality d,, breaks down before
d reaches the lower critical dimensionality d; (e.g., d;=2
for the Ising model with Gaussian random fields). A pos-
sible explanation'>!¢ is that in addition to the random
fluctuations the usual thermal fluctuations become im-
portant when d <4. Thermal fluctuations, which are
neglected in the renormalization group and supersym-
metry formalisms, may thus invalidate conclusions de-
rived by these methods. Specifically, the dimensional
reduction by 2 breaks down in Ising systems with un-
correlated random fields in d =3. Another reason'® for
the failure of the dimensional reduction rule may be the
existence of Griffiths singularities® in random-field Ising
systems. !’

In Sec. II we derive the model appropriate to the
Yang-Lee edge-singularity problem, starting from the Is-

ing model with correlated random-T,. impurities. The
|

H= [ di |3 [HV8 ) +iwd)+i(H, —Hb,]+

a
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renormalization-group analysis for the case of short-
range interactions is given in Sec. III, while the similar
steps for the case of systems with predominantly long-
range interactions are presented in Sec. IV. Finally, in
Sec. V we summarize the results and discuss the case of
extended defects.

II. THE MODEL

We consider an Ising spin system with random-7, im-
purities correlated over large distances such that the

correlation behaves as
Alx —y)~|x—y| 49 650. )

The model Hamiltonan is written in replica space
a,B=1,...,nin the form

H= [ do% 3 {1[reS%+(VS, ]+ tuSk —iHS,|

—1 [d% [d%Ax—y) 3 S2xSEp) . B)
a,B

To study the Yang-Lee singularities in this model we
have added a purely imaginary field /H, and we fix the pa-
rameter rqy < T — T, at a positive value.

The quadratic term in the expression (3) is eliminated
by introducing a shifted field ¢, via

S,=ilre/3u)'" 2+ 6, . 4)

After this transformation the Hamiltonian (3) becomes

Fro/u) fddyA(x —) I b (x)by)+ |, (5)
a.f

where H, =2u (ry/3u)*’? and w =(rqu /3)'/2. We have neglected all constant terms as well as the terms which vanish
in the n —0 limit. The ellipsis indicate the higher-order terms such as 3 ,¢%(x) and the terms representing more com-
plicated effects of disorder, e.g., Eaﬁcbi(x)qﬁf;(y) and Ea_/jcﬁa(x)d)é(y). These terms can be neglected under the condi-
tions which are discussed in Ref. 5.

The symmetry-breaking term 3, sé,(x)dg(p) in (5) can be thought of as arising from an imaginary random field in
the unreplicated Hamiltonian with long-range correlations of the type (2), apart from a constant factor 2r,/3u. Thus

the effective Hamiltonian written out in reciprocal space, before averaging over the random fields, is of the form

dd
= [ 29
f m)?

Here £(q) represents a random field with the distribution

[E(@E(—g)ly=hig 7, 7

the symbol [ ], denoting a random average.

The parameter r has been reinstated, since it will be
generated by the renormalization-group transformations,
as discussed below.

III. RENORMALIZATION-GROUP ANALYSIS

In this section we apply the renormalization-group
transformations to the Hamiltonian (6). We will adopt a

d
Lr +cg>)p(@)dl —g)+iw [ —(‘;—%gb(q)(b(p)d)(—q —p)+E@B(—g) | +i(H, —H)$(0) . ®)
T

[

renormalization scheme analogous to the one used earlier
for the g-state Potts model,'! i.e., we will impose the con-
dition 8 H'=06H =0, where H =H_, —H, and allow r in
(6) to vary. An alternative procedure, which leads to the
same results, is to allow 8H to vary; however, a shift in
the field #(q) is then needed at each step to keep
r'=r=0.

The critical exponent & which characterizes the Yang-
Lee edge singularity in pure systems has been calculated
within the € expansion about the upper critical dimen-
sionality d, =6 by Fisher® for the case of short-range in-
teractions. Theumann and Gusm@o'® have similarly con-
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sidered the case of long-range interactions decaying with
distance as ~R ~Y*9) (d_=30 in this case). It has been
argued’ that the exponent & can be expressed in terms of
the critical exponents § or 7 via the hyperscaling relation

d—2+7
, (8)
d+2—1

where 8 and 7 are the critical exponents for the model (6)
without random fields.

