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Monte Carlo simulations of ordering in the two-dimensional axial next-nearest-neighbor Ising

model following a quench were performed using nonconserved dynamics for a wide range of frustra-

tion parameters, ~, and temperatures. It was found that in quenches from T &&T, to T & T, for

~ &0 (i.e., in the ferromagnetic regime) ordered domains form quickly and coarsen with the expect-

ed t'/' kinetics. Similar results are found for quenches at ~&1, where the ordered structure is

striped. However, for 0 g x ~ 1, quenches to low temperature produce a disordered, "glassy" phase,

which shows logrithrnic ordering kinetics and is insensitive to whether the underlying ground state

is ferromagnetic or (2) phase (i.e., striped phase). Quenches to higher temperatures show the pres-

ence of a 6nite glass-transition temperature. Discontinuous changes in the value of the frustration

parameter from the ferromagnetic to the (2)-phase region of the phase diagram at low temperature

yields a phase change which occurs via classical nucleation and growth. A simple energetic or
growth model is proposed which accounts for all of the temperatures at which the ordering kinetics

undergoes transitions.

I. INTRQDUCTIGN

The kinetic evolution of simple spin models (e.g., Ising,
Potts) which have been quenched from high temperature
(T ~p T, ) to a final temperature much less than T, have

been well studied. ' In these simple models the correla-
tion length E generally grows algebraically with time as
t", where t is time and n is a positive constant. For non-
conserved (Glauber) dynamics, n is generally found

(theory, "' simulation, 7 experiment ) to be —,', while for

conserved dynamics a theoretical value of —,
' is obtained

with simulations typically yielding smaller values (see
Ref. 1 for a review). Quenches from the paramagnetic re-

gion into ferromagnetic regions of the phase diagram
generally result in the formation and growth of ordered
domains. The domain size distribution and structure
factor (see Ref. 1 for a review) are generally found to be
time independent when properly scaled.

Natural extensions of the above models can produce
systems which exhibit frustration. Probably the simplest
frustrated lattice spin model is the nearest-neighbor (NN)
antiferromagnetic Ising model on a triangular lattice. In
any triangle of nearest-neighbor bonds, at least two of the
spins must be identically ordered, thus preventing the sa-
tisfaction of the preferred antiferromagnetic bond order-
ing on every plaquette. Such frustration leads to a disor-
dered ground state. A disordered ground state may also
be found in systems with random interactions. Particu-
larly well known in this class is the so called random-field
Ising model where frustration is due io the competition
between ferromagnetic nearest-neighbor coupling and a
spatially varying random magnetic field. Quenches into
frustrated regions of the phase diagram generally lead to
much slower evolution (subpower law growth) of the
correlation length with time.

Since the axial next-nearest-neighbor Ising (ANNNI)

model has both ferromagnetic and antiferromagnetic in-
teractions, competition plays an important role. In the
three-dimensional ANNNI model, competing interac-
tions lead to a rich phase diagram consisting of an infinite
number of phases with periodicities ranging from single
lattice sites to arbitrarily long repeat distances. In two
dimensions, the ANNNI Hamiltonian may be written as:

H = —g JOS S~) ~i+JiS .S+i

where S, ~
is the spin orientation (kl) on site i„j,and Jo

and J, are constants. The two-dimensional ANNNI
phase diagram' for Jo ~ 0 consists of a high-temperature
paramagnetic phase, a low-temperature ferromagnetic
phase for J, &Jo/2, a low-temperature ordered phase
consisting of alternating stripes of two up and two down
spins parallel to the j direction for J, p Jo/2, and an in-

commensurate phase between the striped and paramag-
netic phases.

There have been several studies which suggest that or-
dering in the ANNNI model is more subtle than in the
Ising model. "' In a self-consistent mean-Geld study,
Jensen and Bak" showed that the weakly interacting
domain walls can be pinned to the lattice in essentially
random sequences, which are metastable. Morgenstern'
conducted a study of the ANNNI and the related brick-
work ANNNI models, using boih transfer matrix and
Monte Carlo techniques. The Monte Carlo study was
performed for long times (30000 Monte Carlo steps per
spin (MCS) on a narrow (64X8) lattice. He found that
the domain walls never achieved their equilibrium posi-
tions, as determined by the transfer matrix calculation.

More recently, Monte Carlo simulations have been per-
formed on the ANNNI model, using both noncon-
served' (Glauber) and conserved' (Kawasaki) spin dy-
namics. In these simulations a two-dimensional ANNNI
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model was instantaneously quenched from T~~T, to
T « T, . %ith nonconscrved dynamics, t '~ growth of
the correlation length was observed, with an anisotropic
prefactor. Slowing was observed with Kawasaki dynam-
ics, although it appears t ' growth was observed asymp-
totically for long times. In work on a related model, Sa-
diq and Binder' performed a Monte Carlo quench study
of an "isotropic'* ANNNI model. For quenches to T =0,
they observe extremely slow growth. However, since
Kawasaki dynamics were employed, the relative impor-
tance of frustration is not clear.

