PHYSICAL REVIEW B

VOLUME 37, NUMBER 1

1 JANUARY 1988

Coherent Kondo-lattice state and the crossover transitions in the Anderson-lattice model

H. Kaga, H. Kubo, and T. Fujiwara
Department of Physics, Niigata University, Niigata 950-21, Japan
(Received 19 March 1987)

We study the formation of the coherent Kondo-lattice state responsible for the heavy-fermion
quasiparticle state in the Anderson-lattice model, and discuss the crossover transitions between the
incoherent and coherent Kondo-lattice states, and between the coherent Kondo-lattice state and

the valence-fluctuation state.

The f-electron lattice Green function is obtained in the self-

consistent equation-of-motion method in the decoupling approximation, and is found to have a
characteristic feature of lattice different from the impurity Green function. The overall f-electron
densities of states are studied as a function of temperature. In the Kondo-lattice regime, as tem-
perature decreases, the crossover transition from the incoherent to the coherent Kondo-lattice
states takes place before the single-site Kondo resonances are fully developed at individual sites.
Thus the lattice Kondo effect is distinct from the impurity one. The coherent Kondo-lattice state,
which has a sharp pseudogap at the Fermi level, fully develops at the coherence temperature
Ty ~0.1Tx, which is in agreement with the experimental results.

1. INTRODUCTION

The heavy-fermion state’? found in Ce compounds
CeAl,, CeCu,Si,, CeCu,, and some uranium compounds
is arousing a considerable interest in the circle of
condensed-matter physicists. The study of this subject!
may be related to the fundamental problems such as the
development of coherence in the Kondo effect,’ its com-
petition with the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction,>* and the mechanism® for the
unusual heavy-fermion superconductivity of CeCu,Si,,*
UBe,;,” and UPt,.}

Resistivity measurements of CeAl;,”!° CeCu,Si,,!" and
CeCuq,'? show that at high temperatures these systems
behave like an independent-impurity Kondo system with
an approximate logarithmic temperature dependence,
and at low temperatures they assume a coherent Fermi-
liquid state with a T? temperature dependence after a
resistivity maximum in the intermediate temperature
range of some tens Kelvins. The low-temperature
specific heats C(T) of these systems, CeAl;,!>%1*
CeCu,Si,,!* and CeCug,'® indicate an enormous enhance-
ment (of order ~10° in the specific-heat coefficient
y(T)=C(T)/T as large as 1-2 J/mol K?, suggesting a
very heavy effective mass m* for the Fermi-liquid state;
hence the name heavy-fermion state. Furthermore, the
observed temperature dependences of y(T) for all the
heavy-fermion Ce compounds show a peak y.,, at the
characteristic temperature T, (~0.5 K), called the
coherence temperature, and a sharp decrease at lower
temperatures. These coherence temperatures’>~1° T,
found from y ., =v(T,) approximately coincide with
the coherence temperatures T, below which the T2
dependence of the resistivity,’ !> which is expected in
the coherent Fermi liquid, is observed, and are on an or-
der of magnitude smaller than the impurity Kondo tem-
perature Ty.

These behaviors of y(7T) around the coherence tem-
perature T, have been interpreted by Bredl et al.'3 as the
effect of a pseudogap that may be formed at the Fermi
level due to the development of coherence between the
individual-site Kondo resonances. The possibility of
such a pseudogap in the Kondo resonance of the
Anderson-lattice model which was suggested by Martin'®
has been first shown by Grewe!” in the calculations of
f-electron density of states. The crossover transition
from the incoherent to the coherent lattice Kondo states
with decrease in temperature has been recently investi-
gated by Lacroix'® in the Kondo-lattice model by a
functional-integral method, and by Koyama and Ta-
chiki' in the Anderson-lattice model by a perturbation
theory of the one-loop approximation of spin fluctuation.
While a pseudogap is found in the coherent Kondo state
of the former, no pseudogap is formed in the latter
showing a sharp heavy-fermion peak at the Fermi energy
€r. Therefore, the existence of the pseudogap and the
position of the coherent Kondo peak with respect to the
Fermi energy are not well understood yet. Furthermore,
the precise interpretation of the coherence temperature
T, and its relation to the Kondo temperature Ty are
still unclear. These problems should be investigated in a
more systematic treatment of the various Kondo-lattice
states, including those in the border with the valence-
fluctuation states.

