
PHYSICAL REVIE%' 8 VOLUME 37, NUMBER 7 1 MARCH 1988

PalRSe tl'RnSltlonS ill lnRgnetlC SIIPei'lRttlCCS

R. E. Camley
Department ofPhysics, Uniuersity ofColorado, Colorado Springs, Colorado 80933-7j50

D. R. Tilley
Department ofPhysics, Uniuersity ofEssex, IViuenhoe Park, Colchester, C043SQ, England

(Received 5 May 1987)

%e investigate the magnetic-Seld- and temperature-dependent equilibrium structure of magnetic
superlattices formed from two ferromagnetic materials which couple antiferromagnetically at the
interfaces. Both a macroscopic, Landau-oinzburg, and a microscopic approach are used. Due to
competing exchange and Zeeman interactions, a variety of phases exist in the superlattice. There
are aligned phases where all the spins are either parallel or antiparallel to the applied 6eld, and
there is a twisted phase where the spins in each layer lie at a di8'erent angle with respect to the ap-
plied 6eld. %'e show that small changes in the layering structure can lead to dramatic changes in
the phase diagram.

I. INTRODUCTION

One of the most important features of superlattices is
that the properties of the superlattice may be tailored by
varying the layering sequence. Magnetic superlattices, in
particular, can be very sensitive to changes of even one
layer. For example in a superlattice composed of fer-
romagnetic films alternating with antiferromagnetic films,
the ground state of the system depends critically on the
number of microscopic layers inside each antiferromag-
netic film. ' An odd number of layers is more likely to
produce a ground state where the spins all line up either
parallel or antipsrsllel to an applied magnetic field. In
contrast, an even number of layers in the sntiferromagnet
often produces s twisted state where the individual spins
are at some angle to the magnetic field. The differences
in the ground state generally also produce differences in
the spin-wave excitations which propagate through the
superlattice. Such differences can then lead to variations
in the ir absorption spectrum that can be tailored to be in
a desired frequency range.

Many earlier papers on phase transitions in magnetic
superlattices considered only the case T=o and dis-
cussed phase transitions produced by an external field

which varied in magnitude. ' There have also been some
studies of temperature dependence in superlattices (calcu-
lations of the critical temperature as a function of the lay-
ering for example) using a Landau-Ginzburg expansion of
the free energy. The thermodynamic studies have con-
centrated primarily on the case of two ferromagnets
which are also coupled ferromagnetically at the interface.
This system is particularly simple since the ground state
always has all the spins pointing in the same direction,
the direction of an applied magnetic field.

In this paper we will consider in detail a rather intrigu-
ing system —a superlsttice composed of two difkrent fer-
romagnets which couple antiferromagneticaliy at the in-
terfaces. Such s superlattice might be formed from alter-

nating layers of Fe snd Gd for example. ' We will exam-
ine the H-T phase diagram of this system using both s
microscopic treatment ss well as a Landau-Ginzburg ex-
pansion. In contrast to the superlattice composed of fer-
romagnetic layers which sre ferromagnetically coupled,
we will see that our system can have many diferent
ground states and as a result have a variety of possible
phase transitions. %'e would like to note that in addition
to the Fe/Gd system, there are a number of other materi-
al combinations which might be reasonably treated as
two ferromagnets with antiferromagnetic coupling
present at the interfaces. The combination of a rare-
earth and transition metal often leads to an sntipsrallel
magnetic coupling between the rare-earth 4f and 5d spin
moment snd the 3d moment of the transition metal. In
addition, we may consider the Fe/Cr/Fe system ' where
a very thin Cr film causes antiferromagnetic coupling be-
tween the Fe films. Similar constructions include the
Fe/Ag/Fe systems, and FeNi films separated by EuS.9

%'e expect our model system to provide a qualitative
guide to the behavior to be expected for systems with an-
tiferromsgnetic coupling.