In order to examine the eftects of competing interac-
tions on ordering kinetics and to resolve some of the con-
fusion regarding ordering in the ANNNI model, we have
performed a series of simulations in which a two-
dimensional ANNNI model mas quenched from T g~T,
to T & T, for a wide range of frustration parameters
(a= —J, /Jo) and a number of temperatures. Noncon-
served dynamics were chosen so that the role of frustra-
tion would be evident. In brief, we find that for x &0 the
system rapidly forms domains which coarsen with t ' ki-
netics. Similarly, for x & 1 domains of striped phase form
rapidly and coarsen with t' kinetics. However, for
0 & ~ & I quenches to low temperature result in the forma-
tion of a metastable glasslike phase which shows sub-
power law (logarithmic} growth. Quenches in this regime
at higher temperatures lead to the slow formation of the
ordered phase (i.e., the striped phase for s. ~ —,

' and the fer-
romagnetic phase for N & —,') and then domain growth with
t '~ kinetics. A structure factor analysis is performed for
the temporal and thermal evolution of the glasslike
phase. Consequences of these results for the sensitivity of
polytypic systems (i.e., systems with large numbers of
nearly degenerate modulated phases, such as SiC) to
preparation technique and history are discussed.

II. SIMULATION PROCEDURE

The present Monte Carlo simulations on the ANNNI
model were performed on a square lattice. For the sake
of later convenience we choose to normalize the ANNNI
Hamiltonian [Eq. (1)] by the nearest-neighbor coupling
constant Jo, such that the bond energy E; is

E I ———SJ[S+,)+S; i +S i+,
+SJ i a(S, +2 j+S; ~

—
1 )]/2,

where x = —J, /Jo ~ The temperature T has also been
normalized by the nearest-neighbor coupling constant,
Jo. The phase diagram for the tmo-dimensional ANNNI
model is well established' and is indicated in Fig. 1. %e
shall denote the ferromagnetic phase by F, the paramag-
netic phase by I', the incommensurate phase by I, and the
modulated phase by (2}, indicating that it corresponds
to alternating stripes of two up and two down spins
oriented perpendicular to the axial direction (i.e., the i
direction}.

In the present study„we perform Monte Carlo simula-
tions of the evolution of the ANNNI model quenched
from T &~T, to a finite temperature 0.02& T &0.4, for
—19.5&a &20.0. In addition, a series of simulations

30

P

(q =0)

0

I

0

0

2.0

$.0

0.0 0.2 0.5 0.8

FIG. 1. The two-dimensional ANNNI phase diagraIn, after
Bea1e, et al. (Ref. 10}. F, (2), and I represent the ferromagnet-
ic, striped, and incommensurate phases, respectively. The label
P indicates the paramagnetic phase, which has a peak in

S(q =0) for small ~ and a peak at q y 0 at larger x, as indicated.

were performed at T =0.08 by equilibrating the system
in the ferromagnetic regime and discontinuously increas-
ing x to between 0.5 and 2.0. This results in a phase
transformation from the small v, I' phase to the large x,
(2} phase. The simulations were performed with non-
conserved dynamics and with a random updating scheme.
The transition probability employed was

The temporal evolution of the ANNNI microstructure
following a quench from T «g T, to T =0.02 for

where 5E is minus the change in energy of the system due
to an attempted spin fhp [evaluated employing Eq. (2)].
All of the simulations were performed on 200~200
square lattices. The data presented below were averaged
over five simulations (except for the nucleation and
growth simulations where averaging would be inap-
propriate).

The simulations were analyzed by monitoring the mag-
nitude of the structure factor in the axial (i}and perpen-
dicular (j) directions every 100 MCS (1 MCS is defined as
N spin Aip attempts, where N =40000 is the number of
spins in the system). In addition, the energy of the sys-
tem was measured every 20 MCS, and the spin
configuration every 50 MCS. Previous simulations' indi-
cate that the difference between the instantaneous energy
of the system and that in its equilibrium state, hE, is in-

versely proportional to the correlation length in the sys-
tem. The equilibrium energy was determined by putting
the system in its T =0 equilibrium configuration and then
running for 2000 MCS at the temperature and x value of
interest.

nI. DOMAIN GROVE'8 FOLLOWING
QUKNCHKS FROM THK PARAMAGNETIC STATE
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100MCS

FIG. 2. The temporal evolution of the ANNNI microstructure following a quench from T ~& T, to T =0.02 for l~;= —19.5. The

dark regions indicate areas of spin up and the light regions correspond to spin down.

x= —19.5 is shown in Fig. 2. The microstructure pro-
duced is quite similar to that found in quenches of the
usual Ising model. One pronounced difkrence which
may be observed is the strong tendency for the domain
walls to lie preferentially along the axial direction. This
asymmetry may be traced to the relative energies of the
domain walls parallel and perpendicular to the axial
direction. Domain walls perpendicular to the axial direc-
tion have an energy of —2 per unit length. Those paral-
lel to the axial direction have an energy of —2(1 —~).
Therefore, for a «0, domain walls lying in the axial direc-
tion are energetically preferred.