In this paper we study the lattice Kondo resonance in
the Anderson-lattice model in comparison to the impuri-
ty Kondo resonance in the self-consistent equation-of-
motion method by Green-function decoupling approxi-
mation. We make the unified treatments of both the
Kondo-lattice system and the valence-fluctuation system
by calculating the temperature-dependent f-electron
densities of states. However, we do not take into ac-
count here the RKKY interaction derived from the in-
tersite interactions. This effect can, in principle, be
treated in the higher-stage decoupling approximation,
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but it would be awfully complicated to solve the result-
ing self-consistent integral equations. The inclusion of
the RKKY effect in the study of the lattice Kondo effect
is important, as has been shown recently by Abrahams
and VarmaZ® and Jones and Varma?! because, in addi-
tion to the competition between the two effects, the real-
izable ground states are the modified ones; the spatially
correlated (or coherent) Kondo state and the reduced-
moment magnetic state. We will demonstrate that as
temperature decreases, the Kondo-lattice system exhibits
the two crossover transitions in the f-electron densities
of states p,(w) near the Fermi energy €g; i.e., the first
one to the impuritylike incoherent Kondo-resonance
states, and the second one to the coherent Kondo-lattice
states with a pseudogap, completing, respectively, at
about several Tx and 0.1T,. The coherent Kondo-
lattice resonance is responsible for the heavy-fermion
quasiparticle state. The transition from the coherent
Kondo-lattice (heavy-fermion) states to the valence-
fluctuation states with approach of the f-level €, to the
Fermi level € takes place also in a continuous crossover
fashion, where a sharp coherent Kondo-resonance spike
and a pseudogap are swept away to become a double-
peak resonance above €.

Theumann?? and Lacroix®® have studied the impurity
Anderson model in the Green-function decoupling ap-
proximation of Nagaoka,?* and Lacroix? has shown that
in the Kondo limit the Kondo-resonance peak of width
Ty arises at the Fermi-level €5 in the f-electron density
of states. The Anderson-lattice model has been recently
studied extensively by the decoupling approxima-
tions.>~ 2% In the Kondo-lattice regime only the impuri-
tylike Kondo resonance has been so far obtained,?2¢
and no characteristic features of the periodic system
such as a coherent Kondo resonance and pseudogap
have been reported.?>~%’

Recently, there have been active studies on the residu-
al interactions between heavy fermions, i.e., quasiparti-
cles formed at the low temperatures in the Anderson-
lattice model by Tesanovic and Valls?®® and by Lavagna
et al.’® and in the Kondo-lattice model by Auerbach and
Levin.3! These studies are important because the
remaining quasiparticle interactions determine the low-
temperature properties of the system. A superconduct-
ing instability may be induced if the pairing interaction
is dominant,’®?® and the type of the superconducting
state can be investigated from its vertex.*® By connect-
ing the self-energy and vertex of the residual interaction
with the Landau Fermi-liquid parameters the low-
temperature heavy-fermion properties in the coherent
states are successfully derived.’! All these interactions
are derived around the mean-field coherent states ob-
tained either by the equation-of-motion method® or by
the functional-integral method,*®3! which are applied to
the slave-boson Hamiltonian?*3? of the Anderson lattice
and to the Kondo-boson version’! of the Kondo lattice.
Therefore, these coherent ground states are realized by a
phase transition from the high-temperature phase.
Thus, this is a contrasting feature different from our re-
sult that the coherent state is reached by the two cross-
over transitions because fluctuations beyond a mean-field

approximation are partly incorporated in the decoupling
approximation. However, the remaining effective in-
teractions are not explicitly evaluated in this paper.

