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High-field magnons in ferromagnets with random anisotropy axes
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%e investigate magnons in ferromagnets with random anisotropy axes. It is assumed the applied
field is large in comparison w'th the exchange and anisotropy fields. A coherent-anisotropy-field ap-
proximation is introduced, where the e8'ect of the disorder is represented by a complex, energy-

dependent anisotropy field, analogous to the coherent potential in the random-alloy problem. The
real part of the anisotropy 6eld represents the shift in the magnon energy, vvhereas the imaginary

part gives the damping. The shift and damping of the uniform mode and the damping rate across
the magnon band are calculated for both a uniform and a nonuniform distribution in the cosine of
the angle between the anisotropy axis and the applied 6eld.

I. INTRODUCTION

Since its introduction in 1973 by Harris, Plischke, and
Zimmermann, ' the ferromagnet with random anisotropy
axes has served as a model of amorphous intermetallic
compounds containing rare-earth atoms with nonzero or-
bital angular momentum such as a-TbFe2. The Hamil-
tonian for this model can be written

H = —g J; $, S, —Sg(n;.S;) +gIsH gS,',
(ij) i

where S is the spin, JJ are the exchange constants, S is
an anisotropy constant, H is the applied 6eld and the n;
are anisotropy axes which are assumed to vary randomly
throughout the system.

Recently, Chudnovsky et al. 3 and Saslow have inves-
tigated a continuum version of (1.1) with particular em-
phasis on the effect of a uniform applied field. When the
anisotropy field is small in comparison with the exchange
6eld, three regimes can be distinguished, depending on
the relative magnitudes of the dimensionless ratios
H!H,„and H, /H, „, where H,„and H, denote the ex-
change and (random) anisotropy fields, respectively.
When H/H, ~ g~(H„/H, „) the system is in the correlat-
ed spin-glass regime; for (H, /H, „) ~~H /H, „~~1 it is in
the ferromagnet with wandering axis (FWA) regime in
which the spins are locally aligned with the axis varying
slowly from region to region. For H/H, „~I the system
is in the high-6eld regime where there is a slight misalign-
ment of the spin with respect to the applied 6eld, which
varies randomly from site to site. As emphasized in Ref.
3, this regime occurs whenever 8~~H„H,„, indepen-
dent of the relative magnitudes of H, and H,„.

The focus in this paper is on the high-field regime. %'e

assume that the temperature is sufficiently low that the

Since the alignment of the spins is nearly complete in
the high-field regime, at low temperatures we can use the
Holstein-Primakoff' transformation to express the spin
operators in terms of boson annihilation and creation
operators. Initially, we will assume that there is a period-
ic array of spins; later, the analysis wiB be generalized to
amorphous systems. Kith a periodic array the harmonic
magnons associated with the exchange and Zeeman terms
in (1.1) have energies given by

E(k)=gpH +S[J(0)—J(k)], (2.1)

where S is the spin and J(k) denotes the Fourier trans-
form of the exchange interaction

J(k)= g J; exp[ik. (r, —r )] . (2.2)

Using the Holstein-Primakoff transformation we can
write the anisotropy terms in the form

fundamental excitations in the system are (quasi}har-
monic magnons. Our interest is in the efFect of the disor-
der on the magnon spectrum. The approach we are fol-
lowing leads to a coherent-anisotropy-6eld approxima-
tion (CAFA) which is the analogy of the coherent-
potential approximation (CPA} that has found wide ap-
plicability in the characterization of the electronic states
in disordered alloys. A self-consistent equation is de-
rived for the coherent anisotropy 6eld, the real and imag-
inary parts of the field giving the shift and broadening of
the magnon modes, respectively. As will be discussed in
greater detail below, the eft'ect of the random anisotropy
can, in principle, be observed in ferromagnetic resonance
and inelastic neutron scattering experiments carried out
in high magnetic fields.