Further asymmetry may be seen by considering the
structure factor parallel and perpendicular to the axial
direction (see Fig. 3). The structure factor in both direc-

tions show peaks at q =0. These peaks sharpen with time
indicating the observed domain growth. However, corn-
parison of the widths of the peaks in S(q, 0) with those in
S(0,q) indicates that the order is considerably more pro-
nounced in the axial direction. This is consistent with
the asymmetry in the direction along which the domain
walls lie.

The time dependence of the correlation length is shown
in Fig. 4 where we plot the energy deviation from the
equilibrium state hE against time (EE is inversely pro-
portional to the correlation length). Note that the curves
corresponding to diferent values of ~ are all parallel, in-
dicating the ~ independence of the growth exponent in
this range of x. Data from an Ising model (~=0) is also
plotted on the curve for comparison. The measured
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FIQ. 3. The time dependence of the structure factor in the direction (a) parallel and (b) perpendicular to the axial ~+~ direction for

the same conditions as in Fig. 2. The dilerent curves in each figure correspond to 400, 300, 200, 100, and 0 MCS, in order from top

to bottom. Arbitrary shifts vrere added to the structure factor for clarity.
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slopes are consistent with the growth of the correlation
length m a t' manner. Therefore, m this regime,
domain growth kinetics are consistent with those ob-

served in a wide variety of other spin systems ' and pre-
dicted by I ifshitz, and Cahn and A.lien.

For ~ & 1, the next-nearest-neighbor antiferromagnetic
interactions dominate the nearest-neighbor ferromagnetic
interactions. The (2) state, which satisfies all of the an-
tiferromagnetic interactions, is observed in Fig. 5 where a
quench has been performed from T g~T, to T=0,02 at
a. =20.0. The (2) phase consists of alternating stripes of
two up spins and two down spins oriented perpendicular
to the axial (i) direction. Since the basic unit of the (2)
phase consists of four spins, the model is clearly fourfold
degenerate. The orientation of the domain walls in the
(2) phase region depends on the relative energies of the
domain walls. Since the model is fourfold degenerate,
there are four types of domain walls in the ( 2 ) phase, as
opposed to the one type of domain wall in the I' phase.
For a ~ 1, the energies of the domain walls are such that
the domain walls lying in the axial (i) direction are lower
in energy than those in the perpendicular (j) direction.
This asymmetry is manifested in the microstructures of
Fig. 5 where clearly the domain walls lie preferentially in
the axial (i) direction.

Figure 5 shows that the model has both three and four-
fold vertices (i.e., three or four domain walls meet at a
point), like the fourfold degenerate Potts and clock mod-
els, respectively. The fourfold vertices are generally such
that as one circumscribes the vertex, the four-spin pat-
tern of the (2) phase is phase shifted by one spin. This
leads to two types of fourfold vertices having either a
clockwise or counter-clockwise vorticity. Perhaps it is
more appropriate to refer to the sense of the vertex in the
framework of a Burgers vector (from dislocation theory)
than vorticity since each fourfold vertex has associated
with it an extra half-stripe either pointing up or down
(corresponding to the extra half-plane of atoms above or
below an edge dislocation with a Burgers vector pointing
to the left or right). Threefold vertices may be thought of
as partial dislocations separated by finite energy stacking
faults.
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FIG. 4. The time dependence of the excess energy, hE, fol-
lowing a quench from T «y T, to T =0.02. The diferent curves
correspond to a=0 (squares), —0.2 (circles), —1.5 {triangles),
and —19.5 (+ 's).

The asymmetry between the axial and perpendicular
directions may be seen in Fig. 6 where we show the time
dependence of the structure factor in the axial and per-
pendicular directions. In the axial direction, a peak at
q = —,

' forms at early times and sharpens with increasing
time. The width of the peak indicates the ( 2 )-phase
domain size. On the other hand, one should expect a
peak at q =0 in the structure factor in the perpendicular
direction. However, the structure factor in the perpen-
dicular direction is relatively Hat and featureless. The
lack of a pronounced peak may be traced to the
preponderance of domain walls in the axial direction
which tend to destroy long-range order in the perpendic-
ular direction.

