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We have studied numerically the soliton scattering from one or two impurities in one-dimensional
atomic lattices with nonlinear first-neighbor interactions of both quartic and Morse type. Our re-
sults for small-amplitude incident solitons are interpreted with some analytical formulas obtained
from linear theories, while comparison with linear wave-packet results are made for both low- and
high-amplitude incident solitons. Finally, interference effects are studied.

I. INTRODUCTION

During the last 30 years, there has been a great deal of
interest among solid-state physicists in the problem of
wave propagation in harmonic crystals with impurities.
More recently, scientists were oriented to the study of
nonlinearity in atomic systems and especially to soliton
propagation in homogeneous anharmonic chains. This
paper is the first step in our effort to understand the com-
bined effects of disorder and nonlinearity, and particular-
ly, to clarify whether or not nonlinearity modifies qualita-
tively the effects of disorder on transport properties.
Here we are studying soliton scattering on one or two im-
purities in one-dimensional atomic lattices with nonlinear
first-neighbor interactions.

Another complementary way of studying the effects of
nonlinearity in disordered systems is by using the disor-
dered tight-binding Hamiltonian with an extra nonlinear
term. The scattering of a plane wave from the disordered
part with nonlinearity is studied.

Nonlinearity can approximately mimic some direct or
phonon-mediated electron-electron interactions. Thus
these studies may be very useful in expanding our under-
standing of disorder and interactions in solids.

The classical example of such a system is the Fermi-
Pasta-Ulam (FPU) chain' where particles are coupled
with harmonic plus cubic (or quartic) nonlinear first-
neighbor interactions. The continuum limit of this mod-
el, for different orders, is either a Boussinesq type” or a
nonlinear Schrodinger (NLS) equation® which admit non-
topological soliton solutions, e.g., collective, localized in
space excitations which for the FPU chains are simple
compressions or rarefactions with the convenient soliton
shape. These excitations propagate in the pure system
without losing their integrity or changing their velocity,
even after several interactions with other solitons.

Propagation of a kink (pulse) soliton in nonlinear lat-
tices with an impurity has been studied not only theoreti-
cally and numerically, but also experimentally using non-
linear electric transmission lines.*> This problem is relat-
ed to stability of the soliton in disordered lattices and also
to thermal conductivity in disordered anharmonic sys-
tems.®” However, these results are limited either to the
idealized Toda lattice,® or if extended to more common
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anharmonic chains,”!° are valid only for small-amplitude

pulse-type solitons. In all these cases, one uses the in-
verse scattering method to treat the homogeneous part of
the chain and assumes a linear behavior during the
soliton-impurity scattering to correct the results using
perturbation techniques. The nonlinearity here, while
necessary to ensure the balance of the dispersion and the
stability of the soliton, is not enough to change the usual
scattering properties of the wave packets.

In our numerical study we examine the complete range
of soliton energies including both small- and large-
amplitude pulse solitons using as initial conditions for the
last case numerical solutions for narrow solitons obtained
recently.!! In addition we study the very important class
of envelope solitons, and we relate our results for small
energy excitations with some formulas from the linear
theory.!> Finally, we discuss some interference effects
from two impurity scatterings for both pulse and en-
velope soliton excitations.

Our model and a brief review of the lattice soliton solu-
tions are presented in Sec. II. In Sec. III we discuss our
results, and finally in Sec. IV we present our conclusions.

II. FORMALISM AND NUMERICAL PROCEDURES

We consider a monoatomic chain of first-neighbor in-
teracting particles with the Hamiltonian

szl%Mnyﬁ'*'V(yn_yn—l)] ’ (21)
n

where y, (t) denotes the longitudinal displacement of the
nth atom from its equilibrium position y, =dy, /dt and
M, =yM (y=£1 only for n =n,, where n is the impurity
site). The interaction potential V(r,), where
r, =Y, —y, _1 is the bond strain, can be quite general, but
in this paper we limit our attention to the two following
forms:

(i) cubic and quartic: V(r)=Gr?/2+ Ar’/3+Br*/4,
(2.2)
(2.3)

(ii) Morse: V(r)=P(e ¥ —1)%.