II. THKGRY

—l)(n; S;) = —Xl[( —8+a,ta, )n +(S/2)'~ (n,"+in')a; +(5/2)'~ (n;" in y)a, +—].
The terms not shown explicitly in (2.3), when written in normal-ordering form, lead to the renormalization of the an-

isotropy constant and magnon-magnon scattering. In addition, there are terms which introduce admixtures of the vac-
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ourn state or multimagnon states into the one-magnon states. Since we have assumed H ««H„H,„,the admixed states
will be on the order of ZSS/(g p,H) « 1, and thus can be neglected.

Apart from a constant, the one-magnon terms in (2.3) take the form

—[2)(n S) ],„, ,s„,„=3DS(cos 8, ——,
' }a,ta, , (2.4)

where 8; is the angle between n, and the apphed field and D =2)[1—1/(2S)] is the renormalized anisotropy constant.
The right-hand side of (2.4) is the analog of a potential fluctuation in the random-alloy problem. With this

identiflcation, one can adopt the CPA formalism. In the CAFA the ensemble average of the propagator takes the form

( G )[k,E —gpH;(E)] =[E gpH—;(E) E(k—)]

where the coherent amsotropy field, H, (E},is given by the nonlinear equation

P (cos8}[3DS(cos8——,
'

)—giMH;(E)]f d(cos8) =0,
1 —[3DS( o '8——,') —gpH;(E)](G )[E gpH;—(E)]

(2.6)

1n which

(2.7)

N is the number of spins, and P (cos8) is the probabihty distribution for the cosine of the angle between the anisotropy
axis and the applied field.

Equations (2.5) and (2.6) are the principal results of this section. The effect of the random anisotropy on the magnon
spectrum is represented by a complex, energy-dependent coherent anisotropy field which is obtained self-consistently
from (2.6}. In analogy with the random alloy, both the real part of H, (E), which can be interpreted as a shift in the
magnon energy, and the imaginary part of H, (E), which gives rise to a damping or dephasing, can be looked upon as
arising from the scattering of the magnons off the fluctuations in the anisotropy field.

III. CAFA

In this section we consider the solution to Eq. (2.6). In the limit of weak anisotropy one can expand the coherent an-
isotropy field to order D thus obtaining

gpH;(E}=3DS f d(cos8)P(cos8)(cos 8 ,')+(—3D—S) (G )(E) f d(cos8)P(cos8)[(cos 8——,')—(cos 8 ,')]——
—1 —1

(3.1)

where ( ) refers to an average over P(cos8). In systems
where there are no preferred directions for n, P(cos8} is
equal to —,

' and gpH; vanishes to first order in D. In these
cases the first nonvanishing term in H; is of order D,
Viz. ,

gpH,'(E)= ', D S ( Go )(E)—, (3.2)

(G, )(E)= f" P" d. , (3.3)

where

(3.4)

is the normalized magnon density of states in the absence
of anisotropy. In our analysis we will measure energies
relative to gpH and take

and arises from the fluctuations in cos 8 relative to the
mean value of —,'.

From the above analysis it is evident that the calcula-
tion of H;(E) to order (DS} and higher requires
knowledge of the Green's function for the unperturbed
system. Using (2.7}we can write ( Go )(E) in the form

p(E)=(g/~Esr)(EIE~)' (1 —EIE~)' ' (3.5)

p(E)=vE'i /4m 8 (3.6)

in which U is the volume per spin. Comparing (3.5) and
(3.6) we can make the connection

EM ——(32m lu) i 8 . (3.7)

The CAFA is developed under the assumption that the
array of spins has translational symmetry. Although ran-
dom anisotropy magnets are generally amorphous, the
magnons have a quadratic dispersion relation at long
wavelengths reflecting the (approximate) conservation of
total spin. Since the E' behavior is present in both
crystalline and amorphous ferromagnets, we expect our
theory to be applicable to the latter for energies near the
bottom of the magnon band, a point we explore in greater
detail below.

for 0&EIEsr &1, and zero otherwise. For E «E~,
p(E) varies as E'~2, which is characteristic of a system
where E(k)-k at long wavelengths. With E(k) =5k 2

we have
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P (cos8) = —,', 0 & 8 & n .