The temporal evolution of the correlation length (actu-
ally hE which is inversely proportional to the correlation
length) is indicated in Fig. 7 for 1&a.&20 at T =0.02.

FIG. 5. The temporal evolution of the ANNNI microstructure following a quench from T ««T, to T =0.02 for I(, =20.0.
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The slopes of these curves indicate that the correlation
length is increasing as t '~ for all a in this range. This re-
sult is consistent with that observed in the fourfold de-
generate Potts and clock models. However, as pointed
out by Kaski„et aI., the domain coarsening is anisotropic
in that the growth in the axial and perpendicular direc-
tions occur at difterent rates. The eiTect of varying the
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FIG. 7. The time dependence of the excess energy, AE, fol-
lowing a quench from T gp T, to T =0.02. The diferent curves
correspond to ~=1 (squares), 1.2 (circles), 2.0 (triangles), and
20.0 (+ 's).
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temperature to which the model was quenched is indicat-
ed in Fig. 8 where the domain growth kinetics are plotted
as a function of time. For times such that the correlation
length in the system is small compared with the model
size, the four data sets corresponding to T =0.02, 0.1,
0.2, 0.3, and 0.4 fall on the same cuIve. At late times,
where the correlation length is of order the system size
some deviation occurs, as expected. This result demon-
strates that domain growth is insensitive to temperature
for T ~(T, .

10
i

0.02—

0.00
0.0 0.2 0.4

10' 10 103
i l l I li

10
FIG. 6. The time dependence of the structure factor in the

direction (a) parallel and {b) perpendicular to the axial (x) direc-
tion for the same conditions as in Fig. 5. The dinerent curves in

each figure correspond to 400, 300, 200, 100, and 0 MCS, in or-
der from top to bottom.
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FIG. 8. The time dependence of the excess energy, hE, fol-
lowing a quench from T~~T, to T=0.02 (squares), 0.1 (cir-
cles), 0.2 (triangles), 0.3 ( + 's), and 0.4 ( y 's) at sc= 1.0.
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FIG. 9. The temporal evolution of the ANNNI microstructure following a quench from T && T, to T =0.02 for ~=0.08.

IV, AN ANNNI GLASS

A. Ogre~ 1/2

%hen the system is quenched from T » T, to T=0 for
Op~ g —,', microstructures such as those shown in Fig. 9
typically result. These microstructures appear disordered
in that no clear F or (2) phase is visible. However, a
crude striped morphology does form. These stripes, how-
ever are rather shart and there is no significant correla-
tion between neighboring stripes. In addition, the stripes
vary in width fram one spin to many spins. While these
microstructures do appear to evolve in time, their evolu-
tion is very slow and they do not appear to be evolving
toward their ferromagnetic ground state.

Structure factors measured as a function of time for
quenches at v=0.4 and T=0.02 are shown in Fig, 10.
Clearly little temporal evolution is evident in the struc-

ture factors. The structure factors in the axial direction
have near zero amplitude for q & —„'and have some small,
finite amplitude between q =0 and q =—,'. A small peak is
observed in the vicinity of q =—,', as would be expected for
the (2) phase. While this is consistent with the observed
stripelike features in Fig. 9, it is surprising in that the
equilibrium phase is ferromagnetic, which should yield a
peak only at q =0. In the perpendicular {j) direction, a
peak forms at q =0. However, this peak is of a much
smaller amplitude than that seen where the ferromagnetic
phase forms (see Fig. 3, above).

The temporal dependence of the correlation length for
quenches in this regime of x and T =0.02 is indicated in
Fig. 11. This plot clearly indicates that for 0 pa. & —,', the
growth kinetics are subpower law, Figure 11 demon-
strates that while the microstructure continues to evolve
with time, it is doing so only very slowly.

These kinetics should be contrasted with those found
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FKJ. 10. The time dependence of the structure factor in the direction (a) parallel and {b}perpendicular to the axial (x) direction
for a quench to T =0.02 at ~=0.4. The dil'erent curves in each figure correspond to 2000, 1500, 1000, and 500 MCS, in order from

top to bottom.
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FIG. 12. The time dependence of the excess energy, hE, fol-

lowing a quench from T&&T, to T=0.02 {squares), 0.1 (cir-
cles), 0.2 {triangles), 0.3 (+ 's), and 0.4 {g's) at x =0.4.