In both cases above, the parameters in the interaction po-
tentials can be determined to fit each other for small r
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(r << D, where D is the lattice spacing). The equation of
motion for y, can be written as

Mnj;n:—Vl(yn”“yn—l)'{"V'(yn-fl"“yn) s (2.4)
where V'(r)=dV/dr. For simplicity, we take
M=D=t=1.

One can obtain approximate solutions of Eq. (2.4) in
the continuum limit, using well-known techniques.>* In
this limit, one can expand the Morse potential (and any
other empirical pair potential) to obtain the polynomial
form of Eq. (2.2) and retain just the first and/or the
second nonlinear term. For the exact Morse form, no an-
alytic solutions exist. Then, for slowly varying solitary
waves of the form y(x —uvt), where v is the group velocity
(v= const. ), one can obtain either a Boussinesq type or a
NLS equation with different soliton solutions.

Thus looking for kink soliton solutions (pulse for the
relative displacement) and using an improved quasicon-
tinuum approximation,'> we transform Eq. (2.4) with the
potential (2.2) for the homogeneous system to a general-
ized Boussinesq (G —Bq) equation’? with the velocity-
dependent dispersion coefficient:

Uy —cht —pu?)—qu’), —hu, . =0, (2.5
where ¢c3=GD?*/M, h =GD*?*/(12Mc})
u=y,, p=AD*/M, q=BD*/M . (2.6)

The analytical solutions of Eq. (2.5) are summarized in
Appendix A. Here we discuss their general properties.
- For Blor ¢q) <O (inverted quartic potential), there are no
solitary excitations. For B >0 and 440, there are both
compressive and rarefactive kinks, but in the continuum
limit only the one that has the same sign as A (or p) is
stable. For B>0 and 4 =0 (quartic potential) both
compressive and rarefactive kinks exist and are stable.
Since the empirical pair potentials (e.g., Morse, etc.) have
A <0 when expanded near the equilibrium position, the
kinks are compressive and feel the repulsive part of the
potential. (For a detailed account of these properties for
kink solitons see Ref. 14.) In our case, since & >0, we al-
ways have supersonic kink solitons with v > ¢, where the
velocity v is the only free parameter of the solution. Even
in this improved quasicontinuum approximation, the
known analytic solutions (see Appendix A) break down
when the width of the excitations is comparable to the
lattice spacing D (e.g., when v >>c,). However, for the
monoatomic chain, we have found numerically stable
narrow kinks which propagate without radiation even
with very high velocities where the amplitude of the rare-
faction (or compression) becomes comparable to the lat-
tice spacing (7., ~D).!! In the other limit, when v —c¢,,
the amplitude of the wave tends to zero while the width
tends to infinity so that the wave disappears. However,
while the nonlinear terms in the potential are very small
and the wave behaves like linear excitation, they are
necessary to balance dispersion and ensure the long life-
time of the soliton.

Looking for oscillating localized solutions of the form
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yalt)=3 €;(n,1)

J

=Eej2ij(n,t)ei'"9+c.c. , 2.7)
J m

with 6 =knD —wt and where € is a small scaling parame-
ter, we can treat the phase 6(n,t) exactly and only use
the continuum approximation for the envelope function
F(x,t). For the quartic potential we have seen’ that only
the terms for j=1 and m =1 contribute and the relation
(2.7) reduces to the simplest formula