The resulting self-consistent equation takes the form

tanhI(3~G/2)'"[1+(I + a/2)G]'"I

(3.9)

=(3AG/2)'~ /[1+(h + A /2)G]'~, (3.10)

With p(E) given by (3.4), & Go )(E) assumes the form

&G, )(E)=(g/E )[E/E —
—,
'

[(—E/E~ )' (E—/E~ )]'~') . (3.g)

The function ( Go)(E) is analytic in the complex E plane
with a cut along the real axis between 0 and E~.

We have solved (2.6) with & Go ) given by (3.8) for two
cases of interest. In the first of these cos8 is distributed
uniformly between —1 and + 1, viz. ,

x
4k

t

CM

-O.P

3 =2DS,

h =gpH,'(E),
(3.11)

(3.12)
FIG. 1. Shift in energy of the uniform (k=O) mode vs

2DS/E. Energy in units of E~. Uniform probability distribu-
tion, Eq. (3.9).

G=&G, &[E g&H:(E)].- (3.13)

In the second case we have

P(cos8)= icos8i, 0&8&m . (3.14)

The corresponding self-consistent equation takes the
form

in[ [1+(h + 3 /2)G]/[1+(h —A)G]I =3AG/2,

(3.15)

where the symbols have the same meaning as before.
Provided the magnon damping is relatively small, as is

the case here, the magnon energies in the presence of the
applied and anisotropy fields, Ek, are inferred from the
energy at which the real part of the denominator of
& G )[k,E gpH, '(E)] van—ishes:

scattering experiments with energy transfer E. In Figs.
4-6 we show equivalent results for the linear distribution
[Eq. (3.14)]. The data displayed in Figs. 1-3 are obtained
from Eq. (3.10), whereas the data shown in Figs. 4—6 are
found by solving (3.15). We postpone discussion of these
results until Sec. IV.

0.05—

E„—gp ReH;(Ek ) E(k)=0, — (3.16)

where Re denotes real part. Likewise, the linewidths of
these modes, I"I„are given by the imaginary part of the
denominator evaluated at Ez ..

X
LLI 0.02—

r„=gl hnH:(E„), (3.17)

where Im denotes imaginary part.
In Figs. 1 and 2 we display our results for the energy

and width of the uniform (k=0) mode, which is excited
in ferromagnetic resonance, versus 2DS/E~ for the case
of a uniform distribution for cos8, Eq. (3.9). Energies are
measured relative to gpH, and energies and linewidths
are in units of E~. In Fig. 3 we show the energy depen-
dence of the linewidth in a plot of gpImH, '(E) vs

(E gpH)/EM for 2DS—/E~=0 2and 0.4, as.suming a
uniform distribution for cos8. These data correspond to
linewidths which would be observed in inelastic neutron-

o.o)—

00 og
208/EIN

0.8

FIG. 2. Linewidth of the uniform 4 k=0) mode vs 2DS IE.
Linewidth in units of FM. Uniform probability distribution, Eq.
(3.9).
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FIG. 3. Magnon linewidth vs {E —gpH) /E~, (a)
2DS/E ——0.2; {b) 2DS/E ——0.4. Linewidth in units of E&.
Uniform probability distribution, Eq. (3.9).

0 0.4
2DS/Kts

0.8

FIG. 5. Linemidth of the uniform {k =0) mode vs 2DS /E.
Linewidth in units of E. Linear probability distribution, Eq.
{3.14).

IV. DISCUSSION

In the preceding sections we have outlined a theory for
the influence of random anisotropy on the magnon modes
in a ferromagnet. The theory apphes to the high-field re-

gime where the applied field is large in comparison with
the exchange and anisotropy fields. A coherent anisotro-

py field approximation is introduced, and a self-consistent
equation, (2.6), is obtained for H,'(E). The real and imag-

inary parts of H;(E) determine the shift and broadening

of the magnon lines, which come from the fluctuations in
the anisotropy.