I I I I Ill!i I I I I IIIll I I I I IIIII I I I I llfl

'fQ 40 10 10 10

t(MCS)

FIG. 11. The time dependence of the excess energy, hE, fol-

lowing a quench from T ««T, to T =0.02. {a) The diferent
curves correspond to ~=0.2 (circles), 0.8 (&('s), 0.4 (triangles),
0.6 (+ 's), 1.0 (diamonds), and 0.0 {squares}, in order from top
to bottom. (b) Same as (a) but for runs out to 20000 MCS. The
upper curve is for x =0.4 and the lo~er curve is for a =0.6.

following the quench) microstructures is indicated in Fig.
13. Both the structure factors parallel and perpendicular
to the axial direction show pronounced difkrences be-
tween T =0.2 and T =0.3. This supports the kinetic in-
formation that there is a transition from the glasslike
phase to the ferromagnetic phase in this temperature
range. The transition between these two phases is indi-
cated in Fig. 14 where the structure factor for v=0.4 and
T=0.3 shows a slow, continuous increase in peak height
at q =0 with increasing time. This result confirms the
idea that the transition from the glasslike phase to the
ferromagnetic phase is continuous.

8. 1/2 & z ~ 1

following a quench to higher temperature within this
same range of a (still within the I' phase field). Such a
comparison is made in Fig. 12 for ~=0.4 and T =0.02,
0.1, 0.2, 0.3, and 0.4. This Sgure shows that there exists a

temperature above which quenches yield power-law
growth and below which yield logarithmic growth. For
x=0.4 this temperature is between 0.2 and 0.3 and for
~=0.2 this temperature is between 0.1 and 0.2. Howev-
er, even for quenches below this critical or glass transi-
tion temperature, at sutficiently long times the kinetics
asymptotically approach the normal t'~ behavior found
for ~ &0 [see Fig. 11(b)]. This type of behavior indicates
that a glasslike phase will only be observed if the observa-
tion time is short compared with the ordering time. The
rather slow transition from logarithmic growth to
power-law growth indicates that the change is more a
thermally activated, continuous ordering phenomena
than a nucleation and growth phenomena.

The temperature dependence of the final (2000 MCS

In Fig. 15 we show a series of spin con6gurations cor-
responding to diferent times following a quench from
T ««T, to T =0.08, for ~=0.8. Microstructures essen-
tially indistinguishable from these occur on low tempera-
ture quenches in the entire (2)-phase field for —,

' & ~ & 1.
Although this temperature and ~ are well within the or-
dered (2)-phase region of the phase diagram (Fig. 1), the
characteristic two spin wide stripe pattern clearly does
not form. Instead we observe a disordered phase which
does not appear to be evolving toward the equilibrium
(2 ) state. Comparison of the spin configurations at early
times (e.g., 200 MCS) and late time (e.g., 2000 MCS)
shows little difference. There does, however, appear to be
an extremely slow increase in the correlation length with
time. Although the equilibrium ( 2 ) phase does not ap-
pear, short-range order clearly exists. The presence of
short-range order with no accompanying long-range or-
der is a common feature of glassy systems. The micro-
structures quenched into this region of the phase diagram
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are nearly indistinguishable from those quenched to low

temperature for Ogx ~ —,', where the equilibrium state is

ferromagnetic.
The time dependence of the structure factor for a

quench froIQ T &&T~ to T =0.02 at K=0.6 1s sho%'n In

Fig. 16. As in the case of a low-temperature quench for
0 ~~ g —,', the structure factor in the axial direction show

only a very small amplitude for q g —,
' and a larger ampli-

tude in the range Ogq ~ —,'. %bile the amplitude is larg-

est around q =—, (indicative of the ( 2 ) state), it is in-

teresting to note that an increased amplitude is also
present in the vicinity of q =0 (although not at exactly
q =0}. This result shows the remarkably strong competi-
tion between the ferromagnetic state and ( 2 ) phase, even
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FIG. 13. The temperature dependence of the structure factor

in the direction (a) parallel and (b) perpendicular to the axial (x)
direction 2000 MCS following the quench at x=0.4. The
diferent curves in each 5gure correspond to quench tempera-
tures of 0.4, 0.3, 0.2„0.1, and 0.02, in order from top to bottom.

FIG. 14. The time dependence of the structure factor in the
direction (a) parallel and (b) perpendicular to the axial (x) direc-
tion for a quench from Tg~T, to T=0.3 at a=0.4. The
di5'erent curves correspond to times decrementing by 200 MCS
from the top curve (2000 MCS) down.
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9)MCS

FIG. 15. The temporal evolution of the ANNNI microstructure following a quench from T ~~ T, to T =0.02 for a.=0.08.

when i~ is well within the (2)-state phase field. In the
perpendicular (j) direction, the model clearly has fer-
romagnetic tendencies, as indicated by the peak around

q =0. The q =0 peak in this direction is indicative of
both ferromagnetic and (2) ordering. The amplitude of
this peak appear to be slowly increasing with time, al-
though no clear (2) or ferromagnetic ordering is ap-
parent in the microstructures,

The temporal dependence of for quenches to T =0.02
for —, «~ g 1 is indicated in Fig. 11. In the range of ~ be-
tween —,

' and 1, the growth is subpower law, indicative of
a kinetically frozen system. As with the rnicrostructures
and structure factors, the growth kinetics appear to
evolve in a manner indistinguishable from those of sys-
tems quenched into the low temperature, ferromagnetic
region of x space (0 & a & —,

' ). The parallels are particular-

ly striking when comparing the x =0.4 and 0.6 quenehes
and the a =0.2 and 0.8 quenches, which are equally far
from the transition at x= —,

' but in completely distinct
phase fields.