In our work, we consider a model system of a bcc fer-
romagnet with S=—,

' (Fe) which is coupled antiferromag-
neticslly at the interfaces to another bcc ferromagnet
with 5 = —', (Gd). Of course bulk Gd is not a bcc structure
and the anisotropy fields in bulk Gd, which we neglect
here, play an i.mportant role in a spin reorientation tran-
sition near T=234 K. ' Nonetheless, our model should
give the general properties of the superlattice correctly
within the limitations of the mean-field approximation.
%'e also include an external magnetic field along the z
direction. We find that there are basically four possible
ground state configurations in the low-temperature and
low-field llm it.

(l) All the Gd spins are aligned with the magnetic field
snd all the Fe spins are sntiparallel to the applied field.
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%e call this state aligned Gd.
(2) All the Fe spins are aligned with the magnetic field

and all the Gd spins are antiparallel to the applied field.
%'e call this state aligned Fe.

(3) A state where both the Gd and Fe spins are at an
angle with respect to the external field. The direction and
magnitude of this angle varies with position. This is the
twisted state.

(4) A state where some of the Gd spins behave
paramagnetically while the Fe spins are still ordered fer-
romagnetically.

The various states come about because of competition be-
tween Zeeman energy, which would be minimized if all
the spins would line up with the external field, and the ex-
change energy, which mould be minimized if the Gd spins
and the Fe spins were oppositely oriented. %'e will dis-
cuss the details of this competition in detail later. As we

will see, which state is the ground state will depend criti-
cally on the number of layers of Fe and Gd as well as the
temperature and the applied field. This will allow us to
gain considerable flexibility in designing the properties of
the superlattice.

The remainder of the paper is as follows. In Sec. II we
consider the superlattice from the microscopic point of
view and obtain the H-T phase diagram for a number of
structures by numerically minimizing the free energy for
the superlattice. In Sec. III we develop the Landau-
Ginzburg expansion for the free energy, including the
effect of sharp interfaces. We then apply this work to the
case for low temperatures and find the ground states and
spin configurations as a function of applied magnetic
field. Finally in Sec. IV we present a short summary.

II. MICROSCOPIC APPROACH TO SUPKRLATTICKS

The geometry of the structure is illustrated schemati-
cally in Fig. 1. An applied field, Ho, is directed along the
z axis. There are n, layers of material 1 (Fe) and nz lay-
ers of material 2 (Gd) in each unit cell of the superlattice.

I8$8f8 F8

FIG. l. Schematic illustration of the geometry of a unit cell
of the superlattice. There are n& layers of Fe and n2 layers of
Gd. The spins in each layer may make different angles with
respect to an applied Seld.

The Fe and Gd spins are free to rotate in the xz plane as
shown in Fig. l. (The spins are not likely to have static
components in the y direction because this would set up
static demagnetizing fields. )

In this work we consider nearest-neighbor interactions
only. The inclusion of additional neighbors is straightfor-
ward. The exchange-coupling constant between Fe spins
is J„between Gd spins is J2, and between a Fe and a Gd
spin is JI. For this paper we take the case where both J,
and JI are fairly strong compared to J2. Our parameters
have the values J, =1, JI ———1, and J, /Jz ——0. 155. The
ratio J, /J2 is obtained by comparing the transition tem-
perature for Fe and Gd.

The method used to find the ground state of the super-
lattice structure at a given temperature and applied field
has been described previously in a paper dealing with
spin reorientations in thin Gd films on Fe substrates. "
For completeness, however, we give a brief outline of this
method here. It is best to start by finding the ground
state at T =0. In this case the spin configuration of the
superlattice is described by a set of n I +@& angles which
give the deviation of the spins in each plane of the unit
cell.

The ground state is found by an iteration method.
Once an initial configuration is chosen, we may find the
effective field, H;, which acts on the spin in layer i. This
effective field is the sum of the exchange field and the
external field. Thus for a bcc structure 0; is given by

Hi'=4(Ji, i+Pi+i+ a;i —isi —i)+Ho* (2.1)

Here J, , +, is the exchange-coupling constant between
spins in layers i and i +1, Ho is the external field, and S;
is the spin in layer i. The iteration procedure now works
as follows. %'e randomly pick a spin in a particular layer.
The effective field acting on that spin is found through
Eq. (1) and the spin is rotated to point in the direction of
the efFective field. This necessarily lowers the energy of
the structure. A new spin in a difFerent layer is then ran-
domly chosen and rotated to lie along its efFective field.
This process is continued until one has a self-consistent
state ~here all spins are aligned with the e8'ective fields
produced by the neighboring spins. DifFerent initial
configurations may lead to di8'erent self-consistent final
states. The ground state is of course the lowest-energy
final state which is also stable.