V. (t)=€F(n,t)e®+c.c. (2.8)

The amplitude F|,(n,¢) in the continuum limit [retaining
terms up to the order O(e®)] satisfies the following NLS
equation:

iF,+31Fg+Ko | F|*F=0, (2.9)

where F(x,t)=F;(n,t) is a complex function with a
smoothly oscillating part §=x —v,¢ and 7=pt, with
v, =dw/dk, p=d*»w/dk?, and the frequency w is given
as a function of the wave vector k by the linear dispersion
relation:

w2=4~AG;sin(kD /2) . (2.10)
Finally, k, =Q /u, where
Q:~2w—4%sin4(kD/2). 2.11)

When ;> 0, Eq. (2.9) allows a pulse-type envelope soli-
ton solution which with formula (2.8) defines the oscillat-
ing soliton form for the discrete lattice. When «, <0,
Eq. (2.9) allows dark-type excitons.? For the cubic po-
tential or the cubic quartic, however, in deriving the cor-
responding NLS equation one must keep consistently
higher orders in € and higher harmonics, even though a
few of them are sufficient.’

The analytic solution of Eq. (2.9) combined with Eq.
(2.8) for the envelope-type soliton is given in Appendix B.
Here we summarize its general properties. While the car-
rier wave of the envelope soliton follows to the order €
(the same dispersion relation with the plane wave in the
harmonic limit) the excitation remains localized (solitary)
due to the pulse-type modulating part which balances the
dispersive tendency and gives the soliton a long lifetime.
The soliton frequency Q=w —2av, +2u(a—n) and wave
vector K =k —2a include only small nonlinear correc-
tions compared to the harmonic values w and k, because
a and 7 are small to order O(e) parameters. Thus the
soliton velocity v, follows to the order € the linear group
velocity v, and remains always subsonic (v, <cq). The
quantities o and 7 together with the wave vector k are
the free parameters of the solution but only k exhibits a
large range of values, i.e., the whole of the first Brillouin
zone. The amplitude A4,, and the width L, depend on
the parameter 7 so that when 4,, —0, L, — o, and the
envelope soliton disappears. However, in order to
preserve the balance between dispersion and nonlinearity,
one must consider consistently the parameters when
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7 >>0/(€); in this case analytic solutions break down, the
excitation becomes very narrow, and propagates with
permanent radiation losing its soliton properties.

In a series of previous publications®> !4 it has been
confirmed that our homogeneous system supports stable
propagation of these soliton solutions. Here, we consider
the same chain but with a mass impurity to occupy the
site n,. Due to the soliton-impurity interaction, the in-
cident wave is decomposed to a transmitted plus a
reflected part, while in some cases the impurity may be
excited and a localized or a resonant mode may appear.
Even after this decomposition of the incident soliton, we
can recognize one or more solitons of the same type ap-
pearing asymptotically in the transmitted and/or in the
reflected part accompanied by some small amplitude os-
cillations. In Fig. 1, we show qualitatively such a scatter-
ing process for both a pulse and an envelope soliton prop-
agating in a chain with quartic interactions. The impuri-
ty My=0.1M is sited in cell 128. Due to both the small
mass size of the impurity and the small amplitude of the
incident soliton, the transmitted wave is soon adapted to
a new single soliton while the reflected waves are decom-
posed to ripples.

Except for some particular cases,®™'°
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FIG. 1. Soliton impurity scattering in a quartic potential
chain (G=B=1) with y=0.1 for different times 7. (a) Pulse
incident soliton (for relative displacement representation). (b)
Envelope incident soliton (for absolute displacement representa-
tion).
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analytical theory to treat the nonlinear wave scattering
on a single impurity, thus we study here this problem nu-
merically. With a fourth-order Runge-Kutta method, we
integrate the set of Eq. (2.4), including one equation for
the impurity mass. Our simulations begin with initial
conditions coinciding with one of the analytical or nu-
merical solutions described previously. In our model,
which is a conservative one, in order to check the accura-
cy of the integration we follow the numerical error for
the total energy which in all cases is less than 1072%.