The results displayed in Figs. 1-6 can be understood
with reference to Eqs. (3.1) and (3.8). In Figs. 1-3 it is
assumed that P(cos8) is constant. As a consequence the
first term in (3.1) vanishes and H;(E) is given by (3.2) for
2DS/Esr g~1. Thus both ReH; and ImH; vary quadrat-
ically for small D. The decrease in Eo with increasing D
shown in Fig. 1 is a result of Re(Go)(E) being negative
for E g —,'. The near-semicircular shape for I shown in

0.1 0.15

0.10

l

04,

2DS/Ess

0 0.4 0.8
(E-gPaH)/Ess

1.2

FIG. 4. Shift in energy of the uniform {k=0) mode vs

2DS/E&. Energy in units of E,~. Linear probability distribu-
tion, Eq. (3.14).

FIG. 6. Magnon linemidth vs (E—gpH) /E~. {a)
2DS/E~ ——0.2; {b) 2DS/F~ ——0.4. Linewidth in units of E~.
Linear probability distribution, Eq. (3.14).
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Fig. 3 reilects the fact that for small D the damping is
determined by Im( Go )(E) with E real, which is the same
as the density of unperturbed magnon modes apart from
a factor of n [cf. Eq. (3.5)]. With increasing D the semi-
circular form becomes more and more distorted.

In contrast, in Figs. 4-6, the 6rst term in (3.1) does not
vanish. The shift in the energy of the uniform mode
varies linearly with D for small D, i.e., gpH,'=DS/2,
with the rolloft' at larger D coming from the quadratic
term. The similarity in the behavior of I shown in Figs.
2 and 3 and Figs. 5 and 6 rejects the fact that in both
cases it is Im(GO) which determines the damping for
small D. It is somewhat surprising, however, that the
damping obtained with the linear distribution (Fig. 3) is
symmetric about the point E gpH —=EM/2+DS/2,
whereas the damping calculated with the linear distribu-
tion is asymmetric.

%'e also note that the shift in the energy of the k=0
mode for a uniform probability distribution,

F.o —gPH= —',6D 5 /E~,

agrees in order of Inagnitude but has the opposite sign
from the result obtained by Saslow ' for the wandering
axis regime

Eo —gPH =gPH, /H, (4.1)

It is also worth pointing out that the shift in the energy of
the uniform mode is the analog in the shift in the band
edge in the random-alloy problem.

%e mentioned earlier that even though the CAFA was
derived assuming a periodic array of spins, we expect our
findings to have applicability to amorphous systems for
energies near the bottom of the magnon band where in
the absence of anisotropy the magnon energy varies as
k, the linewidth as k (according to hydrodynamic
theory), and p(E)-E'~ . In the limit of weak anisotropy
we can obtain general expressions for two quantities of
direct physical interest. When 2DS/EM &&1 we can
identify the shift in the energy of the uniform mode with
gpH;(0). We have, from (3.1) and (3.3),

gpH;(0)=3DS f d(cos8)P(cos8)(cos 8 —,')—
—(3DS)' f "au p(u)u 'f -'

Z(cos8)P(cos8)[(cos 8—
—,') —(cos 8—

—,')]',
whereas to order D the linewidth is given by

I (E)=(3DS) 1rp(E) f 1(cos8)P(cos8)[(cos 8——,
' ) —(cos~8 ——', ) ]

(4.2)

(4.3)

In both cases p(E) is interpreted as the density of states
in the amorphous material in the absence of anisotropy.
Equation (4.3) gives a picture of the damping across the
magnon band. However, since p(0) is zero, it cannot be
used to predict the linewidth of the uniform mode. This
can only be obtained from (3.16) and (3.17).
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