We have left out one point in the above discussion.
The layers of spins at the ends of the unit cells will natu-
rally be coupled to spins in other unit cells. One would
normally expect that spins in equivalent layers in
difFerent unit cells mould be related by a phase factor of
the form exp(iql. ). We have taken q=0 so that the
equivalent layers of spins in all unit cells all point in the
same direction. This is certainly the simplest and most
likely case. An extension of the method to finite q is
straightforward.

For finite T, both the direction and thermal averaged
magnitude of the spins in each layer must be specified. In
this case the iteration procedure operates as follows. A
spin is first rotated into the direction of the e8'ective field,
and then its thermal averaged magnitude in that direc-
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tion is found through the use of the Brillouin function

(2.2)

and the Brillouin function is given by
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where Z is the partition function for the unit cell of the
superlattice. In the mean-field approximation Z is given
by

Z= ffZ;, (2.6)

where Z, is the partition function for the spin in layer i in

the self-consistent e8'ective field. Z, is given simply by

sinh[(2S, +1)H, /2kT]
z

sinh[H, /2kT]
(2.7)

The stability of the various phases is defined numerically.
If we choose the initial configuration to be arbitrarily
close to the con6guration of interest and the iterative
program diverges away from this configuration, then that
structure is unstable.

The H-T phase diagram for the superlattice can now

(2.4)

Here (S, ) is the thermal average of the spin in the ith
layer in the direction of the effective field. The effective
field H; is still given by Eq. (2.1) but now the spins S, +,
and S;, are replaced by their thermal averages as well.
Again the entire operation is repeated for all spins in a
unit cell until a self-consistent state results.

Depending on the initial spin con6guration, diferent
final self-consistent states can be found. For 6nite T, one
must choose a stable state with the lowest free energy.
The free energy, as usual, is given by

(2.5)

FIG. 3. Phase diagram for the superlattice with a unit cell of
four Fe layers and four Gd layers. The reduced temperature is

T/T„where T, refers to the transition temperature for bulk Fe.
The field is given 1n dimensionless units by h =00/JSF, . No-

tice that the transition between the aligned-Gd state and the
twisted state takes place well above the transition temperature
for bulk Gd of t =0.275.

be determined by using the numerical method outlined
above. As examples, we will consider two special cases:
(1) The unit cell contains seven Fe spins and five Gd
spins, and (2) the unit cell contains four Fe spina and four
Gd spins. The phase diagrams for the two cases are
presented in Figs. 2 and 3. As can be easily seen, the
small change in the structure results in phase diagrams
which are completely dift'erent.

We consider first case (1). For low temperatures and
moderate 6elds, the ground state is a twisted state illus-
trated in Figs. 4(a) and 4(b). As the temperature is in-
creased, the ground state becomes an aligned state [see
Fig. 4(c)] where the Fe spins all point along the direction
of the external field and all the Gd spins point opposite to
the external 6eld. As the temperature is further in-
creased, we come to the state labeled A1, where the in-
nermost layer of spins in the Gd 61m has become
paramagnetic.

To understand the basic features of the phase diagram,
we consider 6rst the T =0 situation. Here an aligned
state, either aligned-Gd or aligned-Fe„has no net Zeeman
energy. The aligned state is unstable, and the system

PA t = 0.15
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FIG. 2. Phase diagram for the superlattice with a unit cell of
seven Fe layers and five Gd layers. The reduced temperature is
T/T„where T, refers to the transition temperature for bulk Fe.
The field is given in dimensionless units by I1 =Ho/JSF, .