On the other hand, much analytical and numerical
work has been done on one-dimensional (1D) disordered
systems.'>!% It is well known that all the eigenstates in
1D disordered systems are exponentially localized. The
rate of the exponential decay defines the localization
length'? which is proportional to W ~2, where W is the
strength of the disorder. The role of the nonlinearity on
disordered systems has only recently begun to be stud-
ied.'® It will be of considerable interest to see how the ex-
ponentially localized states of the disordered systems will
behave in the presence of the nonlinearity. Our way of
calculating the effects of the nonlinearity in disordered
systems can be viewed as complementary to that of Souil-
lard.'® Here we have a nonlinear medium, where the soli-
ton is a solution, and see how this soliton behaves in the
presence of impurities. Souillard has studied a linear
tight-binding model with no disorder in which an incom-
ing segment exhibiting both disorder and nonlinearity is
embedded; the question is how a plane wave propagates
through this segment.

III. RESULTS AND DISCUSSION

In this section we compute the soliton transmission
coefficient which may be defined in three different ways:
(i) the total transmitted energy including the energy of all
the transmitted solitons plus the radiative part over the
soliton incident energy T =E,/E;; (ii) the total soliton
transmitted energy which includes only the energy of all
the transmitted solitons which may be more than one
over the incident soliton energy T, =E_ /E;; (iii) the ener-
gy of the first transmitted soliton over the incident soliton
energy T,=E,/E;. We can define the reflection
coefficient in a similar way.

A. Weak nonlinear case (low-energy solitons)

In this case we study small-amplitude kink (or pulse)
soliton as well as envelope solitons. For these waves the
nonlinear terms in Eq. (2.2) are small compared to the
harmonic term. Hence, the process of scattering can be
treated in three steps: (a) traveling of the incoming soli-
ton in the homogeneous nonlinear lattice before scatter-
ing, (b) linear scattering of the solitary wave, and (c) trav-
eling of the transmitted and reflected wave in the homo-
geneous nonlinear lattice after scattering. The linear
scattering of the soliton shape wave packet can be solved
exactly by Fourier transforming. In this context, the
transmission coefficient for linear wave packets (LWP) is
given by
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[7 dk |atk)|?|t(k)|*sinXkD /2)

) (3.1)

WP T dk |atk) | 3sin¥(kD /2)
where
alk)= S y,(0)e*P (3.2)

n=-—o

is the Fourier component of the incident soliton and 7(k)
is the transmission amplitude of the linear plane wave
(LPW) with wave vector k. To obtain Eq. (3.1), we have
assumed that outgoing Fourier components of the in-
cident soliton can be neglected. This is the case for low-
energy solitons where V, ~c and w(k)~ck. Using an
analogy between the tight-binding electron scattering
problem and the lattice wave scattering problem,'? we
can easily obtain the transmission amplitude of a linear
plane wave scattered by one mass impurity.

MO =7’M >
(3.3)
Hk )= 2i sinkD
"~ 2isinkD 4+2(y —1)(1—coskD)
and the transmission coefficient:
Topw(k)= | (k)| 2= ! . (3.4)

14+ (y —1)*tan*(kD /2)

In the case of weak scattering, the transmitted soliton
almost takes all the transmitted energy. So we can as-
sume T'=T, =T wp. We will also make a further ap-
proximation Tjwp=Tpw(K;), where K, is one ap-
propriately defined soliton wave vector. For kink soli-
tons in the continuum limit, one can use, as a first-order
approximation, the K, =1/L given in Appendix A for the
cubic (first nonlinear approximation of the Morse) and
quartic potential cases. While for envelope solitons, we
use as k the K, =1/L,=k —2a (see Appendix B). As we
can see in the following discussion, this approximation
gives a very good account for the weak-scattering behav-
ior. For convenience, we introduce the new coefficient

SETL-lz(y—nztanszD /2, 3.5)
where for small K, (continuum limit) S=(y

—1)XK,D)*/4. In Fig. 2, we plot S as a function of
(y —1)? to show the mass dependence of the transmission
coefficient for three different soliton energies. These re-
sults prove the linear scattering behavior for small ener-
gies and the small mass ratio predicted by the analytic
formula (3.5). When the soliton energy is higher, the de-
viation becomes larger (especially for high mass ratio).