In Sec. II the Green functions of localized f and con-
duction electrons for the Anderson-lattice model are de-
rived by the self-consistent decoupling approximation in
the equations of motion. The f-electron Green function
of the Anderson-lattice model is compared with those of
the impurity Anderson model and of the single-site ap-
proximation of the lattice. The lattice f-electron Green
function and thus the self-energy in the present treat-
ment are found to have a characteristic form due to lat-
tice periodicity, different from the other two. The use of
the impurity self-energy in the lattice Green function
which is sometimes made'”3%>3? is pointed out to lead to
the incorrect results at low temperatures. In Sec. III the
characteristic temperatures for the f-electron density of
states near the Fermi energy €y are explored both in the
impurity and the lattice systems in the Kondo limit.
The impurity system including the orbital-degenerate
case is found to have the onset temperature Ty and the
developed-resonance temperature Ty for the impurity
Kondo resonance. In the Kondo-lattice system, howev-
er, we show that even with the same onset temperature
Ty, the impuritylike incoherent Kondo resonance
crosses over to the coherent Kondo-lattice resonance
above Ty (at several Tx). When the crossover is comp-
leted at the coherence temperature T~0.1 T, a coher-
ence is fully developed and the heavy-fermion quasiparti-
cle picture becomes valid. In Sec. IV the f-electron
spectra of the impurity and lattice Kondo resonances are
calculated numerically for the same parameters in the
limit of the infinite Coulomb repulsion U as a function of
temperature. The valence-fluctuation regime of the An-
derson lattice is also studied. Discussions are given in
Sec. V.

II. MODEL AND LATTICE GREEN FUNCTION

A. Self-consistent Green-function decoupling approximation

Except in Sec. III where the characteristic tempera-
tures are studied, we treat the Anderson-lattice model
without orbital degeneracy which is the periodic version
of the impurity Anderson model,**

H=3 ed| dyo+e; 3 flofio

k,o i,o
t
+U Efijrffi,lfi.ifi.T
i

| 4 ik-R;

—ik'R
—‘/T 2 (e ,dlt,afi,a+e

iflde,), ()

where €, is the conduction band (—D <g, < D) whose
density of states is assumed to be constant p=1/2D, &,
is the f-electron level, U the Coulomb repulsion between
f electrons with opposite spins on the same site, and V
the hybridization mixing between f and conduction elec-
trons, which are represented by the creation operators
f ,:'C, and d La, respectively.

We set up the equation of motion for the f-electron
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retarded Green function (f;,,f L, )) (compare with the
impurity one in Ref. 23),
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The two-particle Green function
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that appears on the right-hand side of Eq. (2) satisfies the
equation of motion,
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Here, we have three different new two-particle Green functions in Eq. (3), for each of which we set up the equation of

motion again,
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In Egs. (5) and (6) decoupling approximations are
made for the nondirectly correlating two-particle Green
functions, which are represented as a product of the
average and the one-particle Green function. Further-
more, the f-electron two-particle Green functions on the
right-hand side of Eqs. (4)-(6) are decoupled only when
site / is different from site i, in which case no one-site in-
teraction U operates. For example, in Eq. (5) for /54,

«fiT——an,— fi,o?f;,.a »

is reduced to

<fij~afl,—0’>«fi,c7’fj,-a »

but for [ =i,

«fif—af[,—crfi,a" },-a »

is treated without decoupling. Therefore, this Green-
function decoupling approximation, which was made in
the third stage of the hierarchy of the equations of
motion, amounts to taking into account the on-site f-
electron Coulomb correlation induced by hybridization
V up to the order of O(V?). Apart from the different
treatments of the on-site and off-site two-f-electron
Green functions and the summations with the Bloch

|

phase factor [exp(ik-R;), etc.] over sites and momenta
k’, this decoupling approximation is essentially the same
as the Nagaoka decoupling in the impurity s-d model**
and those of Theumann®? and Lacroix?’ in the impurity
Anderson model.