Just as with the low-temperature quenches into the
Ogx & —,

' ferromagnetic phase 6eld, increasing the tem-

perature to which the quench was performed leads to the
formation of the equilibrium phase for —, &a & 1 (see Fig.
17). For T&0.2 at ~=0 6and for .T &0. 1 at i~=0. 8, the
(2) state appears to form and exhibits power law kinetics
within the 20000 MCS simulations. However, the (2)
state does appear even at lower temperatures given
sufficient time [see Fig. 11(b)]. As for all true glasses, the
glass transition temperature is only de6ned once the time
scale of observation is set. The existence of a transition
temperature is also seen by consideration of the structure
factor after the 2000 MCS "equilibration" following the
quench for systems quenched to diferent temperatures at
x=0.6 (Fig. 18). As indicated by the temporal depen-
dence of the correlation length, a real transition is ob-
served for T ~0.2 at this value of x. However, hints of
the impending transition from the glasslike phase to the
equilibrium (2) phase may already be seen at T =0.2. It
is interesting to note that the transition from the glassy
phase to the (2) phase is accompanied by the expected
increase in the q =—, correlation in the axial direction, but
a pronounced decrease in the q =0 correlation in the per-

pendicular (j) direction. This unexpected feature must
be attributed to the formation of domain walls which
shift the stripes out of registry.

V. QUENCHES FROM THE FERROMAGNETIC
TO (2) PHASE

%hile in the previous sections we have considered rap-
id changes in temperature from T ~& T, to T ~ T, at con-
stant ~, in the present section we consider rapid changes
in ~ from well within the ferromagnetic state to well
within the (2)-phase field at constant temperature. Such
studies are useful since in most real materials changes in

temperature are accompanied by changes in the strength
of the interaction parameter. These simulations were all

performed for quenehes at T =0.08. %'e find that for
quenches (in a, not T) from the equilibrium ferromagnetic
phase to a. & 2, the (2) phase forms rapidly and a coar-
sening (2)-phase domain structure is observed (see Fig.
19). The resultant microstructures are essentially indis-
tinguishable from those observed in temperature
quenches from T~yT, to T g~T, for x&1. Similarly,
the evolution of the correlation length following
quenches in this range yield the same t '~ kinetics as in
the thermal quenches for a & 1.

While x quenehes at T=0.08 for x&2 led to the im-
mediate formation of the ( 2 ) phase, quenches to
1.6 &a &2 led to the formation of the (2) phase by clas-
sical nucleation and growth. The temporal evolution of
the spin configuration following a quench to v=1.7 at
T =0.08 is shown in Fig. 20. Under these conditions the
spin configuration remains entirely ferromagnetieally or-
dered for the first approximately 100 MCS, following
which a single spin flip is thermally activated. The single
spin nucleates a stripe which grows. Additional stripes
are nucleated either homogeneously or heterogeneously
and growth proceeds until the system is essentially all
(2) phase with domain walls. Due to the rapid forma-
tion of the (2) phase along the stripes relative to the
slow advance in the axial direction, the domain walls in
this system appear preferentially oriented parallel to the
stripes. Although the orientation of these domain walls
contradicts the argument given above for the preferred
domain wall orientation following thermal quenches, this
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orientation preference is dictated by kinetic rather than
energetic constraints.

For It,
.g 1, the spins adjacent to this first spin to Sip,

can fIip with no energy cost, and the stripe can grow.
Once a single stripe is growing, additional stripes form in
any one of three ways. First, the growing stripe can lo-
cally become wider than its nominal two-spin width.
This locally "two wide" stripe can then split and form
two parallel stripes. Second, new stripes can be formed

100
t i l l t11) t l I l ttwlt i I i IJ''
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I I I i i ill! I I I I I till
q02 10
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i i i i&lii
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FIG. 17. The time dependence of the excess energy, hE, fol-
lowing a quench from T yy T, to T=0.02 {squares), 0.1 (circles),
0.2 {triangles), 0.3 {+ 's), and 0.4 {x's)at a.=0.6.