In order to present the dependence of S on incident sol-
iton energy, one can use again the formula (3.5) express-
ing K through the incident energy E;. This can be done
in the continuum limit by using the energy formulas of
Appendix A. Assuming that v>~c32 and K, << 1, we ob-
tain S ~E}?”* for the cubic (first nonlinear approximation
of the Morse) which is consistent with the results of
Yoshida and Sakuma.’

For the quartic potential, we obtain S ~E?. In Fig. 3
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we show this dependence of S on incident soliton energy
for the quartic and Morse potential chain.

The E? dependence for quartic and E2/3 for Morse po-
tential is followed at the low-energy regime. Again, when
impurity mass and energy get larger, deviations become
larger. The deviations come from two sources. One
source is the use of a single value K instead of full
Fourier transform. When impurity mass gets larger,
T(K,) falls fast for larger values of K ; therefore, contri-
butions from K <K, may be important. For a narrow
soliton, Ak is large, therefore, a single wave vector plane
wave is not a good approximation. Another source is
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FIG. 2. S=1/T,—1 vs (y—1)* dependence for three
different incident energies. (a) Morse potential chain;
(@a=7,p=0.010204), v=1.001,0:E;=0.141x10"%v=1.020,
AE=0.127x10"30=1.096, +:E;=0.151x10"2. (b) Quartic
potential chain (G=B=1),v=1.001, 0:E;=0.518x10"";v
=1.020, A:E;=0.243;0=1.159, +:E;=1.216. Dashed lines
indicate the equivalent linear-plane-wave results for a con-
venient choice of the k parameter.
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nonlinear effects—for narrow (high-energy) solitons, the
nonlinearity becomes important. Hence, the linear ap-
proximation of the scattering process breaks down. This
is discussed in detail in Sec. III B.

In Fig. 4 we plot the dependence of S on the incident
soliton energy and the mass ratio for the envelope soliton,
where only small-amplitude initial conditions are avail-
able. Here the linear wave-packet approximation de-
scribes even better the envelope soliton scattering from
an impurity.

In Fig. 5 we plot the transmission coefficient T for the
total energy versus In(y ) for three envelope initial condi-
tions with a different wave vector k and a kink initial
condition. In order to have comparable results, we take
care to have the same incident energy for each soliton.
From this plot it becomes clear that kink soliton is more
robust against the impurity scattering. On the other
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FIG. 3. Dependence of S=1/T—1 on the incident soliton
energy E; for three different impurity masses. (a) Morse poten-

tial (a =7,p =0.010204). (b) Quartic potential (G=B=1).
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FIG. 4. (a) Total transmission coefficient 7" vs incident soli-
ton energy E; for envelope soliton. [:k =0.8,y=2; O:k =2,
¥ =2. Solid lines indicate constant T of the linear-plane-wave
transmission coefficient with wave vector k=K,. (b)
S=1/T—1 versus (y —1)* for envelope solitons in quartic po-
tential. Dashed line indicates the equivalent linear-plane-wave
results for a convenient choice of parameters.
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FIG. 5. Comparison of the transmission coefficient vs the im-
purity mass for one kink and three envelope incident solitons
with different carrier wave vectors but comparable energies
(E;~0.104) in a quartic potential chain (G=B =1).
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hand, for envelope solitons, as the number of oscillations
in the carrier wave increases (when k increases), the more
the transmitted soliton loses energy. For small wave vec-
tor solitons (including kink), almost all the soliton energy
is transmitted when y < 1.