In the presence of random fields with correlations of
the type (7) we find that the upper critical dimensionality,
which corresponds to the combination w?h 3 as an expan-
sion parameter, is d, =8+6. Thus for small e=8+60—d
and taking only the most divergent diagrams (see Fig. 1),
we derive the recursion relations for the relevant parame-
ters in differential form:

dr

6=1/6=

=2 nr—K 324 why) (14773, 9)
dhj , , }
— == N+0)hE+K 32(who)?h} (10)
fid—‘;’:g(é—d—3n)w+1<,,3322(wh0)2w , (1
where
4+6

n=K,32 why)?—— (12)

8+0

and K; '=29"1742I'(d /2).
Combining (10) and (11) we have
d (wh)?

i =(2—4n)(why)* +K;3%26(why)* , (13)

whence by using (12) we obtain the fixed-point value

12
846

72+59

- G

{a)

O

(c)

FIG. 1. One-loop diagrams contributing to the recursion re-
lation for the parameters (a) r, (b) w, and (c) k3. A heavy dot on
an internal line carrying the momentum k represents the factor
h3k 8.

wh)—ti{ K

Inserting this back into Eq. (12) we find

4406

n= 2272—{—50 . (15)
Notice that the expression (15) for §=0 reduces to
n=—=¢/9, i.e., the value of the critical exponent 7 ob-
tained for the pure model’ but with a replacement of
€=6—d by €e=8—d. This dimensional reduction by 2 is
known to be due to the supersymmetry of the field-
theoretic model with Gaussian random fields.**> The
presence of long-range correlations, however, breaks the
supersymmetry. Consequently, there is no apparent rela-
tion between the critical exponents of a system with
correlated random fields on the one hand, and the pure
system in d —2—6 dimensions on the other. However,
the effective spatial dimensionality which enters the

hyperscaling relations is reduced, i.e.,

d—d'=d+A, , (16)

where A, <0 is the scaling exponent of the field w?
which enters the scaling part of the free energy in a
singular manner'' and becomes irrelevant in dimensions
d above 6. Going back to Eq. (11), where wh, is now
held fixed at the fixed-point value (14), we find
w () =w (0)exp({A,l) with

Ay=—(240)—¢ (17)

72+560
Notice that the hyperscaling relation (8) is modified by
the presence of random fields in the sense that the dimen-
sionality d is replaced by d’ defined by (16). Thus, using

Egs. (8), (15), (16), and (17) we find the critical exponent
67

~_1 3., 4460

0= T4 ys0 18)

which, as expected, reduces to the value found by Fisher?
in d —2 dimensions when the correlations of the random
fields vanish (6=0).

There is an additional hyperscaling relation between
the critical exponents of a scalar ¢° theory, namely,

1/v="1d—247), (19)

which appears to be the consequence of the structure of
Feynman diagrams contributing to the two-point vertex
function with ¢? insertions and the three-point vertex
function, as discussed by Theumann and Gusmao.'® Re-
placing d by d'=d + A, in (19) and using the expressions

(15) and (17), we obtain
10+6
1/v=2— 4872+59. (20)

On the other hand, by linearizing the recursion relation
(9) we find

e 10+6

1/v=2+3%2%K,[(wh, 5.0

2D

and upon inserting the fixed-point value (wh)* from (14)
we indeed obtain the same expression as (20). This
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guarantees that the modified relation (19) in the presence
of correlated random fields holds to linear order in the €
expansion.

In the Yang-Lee edge-singularity problem one can
define another exponent v,, which measures the diver-
gence of the correlation length & as the magnetic field ap-
proaches its critical value H, at fixed temperature, i.e.,

E~|H—-H,| ™. 2)
According to Fisher,’ the following hyperscaling relation
holds:

1/v,=Hd+2—7) . (23)

Here again one has to replace d by d +A,. Thus, with
the help of (15) and (17) we have
1 . 1_16+6

Ve= 4t 8572450 24
which for =0 obeys the dimensional reduction rule
d —d —2. It should be noted that, due to the relation
(19) [as well as its modified counterpart 1/v
=(d +1,—2+47)/2] and the scaling arguments,’ the
Yang-Lee exponent & can be expressed as

G=v./v. (25)