ttttttt„~«,
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t = 0.25

Fe Gd

FIG. 4. Illustration of the spin positions for the various
phases of the 7Fe/5Gd superlattice. All states are for h =O. l.
(a) and (b) are twisted states, while (c) is an aligned-Fe state. %e
show an entire unit cell of the superlattice with seven layers of
Fe and five layers of Gd. The thermal average values for the
magnitude of the spins are proportional to the length of the ar-
rows representing the spin in each layer.
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flops into a configuration where both the Gd and Fe spins
are nearly perpendicular to the field but have small com-
ponents parallel to the field. This is the twisted state of
the superlattice. (This situation is analogous to the spin-
fiop state in antiferromagnets. )

The actual configuration in the twisted state depends
on the competition between the exchange energy, which
would be minimized if all Gd were all antipsrallel to all
Fe spins, and the Zeeman energy, which would be mini-
mized if all the spins pointed along the external magnetic
field. Such a situation is very similar to the competition
between the exchange energy and the anisotropy energy
which leads to domain walls. In fact, the twisted state
discussed here is very reminiscent of the structure found
in a domain wall as can be seen in Fig. 4. In domain
walls, sn increase in the snisotropy energy, which gives a
preferred direction for the spins, results in a decrease in
the width of the domain wall. Here an increase in the
magnetic field, which again gives a preferred direction for
the spins, results in a decrease in the width over which
there is significant rotation of the spins. This is easily
seen in Fig. 5 where we plot twist angle as a function of
position for difkrent magnetic fields.

As the temperature is increased, the thermal averaged
magnetic moment of the Gd spins decreases rapidly com-
pared to the thermal averaged magnetic moment of the
Fe spins (the exchange constant for Gd-Gd interactions is
much smaller than that for Fe-Fe interactions). As a re-
sult, the amount of Zeeman energy which can be gained
from the Gd spins is reduced. The competition between
the Zeeman and exchange energies now forces the Fe and
Gd spins to become progressively more antiparsllel and
also the Fe spins begin to point closer to the direction of
the applied field. As the temperature is further increased,
we get a smooth second-order phase transition to the
aligned state ~here all Fe point along the external field
and all the Gd point opposite to the external field.

The behavior of the different layers of spina as a func-
tion of temperature in the aligned state is also interesting.
The outermost Gd spins see s large effective exchange
field due to the strong coupling of the neighboring Fe
spins. As the temperature is increased, the thermal aver-
aged magnetic moment of these spins decreases slowly.
In contrast, the inner Gd spins see a smaller efkctive field

{c)

(}t t t t t =0.4

FIG. 6. Illustration of the spin con6guration for the various
phases of the 4Fe/4Gd superlattice. All states are for h =0.01.
(a) and (1) show the aligned-Gd state at two di5'erent tempera-
tures, (c) is the twisted state, and (d) is the aligned-Fe state. The
figures show a unit cell of the superlattice with four layers of Fe
and four layers of Gd.

and thus develop a smaller thermal averaged moment.
This leads to the structure seen in Fig. 4(c), where the
inner Gd spins have a sigmficantly smaller moment than
the outer Gd spins. As the temperature is further in-
creased, the innermost Gd spin eventually undergoes a
transition to paramagnetic behavior. This spin then lines
up with the external field, and the system is in the A1
state.

The superlattice with four Gd layers snd four Fe layers
in a unit cell has qualitatively difrerent behavior. In this
case at T =0 the Zeeman energy of the system is lower
for the aligned state with Gd parallel to the field (and Fe
antiparallel) than for the aligned state with Fe parallel to
the field (and Gd antiparallel). The aligned-Gd state is
also stable snd is thus the ground state. As the tempera-
ture is increased, the average Gd moment is reduced snd
eventually the Zeeman energy of the Gd spina and the Fe
spins sum to zero. Here, as in the case of seven Fe layers
and five Gd layers, the aligned state becomes unstable,
and the system flops into the twisted state. As the tern-
perature is further increased, there is another transition
into the aligned-Fe state where the Fe spins point along
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FIG. 5. Twist angle as a function of position for difFerent ap-
plied 6elds for a 7Fe/5Gd superlattice. %'e show an entire unit
cell of the superlattice with seven layers of Fe and 6ve layers of
Gd.
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FIG. 7. Critical 6eld for the transition from the aligned-Gd
state to the twisted state at T =0 as a function of number of lay-
ers n in an npe/nGd superlattice.
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FIG. 8. Phase diagram for the superlattice with a unit cell of
ten Fe layers and ten Gd layers. Here in contrast to Fig. 3 the

transition between the aligned-Gd state and the twisted state

takes place below the transition temperature of bulk Gd.