0.40—
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0.150
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0.$ 0.4

by thermally activated flipping of a spin remote from the
initial stripe. Finally, a growing stripe can grow through
the periodic boundary conditions and, if not perfectly
aligned with its own other end, it appears as a new stripe.
Although this results in some unwanted correlation be-
tween stripes due to the finite system size, this mecha-
nism is not entirely unphysical as it can be viewed as a
consequence of nucleation in an adjacent subcell of the
mock-infinite system. In this sense, we can view mecha-
nism 3 as indistinguishable from mechanism 2. In a num-
ber of test runs in which the stripe was nucleated we ob-
served all three mechanism operating.

The temporal evolution of the energy of the system fol-
lowing ax quench to x=1.7, 1.8, 1.9, and 2.Oat T=0.08
is plotted in Fig. 21. The incubation time, corresponding
to the time waited for nucleation, is of order 100 MCS for
the ~=1.7 simulation and is clearly greater than zero for
~=1.8. Following nucleation and transient growth, the
system always exhibit the typical t' type growth kinet-
ics. The statistics are considerably worse in this plot then
in previous plots due to the fact that no averaging of the
data was performed such that the effects of individual nu-
cleation and growth events could be observed.

VI. DISCUSSION

0.000---
0.0 0.2 0.4

FIG. 16. The time dependence of the structure factor in the
direction (a) parallel and (b) perpendicular to the axial {x)direc-
tion for a quench to T =0.02 at x =0.6. The diferent curves in
each figure correspond to 2000, 1500, 1000, and 500 MCS, in or-
der from top to bottom.

%hile the phases observed following the quenches do
not necessarily agree with the known equilibrium phase
diagram, simple energetic/growth arguments are often
suf6cient to identify the bounds on the kinetically limited
phases. The most important kinetic phase boundary to
try to understand is that separating the glassy phase from
the equilibrium phase.

Consider the case of the growth af a single stripe for
~ ~ —,'. For an individual stripe to grow in the perpendicu-
lar (j) direction, its tip must be able to advance through
all possible environments presented by the quench from
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high temperature. The most unfavorable configuration
that the tip Inust be able to surpass occurs when, say, the
up-spin stripe encounters a region of down spins at its tip.
Th1s 1s equivalent to thc gro%vtb of a stripe of up splns
into a system of otherwise down spins. Application of
Eq. (2) to this geometry shows that the energy required

jjjtItllIII TIIIIlI!ItIII
lI" „I'I'liIIIIII!IIII IIIIIIIII '"Ill

'
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IJII ) I , I II IiI
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ill!�'I

IIIII

IOMNCS

FIG. 19. The temporal evolution of the ANNNI microstruc-
ture at T =0.08 and x.=2.0, where the spin configuration was
ferromagnetically ordered at 0 MCS
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FIG. 18. The temperature dependence of the structure factor
in the direction (a) parallel and (b) perpendicular to the axial (x)
direction 2000 MCS following the quench at x=0.6. The
difFerent curves in each Sgure correspond to quench tempera-
tures of 0.4, 0.3, 0.2, 0.1, and 0.02, in order from top to bottom.

FIG. 20. The temporal evolution of the ANNNI microstruc-
ture at T =0.08 and a.=1.7, where the spin configuration vvas

ferromagnetically ordered at 0 MCS.
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FIG. 21. The time dependence of the excess energy, hE, at
T=0.08, where the spin configuration divas ferromagnetically
ordered at 0 MCS. The di8'erent curves correspond to x=1.7
C,
'chain dash), 1.8 (chain dot), 1.9 {dash), and 2.0 (dot), respective-
ly. Note, these curves represent data from only one simulation
each.

for this type of growth is proportional to 1 —~. There-
fore, only for a ~ 1 can the (2) phase form following a
quench to r=0. For —,

' &~ & 1, the (2) phase can form

only by thermally activated growth. The required
thermal activation increases with decreasing ~. This ar-
gument reproduces the simulation results that the (2)
phase forms spontaneously only for ~ & 1 and that the ap-
parent glass transition temperature increases with de-
creasing a..

For quenches from high T to low T for ~ g —,', the criti-
cal configuration is the shrinking or decay of a single
stripe. Application of Eq. (2) to this configuration, shows
that the energy required to shrink such a stripe is propor-
tional to i~.. Therefore, for a &0 the ferromagnetic phase
can form spontaneously, in agreement with the simula-
tion results. However, for 0~a ~ —,

' the ferromagnetic
phase must form by activated growth and hence will not
form on quenches to T =0. Since the energy required to
form the ferromagnetic phase scales with a, the glass
transition temperature should increase with increasing ~
in this regime of x.