IV. THE CASE OF LONG-RANGE INTERACTIONS

We now extend the study of the Yang-Lee edge singu-
larities in random systems to the case of long-range in-
teractions between the spins which decay with distance as
~R~4+9 5 <2. Therefore, the quadratic term in the
Hamiltonian (6) is rewritten as

g — [d% 1

o= | (2m) 2.
The effects of long-range interactions on the phase
transitions in various ¢3-field models without random
fields have been discussed earlier in the literature.'8=2° It
has been recognized that if, for o <2, the correlation
function exponent 7=mgy evaluated at the fixed point
controlled by the short-range interactions is negative (i.e.,
1sr < 0), then the term ag? in (26) controls the expansion
for the critical exponents. In particular, the value for 75
at the long-range fixed point retains its classical value
Nr=2—0, and the expansion becomes singular in the
limit 0—2.2' In the presence of random fields and
short-range interactions, as described in Sec. III, the crit-
ical behavior is controlled by the fixed point (14) on the
(why) axis. The value of the critical exponent 7gg at this
fixed point is negative [cf. Eq. (15)]. Thus we expect that
in some region of parameter space the critical behavior
will be dominated by the long-range part of the interac-
tion, as discussed in greater detail at the end of this sec-
tion. To describe the critical behavior in this case, we ap-
ply the renormalization-group analysis to the Hamiltoni-
an (6) in which the quadratic term has been replaced by
(26). By fixing ¢ =0 and a =1 we see that to leading or-
der y g =2—o0. Thus, assuming a random-field distribu-
tion of the type (7), we find the upper critical dimen-

+cq’+aq?)d(g)d(—q) . (26)
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sionality d.=40+6, as opposed to d,=8+6 in the
short-range case. Considering the one-loop contribution
to the pair-correlation function we have formally

€ o 2046
0—2 2 304+6+2"°

Nr=2—0—32%wh,)* 27
where € =40 +60—d and (wh,)* at the long-range fixed
point is of the order €, as shown below. Thus there are
no corrections to the classical value 7 g =2—o0 to linear
order in €’. In the limit ¢ — 2, the expression (27) reduces
to the result found in the short-range case [cf. Eq. (12)]
provided that €' /(0 —2)— —1.%!
The recursion relations to linear order in €’ are

dr

El—zar—Kd3222(wh0)2(1+r)_3 , (28)
dh}

—(170-=(a+9)h(2)+Kd322(wh0)2h3 , (29)
W (30 —dw + K324 who) w . (30)
dl ?

From (29) and (30) we find the fixed-point value for the
relevant expansion parameter (wh,)?, i.e.,
(why)* =il(e'/26)2 . 31

3

Linearizing Eq. (28) near this fixed point we obtain
l/v=0—3€ . (32)

In analogy to the case of short-range interactions dis-
cussed in Sec. III, one can show that the exponent v may
be expressed via the modified hyperscaling relation
1/v=(d'—2+m)/2. Here d'=d +1, is the effective
dimensionality, where according to (30) and (31) we find

Ap=—(0+0)+Le . (33)
This can also be written as
Ap=—(90 +120+d)/13<0 .

It should be stressed that for vanishing 6 (i.e., Gaussian
random fields) the dimensional reduction d —d +1,, in
the case of long-range interactions does not imply a sim-
ple dimensional reduction rule for the critical exponents,
in contrast to the case of short-range interactions [cf. Eq.
(17)]. A similar feature has been found in ¢*field models
with long-range interactions and uncorrelated random
fields.?

Using the expression (33) to replace d by d 4+ A, in the
hyperscaling relations (8) and (23), we find the critical ex-
ponents & and v, characterizing the behavior of the mag-
netization and the correlation length, respectively:

6=3(1-3%€/0), (34)
vczi(l—%%e'/a) . (35)

It is surprising that—to given order —the results for the
critical exponents do not depend explicitly on the range
of impurity correlations. It is worthwhile to compare the
results of this section with the corresponding results ob-
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tained for pure systems with long-range interactions.'® In
particular, based on the observation that the result
NLr=2—0 may be correct to all orders in perturbation
expansion and using the hyperscaling relations (8) and

(19), Theumann and Gusm#o'® concluded that the ex-
pressions for the other critical exponents, i.e.,
v=(d —0)/2 and 8 =(d —0)/(d +0), may also be ex-
act results. In the presence of random fields, however,
though the relation 7 g=2—o0 may still be exact (we
have proven it to leading order only), the hyperscaling re-
lations are modified by lowering the dimensionality by an
approximate amount, Eq. (33). Consequently, the results
for the critical exponents (32), (34), and (35) cannot be
matched to the corresponding expressions in the pure
case.'® This can again be regarded as a manifestation of
the breaking of supersymmetry by the long-range interac-
tions.