III. CGNTINUUM APPROXIMATIQN

the field and the Gd spins are antiparallel to the field.
This transition from the twisted state to the aligned-Fe
state occurs for the same reasons as it does in the system
with unit cell 7Fe/5Gd. The spin configurations in the
difFerent phases are shown in Fig. 6.

The transition between the twisted and aligned-Gd
state at T =0 for the 4Fe/4Gd superlattice occurs at a
very high field. This field depends critically on the num-
ber of layers in each ferromagnetic film. In Fig. 7 we plot
the critical field as a function of number of layers n for an
nFe/nGd superlattice. We see in this figure that as n is
increased, there is a dramatic reduction of the field re-
quired to cause a transition from the aligned-Gd to the
twisted state, a result similar to one found in
ferromagnetic-antiferromagnetic superlattices. ' In an
earlier paper„" we argued that the twisted state was to be
expected whenever the penetration depth of the twist was
smaller than the numbers of layers in the film. Since the
penetration depth of the twist increases as H is decreased,
a larger 61m will allow twisted states at smaller applied
fields. As an example, the phase diagram for a superlat-
tice with a unit cell of 10Fe/10Gd is presented in Fig. 8.
This phase diagram looks very similar to the one for a su-
perlattice with unit cell 4Fe/4Gd except that the magnet-
ic field has been reduced by about a factor of 10, Note
also that the transition temperature between the aligned
and the twisted states for H =0 has been reduced.

%e have seen in this section that microscopic changes
in the layering pattern lead to significant difFerences in
the ground-state configurations. There will, of course, be
macroscopic consequences as well. Clearly, the spin-
wave excitation spectrum will be difFerent for different
ground states. In addition the magnetization and mag-
netic susceptibility wi11 also depend on the ground state.

(3.1)

The parameter c, determines the characteristic length for
changes in M. For the Heisenberg Harniltonian on a bcc
lattice, the corresponding term in the Taylor expansion is

(3J, /d )fdx dy dz[(VS„) +(VS, )z], (3.2)

where d is the cube edge. Comparison of the terms with
the use of the usual relation

M=gp&SfQ,

where 0=d /3 is the volume per spin gives

ci =3Jid /4g pg

(3.3)

(3.4)

This determines the characteristic length in terms of mi-
croscopic parameters.

The free energy in medium 2, I'2, is given in terms of E
by the same expression as F&, with parameters a 2, bz, c2.
The presence of the interface at y =0 introduces the addi-
tional invariants (M„+M, )» 0, (X„+X, )» 0, and
( MN„+MR, ) o, so that the interface free energy is

I'Io —— dx dz —,'c&
&

' M„+M, 0

+ —,'c,5, '(&„'+&, )o

+a(M„N„+M,N, )oj . (3.5)

The final term expresses the coupling across the interface.
Comparison with the expression

sions apply for all values of the thickness of the two
med18.

The continuum theory can be derived by a Taylor™
series expansion of the free-energy expression resulting
from the Hamiltonian; an explicit example is given by
Cottarn et QI. ' It is more straightforward in the present
case simply to write down the free energy in terms of the
invariants of the system. Let M be the vector represent-
ing a spatially varying magnetization in a film occupying
the space —d, gy ~0. Similarly N is the magnetization
in the region 0gy gd2. %e restrict attention to twisted
states, in which reconstruction consists of rotations about
the y axis so that the magnetizations M and N have com-
ponents (M„,M, ) and (N„,N, ). Within medium 1, the
free energy is expanded in terms of the second- and
fourth-order invariants under rotation about the y axis:

Fi ——f dx dz f dy [ BOM—, + —,'a i(M„+M, )
oo 1

+ —,'b, (M„+M, )

+ —,'c, [(VM„) + ( VM, ) ] ) .