B. Effects of strong nonlinearity

For a linear plane wave, the wave vector k is indepen-
dent of the amplitude. Therefore, the transmission
coefficient T wp is independent of the amplitude or the
energy. On the other hand, for kink soliton, the ampli-
tude, and consequently the energy E, are functions of K.
Thus T, depends on the amplitude A4,, explicitly. When
A,, becomes large, a full treatment of nonlinear effects is
very difficult. Even Fourier transforming may have prob-
lems for narrow solitons due to discreteness effects.
However, we treat that numerically by simulating linear
scattering with initial wave packets having exactly the
same shape with the corresponding soliton. Thus com-
puting the transmission coefficient for the nonlinear chain
on one hand, and for the equivalent harmonic chain on
the other, we extract the effect of the nonlinearity. The
results are shown in Fig. 6 for ¥y =2 and ¥ =10 for the
Morse potential. We see that, for small energy,
T, =T wp is a good approximation, but solitons transmit
much more in the higher energy regime. In other words,
solitons are more robust. However, if we consider only
the first soliton transmission coefficient T, the increased
value of the nonlinear curve for high incident energies is
less spectacular. This means that the high-energy in-
cident soliton, in order to be better transmitted through
the impurity scattering, is divided into more than one sol-
iton. In the continuum limit (which is valid only for
small-amplitude incident solitons), we can apply the in-
verse scattering method to predict the exact number of
reflected and transmitted solitons. Therefore, asymptotic
behavior can be predicted. However, a narrow soliton al-
ways means that the continuum limit breaks down.
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FIG. 6. Comparison of the total soliton transmission
coefficient T of kink solitons ({J, 0 ) in a nonlinear Morse chain
for two different impurity cases (y=2,10) and that of same
shape wave packet (A, +) in the equivalent harmonic chain
with the same impurities. Solitons are more robust.
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Hence, the scattering behavior in the strongly nonlinear
regime is difficult to deal with.

C. Two-impurity scattering and interference effects

It is well known that for linear plane waves more than
one scatterer leads to interference effects. For solitons,
we define interference in the sense that T~[]; T;, where
T; is the total transmission coefficient of the ith scatterer.
In Fig. 7 we show the dependence of the transmission
coefficient T on the distance of two identical impurity
scatterers for kink incident solitons in a Morse-type
anharmonic chain. The interference effect can be seen
clearly for small d. When d is larger than the extension
of the soliton, i.e., d > 2L, T approaches T T,.

The envelope soliton case is especially interesting, since
it follows the plane wave interference curve closely. In
Fig. 8 we plot the total transmission coefficient T for two
different envelope soliton energies in a quartic potential
chain versus the impurity distance d and we compare
with the plane wave result. When the distance d becomes
comparable to the envelope width, then the interference
effect saturates. Comparing results from Figs. 7 and 8§,
we conclude that the kink is much easier to transmit in
disordered material than the envelope soliton, since there
are always some local configurations which will
effectively block the envelope soliton and make an impor-
tant reflection.

It is well known that a localized mode is permitted
above the cutoff frequency in a linear lattice with light
impurity. The amplitude of this mode decreases ex-
ponentially with the distance from the impurity. In the
present paper we have not studied the question of the ex-
citation of the localized mode. However, this problem
has been studied for small-amplitude kink solitons (in the
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FIG. 7. Total transmission coefficient T for two-impurity
scattering (M, =M, =35) vs the impurities distance d for kink
solitons (v=1.19) in a Morse potential chain. T saturates
around T T, which is the product of the independent scattering
of the two impurities.
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FIG. 8. Total transmission coefficient T for two-impurity
scattering (M|, =M, =2) vs impurities distance d for envelope
soliton (K =0.8) in a quartic potential chain (G=B=1). The
solid line represents the linear-plane-wave scattering. Numeri-
cal points denote the envelope soliton scattering for two
different incident energies (O:E;=0.0869, A\:E;=0.2373). T
saturates around 7', T,.