In deriving the above results we have assumed that the
short-range term cg? in Eq. (26) can be ignored compared
to the long-term part ag®. The validity of the long-range
expansion for o <2 can be justified by retaining both
terms in the recursion relations.'®!® Then at the fixed
point one has

(who)* =iL[€'(c*+a*)/26]'2 . (36)

The right-hand side reduces to the fixed-point value (31)
if one sets ¢* =0 and a * =1, as chosen above. Moreover,
the irrelevance of the parameter c follows from its recur-
sion relation, namely,

i:l—j-=(a—2)c+3222(who)2<c +a)?. (37
Solving this equation near the fixed point (36) we derive
the scaling exponent which governs ¢ under the renor-
malization

he=o—2—2%¢ . (38)

The negativity of A, for o <2 confirms the validity of the
long-range expansion employed in the above analysis.

V. DISCUSSION AND CONCLUSIONS

We have considered the problem of Yang-Lee edge
singularities in Ising systems with long-range correlated
disorder of the random-T, type. The correlations are as-
sumed to decay at large distances as ~R ~¢~%, 6>0.
Both short- and long-range spin interactions have been
considered. By mapping the problem onto a, scalar ¢°-
field model with imaginary coupling and imaginary corre-
lated random fields, we have calculated the critical ex-
ponents to leading order in the € expansion about the cor-
responding upper critical dimensionality. We find that in
both cases the critical behavior at the Yang-Lee edge in
the presence of correlated disorder forms a new univer-
sality class. In particular, in the case of short-range in-
teractions the critical exponents characterizing the be-
havior of the magnetization and the correlation length at
the Yang-Lee edge explicitly depend on the range of im-
purity correlations. For a vanishingly small correlation
range, however, our results for the critical exponents can
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be mapped onto the ones obtained earlier for pure sys-
tems® by a simple dimensional reduction d —d —2. This
feature of the critical behavior under Gaussian random
fields has been well understood recently in terms of the
supersymmetry of the underlying field theory.*>%° For
nonzero 6, as well as in the case of long-range spin in-

teractions, the effective dimensionality of the system is
still reduced due to random fields; however, our results

for the critical exponents exhibit no apparent dimen-
sionality reduction rule. This can be understood as a
consequence of the breaking of supersymmetry due to the
momentum dependent correlations and/or long-range in-
teractions. Similar results have been reported earlier for
the critical behavior under correlated random fields in Is-
ing'® and Potts'!' models, and also in the case of long-
range interactions in n-vector models.??

The existence of supersymmetry in the case of uncorre-
lated disorder and short-range interactions has enabled
the study of Griffiths singularities by means of the instan-
ton technique.*® For disordered systems with long-range
correlations and/or long-range spin interactions, howev-
er, our perturbation expansion to leading order suggests
that the supersymmetry is broken. Thus the possibility of
mapping the Yang-Lee edge-singularity problem onto a
lower-dimensional normal ¢° theory—which has
instantons—is ruled out. We conclude that alternative
nonperturbative methods should be considered in order
to determine the actual form of the Griffiths singularities
in the present model.

The situation is, however, different in the case of ex-
tended defects'>!® and some disordered quantum sys-
tems.'* In this case the random-T, type impurities are
perfectly correlated in a €,-dimensional subspace of a
(d +€,)-dimensional lattice and uncorrelated in the
remaining d dimensions. In the spirit of the results
presented in Sec. II, the same kind of correlations charac-
terize the imaginary random fields in the corresponding
scalar ¢> model which describes the Yang-Lee edge
singularity in these systems. A straightforward analysis,
analogous to Sec. III, leads to the conclusion that the
edge singularity in this case belongs to the same univer-
sality class as that of a nonrandom classical system in
(d +€,+4A,) dimensions, where for A, we find
Xw =—(2+€;)+0(&?), é=8—d. Therefore, the univer-
sality class is specified by a (d —2)-dimensional classical
system or, equivalently, a (d —e; —2)-dimensional quan-
tum one.”* Thus the edge singularity is governed by the
exponents obtained in Sec. IIT with 6=0 or, as already
discussed, by the Yang-Lee exponents derived by Fisher?
for pure classical systems with d replaced by d —2. This
implies that, in contrast to the case of isotropic impurity
correlations considered in Sec. III (85£0), the supersym-
metry is preserved in the case of extended defects. Con-
sequently, the form of Griffiths singularities found by
Cardy and McKane*® also applies to this class of disor-
dered systems. It should be mentioned that in quantum
systems the role of temperature is played by some other
quantity'* which drives the transition at zero tempera-
ture.

Finally, it should be noted that throughout this paper
we have restricted our discussion to the random-T, Ising
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systems. The results obtained for the Yang-Lee edge
singularities are, however, valid for a larger class of sys-
tems; namely, the model (6) also applies to spin systems
of continuous symmetry with a finite number of spin
components n,” provided that the impurities do not affect
the invariance of the Hamiltonian under spin rotations.
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