A. General formulation —
—,'(J, /d ) f dx dz(S,„Sz„+S„Sz,) (3.6)

%'hen the change in spin value and orientation from
one site to the next within either medium is not too great,
the microscopic mean-field theory used in the preceding
section can be approximated by a continuum theory.
This has the advantages that explicit analytic expressions
can be given for the twisted states, and that these expres-

derived from the Hamiltonian gives o. in terms of the ex-
change parameter Jz. For our model of gadolinium on
iron, JI is antiferromagnetic and a is positive.

The equilibrium configuration is found from the
Euler-Lagrange equations for the minimum value of the
total free energy I' =F

&
+I'2+Fr, namely
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BM—So+a,M+b, I
M

I
'M —c, =0,

2
(3.7)

BN—Bo+azN+bz i
N

i
N —cz ——0,2

(3.8}

with boundary conditions at y =0.

c, +5) M +aN=0,BM

y
(3.9)

C2 +5z 'N +aM=0.
y

(3.10)

(M„M, )=M(sin8, cos8),

(N„,N, )=N(sing, cosP),

(3.11)

(3.12)

with M and X treated as constant. This describes the
I

8. Constant-amplitude approximation

The full set of Eqs. (3.7)—(3.10) is quite formidable, and
we, therefore, reduce them by means of the constant-
amplitude approximation

reconstruction in terms of constant-magnitude vectors M
and N rotating through angles 8 and P from the z axis.
The approximation should be a good one at low tempera-
tures, but it cannot be valid at temperatures that are too
close to the critical temperature of gadolinium. To be
more specific, the constant-amplitude approximation
should be reasonable if the variation in the magnitude of
the spin is small, say no more than 20% between the
maximum and minimum values. In the microscopic
model we found that the largest variation in spin magni-
tudes occurred in the Gd 61ms, with the Gd spins near
the interfaces having the largest magnitude (close to the
T =0 value) and those in the center having the smallest
value (close to that for spins in bulk Gd at the particular
temperature under consideration). The decrease in the
spin magnitude from the edge of the Gd 61m to the center
was steady and showed no oscillations. Thus the ratio
S~;„/S,„ is approximately given by S(T)/S(0). For
Gd, S(T)/S(0)=0.8 at a teinperature of about 0.68T„
about 200 K. Thus one would expect the constant-
amplitude approximation to be reasonable for the range
0-200 K.

The functional dependence of the free energy I' on 8
and/ is

'2
p d6I

dy —BpM cos8+ —'c) M
A 2 dy

d
'2

+ dy BoN cosP+ ,—czN—2 z

0

+aMN cos(8 —P )
I y o+aMN cos(8 —0) I y (3.13)

c ) M 2
—BpM sin8 =02d (9

dy

czN BoN sing=—O,
dy

(3.14)

(3.15)

with boundary conditions at y =0

c,M aMN sin(8 —tI) }=0-,
2d8

y
(3.16)

where A is the specimen area in the x-z plane. The equa-
tions for minimum I" are

The remainder of this section is devoted to solutions of
(3.14)-(3.18). Appropriate numerical values of the vari-
ous numerical parameters are given in Appendix A.

C. Semi-inSiaite media

%e start with the relatively simple case of two semi-
infinite media in contact, d, and dz~oo. For any
nonzero value of Bp, the spins are aligned with Bp at a
large distance from the interface, Thus 8~0 and
d8/dy~0 as y~ —ao, with the result that the constant
of integration in (3.18}is

~2d aMN sin(8 —P) =0 .— (3.17) I) ——A) . (3.20}

'2
1 d8 +A, ) cos8=1),
2 dy

(3.18)

Equations (3.14) and (3.15) describe "upside-down"
pendula; the reason why they are upside down is ex-
plained by Ribeiro Filho et al. ' The Arst integral of
(3.14) is

cos—,'8= tanh[A, ,(y, —y )],
and similarly

cos —,
' P = tanh[A 2(y —y z )],

(3.21)