continuum limit) both theoretically and numerically®® as
well as experimentally.*> According to these works, a lo-
calized mode exists even in a nonlinear lattice, although
some of the properties are modified by the nonlinearity:
(i) the localized oscillation becomes anharmonic; and (ii)
the frequency depends now on the amplitude. The local-
ized mode can be excited more strongly through the in-
teraction with a soliton having a width of the order of the
impurity extension on the lattice (~D). In this case the
soliton impurity-interaction time is smaller than the
semiperiod of the impurity eigenmode. If the characteris-
tic frequency (v /L) of the driving force (soliton) becomes
comparable to the localized frequency, the interaction
will occur resonantly. Envelope solitons cannot excite
significantly the localized mode. Finally, kink solitons in-
teracting with heavy mass impurities may excite a reso-
nance mode with a relaxation time remarkably shorter.

IV. CONCLUSIONS

We have systematically studied the effects of nonlinear-
ity on the simplest disordered system possible, that of one
or two impurities in an otherwise perfect lattice.

Our numerical results show that the linear scattering
approximation is valid for low energies, i.e., small-
amplitude solitons. For high enough energies, the
cohesiveness due to the nonlinearity becomes apparent
and the linear scattering breaks down, and a new theory
is needed. In general, our results showed that solitons are
more robust than linear wave packets and that the kink
soliton is more robust than envelope solitons.

For the two-impurities case, we have strong interfering
effects which for some energies help the soliton to go
through more easily than the less disordered case of one
impurity.

We, therefore, predict that kink solitons can survive
the disorder and propagate in the disordered medium
better than a linear wave packet. Therefore, solitons
must be excitations which live longer than linear wave
packets in disordered media.
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It is important to note that our results indicate a
nonexponential decay of a soliton in a disordered non-
linear medium in contrast to what happens to a plane
wave propagating in a linear disorder medium. In the
latter, each scattering center takes away a fixed fraction
of the wave independently of the amplitude, and this
leads to exponential decay. In the nonlinear case, the
scattered fraction of the soliton depends explicitly on the
amplitude and hence, the decay law is complicated and
specific.

It will be, of course, very interesting to study the effects
of the nonlinearity on a disordered system having a finite
amount of impurities. The behavior of the localization
length with the strength of disorder in the presence of the
nonlinearity might be different than the one without the
nonlinearity. These studies will need a substantial
amount of computer time to be completed. Finally, the
behavior of the propagation of a soliton in a disordered
chain with substrate will be also interesting to study.
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APPENDIX A

From (2.5) the kink-type solution for the atomic dis-
placement y(x,t) is>?

y(x,t)==+2(sgnh )(2h /q)"*tan"!

X {(1/w)tanh[(x —vt)/L1]} (A1)
with
[4p2+18(v2—c2)q12+2p |'?
- [4p2+18(v2—c3)q]'*F2p (A2)
and
L=2[h/(v*—c})]'"?. (A3)
For g =0 (Boussinesq equation case) (A1) becomes
y(x,t)=A,tanh[(x —vt)/L] (A4)
with the total energy of the excitation given by:
E,=—1%—%4—K5A3,(4v2+c6) : (A5)

where
A, =sgn(h)2[h(v?—c})]"*/p and K,=1/L .

For p =0 (M — Bq equation case) we have

y(x,t)= A, tan"'{exp[2(x —vt)/L1]} (A6)
with the total energy given by
1M
E,=€3KSA3,(2v2—c(2,) , (A7)

where A,, =+2(h /q)"/* and K, =2/L.
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APPENDIX B

The envelope-type soliton for the atomic displacement
y(x,t)is>3
y(x,t)=A,sech[(x —v,t)/L,Jcos[(x —vyt)/Ly] (Bl)

with

3541

A, =4m/Ky?, v,=v,—2au, L,=1/27, (B2)
vo=[w~2avg+2,u(a2—n2)]/(k—Za),
Ly=1/(k -2a),

where 77 and a are small arbitrary parameters and k takes
values in the first Brillouin zone of the harmonic chain.
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