This simple analysis suggests that the glass transition
temperature in the equilibrium ferromagnetic region of
the phase diagram should decay linearly with the magni-
tude of the frustration parameter, x. Similarly, in the
equilibrium (2)-phase field, the glass transition tempera-
ture should scale linearly with I —a. The magnitude of
the transition temperature also depends on the length of
the observation or, equivalently, on how long we are wil-

ling to run the simulation. Recognizing that the time re-
quired for the formation of the equilibrium phase sca1es
as the exponential of the energy barrier over the tempera-
ture, we expect the glass transition temperature to scale
inversely with the logarithm of the observation time.
This relative insensitivity of the transition temperature to
the duration of the observation is another hallmark of a
glass. The linear dependence of the glass transition tem-
perature on a in the ferromagnetic regime and on 1 —x in
the (2) regime suggests that in the vicinity of the mul-

ticritical point (a= —, ), the equilibrium phase will never

be achieved for any observation time. However, very
close to the phase lines critical effects may become impor-
tant.

For x quenches at constant temperature, we found that
for x &2, the initially ferromagnetic phase destabilizes
and the (2) phase is formed immediately. Further, our
simulations have shown that the (2) phase forms by nu-
cleation and growth for systems quenched to 1.6 ~ x g 2.0
at T =0.08. Both of these phenomena can be understood
in terms of the same type of energetic/growth arguments
employed above. Consider erst the energy required to
Hip the first spin in a ferromagnetically ordered system.
The energy required for such a spin Aip is proportional to
2 —x'. Once this first spin Aips, the energy required to
continue growing the stripe is proportional to 1 —~, as
discussed above. Therefore, for ir & 1 the critical nucleus
is a single spin. This then suggests that there is no bar-
rier for growth at x&1. Further, even if such a spin
manages to form for ~&1, it will not grow. In other
words, the critical nucleus for a ~ 1 is of infinite extent.
For 1 &a &2, the nucleation event occurs via a thermal
activation of an individual spin Aip. Setting the nu-
cleation time equal to the exponential of the activation
energy over the temperature (0.08 in these simulations),
we 6nd typical nucleation times of order 12000 MCS for
~=1.6, 75 MCS for ~=1.7, 0.5 MCS for ~=1.8, and
0.003 MCS for ~=1.9. These crudely estimated nu-
cleation times are in good agreement with the simulation
results (see Fig. 18).

In as much as ANNNI or ANNNI-like models are em-

ployed as models of phase behavior of real materials, the
present simulations provide kinetic results which should
be incorporated in interpreting observed phases. It has
recently been suggested' that the application of this type
of model can explain polytypism (the arrangement of
identical or nearly identical structural units to create an
ordered structure) in a wide class of materials. The pro-
totypical polytypic system is SiC in which the stacking
sequence of the close packed planes repeats periodically.
More than 100 difrerent stacking sequences are known.
Polytypes of SiC are known to have repeat distances
varying between 0.5048 and 1200 nm. '

The stacking sequences observed are known to depend
sensitively on the method and conditions of preparation
of the sample. Strong sensitivity to the details of the con-
ditions under which the material was prepared is general-
ly a signature of the presence of metastability. The large
range of observed crystal structures in SiC suggests that
there are a large number of nearly degenerate states very
close in energy to the true ground state. However, even if
a large number of diN'erent equilibrium states exist, the
present simulations suggest that some of the observed
crystal structures may be determined more by kinetic
frustration than equilibrium considerations. The present
simulations further suggest that it may be possible to
form essentially random stacking sequences in polytype
prone materials such as SiC under severe deposition con-
ditions. Experimental work by Shinozaki and Sato' pro-
vides evidence that such random stackings do indeed
occur.
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VII. SUMMARY

A large number of Monte Carlo simulations of order-
ing in the two-dimensional ANNNI following a quench
have been performed on large lattices using nonconserved
dynamics for a wide range of frustration parameters, x,
and temperatures. It was found that in quenches from
T && T, to T & T, for a &0 {i.e., in the ferromagnetic re-

gime) ordered domains form quickly and coarsen with the
expected t '~ kinetics. Similarly, quenches from T «~ T,
to T & T, for a & 1 {i,e., in the striped, ( 2 )-phase regime)

quickly produce striped domains which also coarsen with

the expected t ' kinetics. However, for 0 ~ x g 1,

quenches to low temperature produce a disordered,
"glassy" phase, which shows logarithmic ordering kinet-
ics and is insensitive to whether the underlying ground
state is ferromagnetic or (2) phase. Quenches to higher
temperatures show the presence of a 6nite glass transition
temperature. Discontinuous changes in the value of the
frustration parameter from the ferromagnetic to (2)-
phase region of the phase diagram at low temperature
yields a phase change which occurs via classical nu-
cleation and growth. A simple energetic/growth model
has been proposed which accounts for all of the tempera-
tures at which the ordering kinetics undergo transitions.
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