(3.22}

Equation (3.14} is now solvable in terms of hyperbolic
functions; in fact

where y) and y2 are constants of integration. In the
twisted state, both M and N turn away from the z axis;
the signs of 8 and P are chosen, arbitrarily, so that 8 & 0
and $~0. Note that y ~0 in (3.21) and y &0 in (3.22).
The solutions we 6nd always have y, )0 and y2 &0, so
that 8 and P lie within the ranges 0 & 8 ~ n and
—m &/&0.

k) ——Bp/c) M (3.19)

and l „is the constant of integration. One can obtain a
similar first integral for Eq. (3.15) with a Az BolczN as-—
the integration constant.
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Given these solutions, it is easy to evaluate F/A from
(3.13):

F F—„=(4BoM/A, , )(1 t,—)+(4BoX/h, z)(1 tz)—

+aMN [(2r z, —1)(2r z
z—1)

rz)i jz(1 iz )I/z]

where

D. Superlattice reconstruction

We now turn to superlattices, in which d, and dz in

Fig. 1 are finite. As discussed in Sec. II, the superlattice
reconstruction is periodic, so that 8(y+L)=8(y) and
P(y+L)=P(y), where L=d, +dz is the superlattice
period. Furthermore, in the unit cell, 8 is symmetric
about y = —d, /2 and is symmetric about y =d z /2.

%'ithin the constant-amplitude approximation,
(3.14)—(3.18) continue to apply. Now, however, the equa-
tions must be solved for general values of the constants of
integration /, and I z. Since d 8/dy =0 at y = —d, /2 and
dgldy =0 at y =dz/2, it is seen from (3.18) and the cor-
responding equation for P that

t i
——tanh(A, ,y, ), O(l; ~k, , i=1,2. (3.26)

t z
——tanh( —

hazy z ) (3.25)
The solution of (3.18) can be given in terms of elliptic

functions; the forms that satisfy the symmetry require-
ments on 8 and P are

and F„ is the free energy of the (spurious) fully aligned
state with 8=/=0 and a=0. Minimization of F F„—
with respect to t

&
and tz now yields values of the con-

stants of integration y, and yz, and the angles 8 and P are
found from (3.21) and (3.22).

Examples of reconstruction predicted in this way are
shown in Fig. 9. As in previous calculations based on
the mean-field theory of Sec. II, and as expected on gen-
eral grounds, the width of the reconstructed region de-
creases as the applied Geld 80 increases. Note that the
length scale used in Fig. 9 is large compared with inter-
atomic spacing, so that the reconstruction is spread over
a substantial number of atomic planes.

cos( —,'8) = —m ', sn(A, ,(y+ —,'d, ) —K, I m, ), (3.27)

sin(-,'8) =dn(~, (y+-,'d, ) —K, I m, ),
cos( —,'~I) ) =m z sn(A z(y ——,'dz )+Kz

I mz ),
sin( —,'P) = —dn(A, z(y ——,'dz )+ Kz I m z),

(3.28)

(3.29)

(3.30)

where

m, =(I, +A, ; )/2A, ;, K; =K(m; ), i =1,2 . (3.31)

The signs have been chosen so that 8 p 0 and P & 0.
The expression for the free energy F can be evaluated
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FIG. 9. Variation of 8 and P with position y (measured in m)
for a single interface between iron and gadolinium. Q has the
value 5.85& IO m '. For higher magnetic fields, the variation
in angle takes place over a narrower region.

FIG. 10. Equilibrium configurations for an Fe-Gd superlat-
tice with di ——d2 ——2' ' for difFerent values of an applied field.

Q has the value 5.85 X 10' m '. Note the similarity to the mi-

croscopic results presented in Fig. 5.
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from these forms, and the result is given in Appendix B.
In order to find the equilibrium conGguration, we mini-
mize F with respect to variations of the constants of in-
tegration 1&, and lz within the doinains given by Eq.
(3.26). In practice, it is somewhat easier to minimize with
respect to m, and m2, both lying within Og m ~ 1, as
seen from (3.31).

An example of reconstruction in a superlattice as de-
rived from the above results is shown in Fig. 10. For the
thicknesses used in that figure, the interface energy plays
a very important part, and the reconstruction ensures
that 8—/=180' for spins near the interface for all values
of applied field Bo. As is to be expected, the angles
change more rapidly in larger fields.

IV. SUMMARY

%'e have investigated the equilibrium structure of a
magnetic superlattice formed from two ferromagnetic
materials which couple antiferromagnetically at the inter-
faces. %e Grst studied superlattices using a microscopic
approach. In contrast to a superlattice with ferromagnet-
ic films which couple ferromagnetically, a variety of
phases can exist in this system. There are two aligned
phases, aligned-Fe and aligned-Gd, where all the spins
are either parallel or antiparallel to an applied field. In
addition there is a twisted phase where the spins in each
layer lie at some angle with respect to the applied Geld.
The phase diagram, and thus macroscopic quantities such
as ir absorption or magnetic susceptibility, is a sensitive
function of layering pattern. Changes of a few atomic
layers in a film can have very dramatic effects on the
phase diagram.

Some macroscopic applications may involve fairly
thick films. In this case it is appropriate to use a macro-
scopic Landau-Ginzburg approach. Two geometries
were discussed in detail: (1) two semi-infinite ferromag-
nets which are antiferromagnetically coupled at the inter-
face; and (2) the superlattice structure with ferromagnetic
films which are antiferromagnetically coupled. Here we
studied the structure of the twisted phase at T=0 and
presented analytic expression for the twist angle as a
function of position.

Clearly a number of extensions to this work are ap-
propriate. More realistic calculations would include an-
isotropy energies. Furthermore the influence of the inter-
face exchange parameter has not been completely ex-
plored. Finally, in a Gnite superlattice there might be
surface phase transitions which we have not discussed
here.

TABLE I. Nunencal values for Fe and Gd.

T, {K) M (Am ')

1043
293

1.385x 10'
1.600x 10'

3.087 x 10-"
4.042 x 10-"

2.110x10 "
2.424 x 10-"

where p is the numerical value of M/S. For the interface
exchange constant we assume Jz ——JF„as was done by
Camley;" this gives

a=7.453X10

In numerical work, lengths are scaled in terms of A,z ',
where

The parameters A, , and A,z of Eq. (3.18) and its analogue
are

Numerical values are presented in Table I.

APPENDIX 8: FREE-ENERGY EXPRESSION
FOR A SUPKRLATTICK

The expression for the free energy is found by substitu-
tion of the solutions (3.27)-(3.30) into (3.13). The two in-
terface terms are equal because of the symmetry of 8 and
P about the midpoints y= ——,'d, and y= —,'d2. The in-

tegrals occurring can all be evaluated explicitly, and the
final expression for the free energy is

F=~»+~i2+~2i +F22+Fr (81)

where

Fii ——(28OM/A, i)[E(E,
~
mi) —E(Ki ——,'A, ,di

~
mi)],

F,q
——2ciM Aimi[E(Ei i mi) —E(E, —

—,'A, ,di i mi) (82)

Fe and Gd are given in Table I. Exchange constants are
evaluated from the standard expression

J=3k' T, /2zS(S+1)

and estimates of c are taken from

c =6J/dP
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F2, ——(28oN/A2)[E(Kz i m2) —E(E2 —
—,'Aide

i m, )],
(84)

F~g 2C~N )(2m~[E(E~——
~
m2) —E(E2 —

—,X2d2
~
mp)

APPENDIX A: NUMERICAL ESTIMATES

Appropriate expressions for estimating numerical
values are given by Kittel, ' and the values used here for

——,'(1 —m2)A2d2),

Fz ——2aMN [(m, sn, —dn, )(m zsnz —dn2)

+4(m
~

mz)' sn, dnisn2dn2],

(85)
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m; =(I, +A, , )/2A, ;, K, =K(m, ), i =1,2,

sn, =sn(-,'X,d, —K, ~m, )

dna =dn(? A, id' —Ki i
m i ),

snz ——sn( ——,'A, zdz+Kz
~
m? )

dn, =dn( ——,'A, ,d, +K,
~

m?) .

K is the complete elliptic integral of the second kind, and
F is the incomplete elliptic integral. All notation is the
same as in Abramowitz and Stegun. '
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