In order to obtain the f-electron Green function
( fiq:f)o ) one substitutes the two-particle Green func-
tions appearing on the left-hand side of Egs. (4)-(6) into
Eq. (3) and that of Eq. (3) into Eq. (2), and one hopes to
solve for {(f, ,.f] o 0 self-consistently. However, it is
easier here to solve for the k representation
U Sfkor fi g » instead of the site representation
L fiorfla D through the Fourier transform of Eq. (2),
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By representing the mixed Green functions such as
(dy.,.f), ) in terms of the f-electron Green functions
through their equations of motlon one obtains the equa-
tion to determine {(fy ,,f 1L , ) after a little calculation,
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and A=7wpV? with the constant density p=1/2D of
conduction-band states (2D denoting the bandwidth).

On the other hand, the conduction-electron Green
function (dy ,,d lt.,,, ) can be represented in terms of
the f-electron Green function from the equations of
motion as
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Hereafter, we discuss the case of the infinite Coulomb
repulsion U= o which is the simplest assumption often
made to represent the situations of the Kondo lattice
and valence-fluctuation systems. In this large U limit
the expressions (9)—(12) become
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B. The Green functions and the
self-consistent integral equation

So far we have retained in Eq. (8) the off-diagonal
terms which have the off-diagonal momentum averages

ﬂ)+8k1—2€f—‘U

I
of various electron occupancies such as
i
<dk1—q,»adkl, -0 ) ’

etc. In the case of the lattice the off-diagonal averages
are in general of order O(1/N) smaller than the diagonal
ones, except in an impurity phenomenon So, if the off-
diagonal Green functions (f\ 4./ 10 ) (g£0) in the
second term on the left-hand side (lhs) of Eq. (8) (for
k'=k) are represented by the diagonal ones and substi-
tuted back into it, then it is seen that these terms are
negligible. This is because a single off-diagonal factor
has become a product of two off-diagonal factors of the
average and the Green function by the decoupling treat-
ment. Therefore, the decoupling scheme we use is
equivalent to neglecting these off-diagonal terms, and
one must go to a higher-stage decoupling approximation
in order to take into account the k dependence of the
self-energy. However, the lattice self-energy which re-
sults from the present treatment is qualitatively different
from the single-site self-energy of the impurity system
which is often used as an approximation for the lattice
system.”'”’33 As we shall see later, in the Kondo effects
of the impurity system these off-diagonal terms become
of the same order as the diagonal terms and play impor-
tant roles characteristic of impurity in the behaviors of
the self-energy and the Green functions.

Thus, one obtains the f-electron Green function from
Eq. (8) as

fiorfho V= Alw) =
wo—e;—Blo)— Alw)
= ! e (18)
R(w) ' — ——
w—Ek
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A(w)

w—g;—B(w) ’ (19)

Using this expression (18) in Eq. (13) the conduction-
electron Green function is written as

Cdygrdfo N = !

— - (20)
o—g,—V°R(w)

These Green functions Egs. (18) and (20) are essential-
ly the same as those derived by Fedro and Sinha,?® Cos-
ti,”” and Baumgirtel and Miiller-Hartmann?® for the
Anderson-lattice model, and the lattice extension of the
impurity Green function obtained by Lacroix®® and
Theumann.”? However, the detailed properties of these
Green functions have not been so much studied numeri-
cally because of the difficulties in solving the self-
consistent integral equation.?® This is particularly true
for the case of the Kondo limit that accompanies a sharp
Kondo-resonance peak in the f-electron density of
states. We investigate the characteristic features of the
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lattice Green functions in comparison with those of the
impurity one by numerical calculations of the f-electron
densities of states in both the Kondo regime and the
valence-fluctuations regime. We are particularly in-
terested in the difference between the impurity and the
lattice Kondo effects.

Let us reduce the Green functions, Egs. (18) and (20),
i.e., the function R (), Eq. (19), to the self-consistent in-
tegral equation. We notice that 4 (w) and B(w) in R(w)
are related to the averages (f] _.,dy _,),
(d} _,dy_,), and (f} _,fi _,) through C(e,0) and
D (w,0). These average k dependent occupancies in turn
can be represented using the imaginary parts of the
Green functions. Here, we make the following approxi-
mations for the evaluatlons of the average occupanc1es
The k dependence of {f} _,d, _,) and (d} _.dy _,)
is assumed to come only through that of the
conduction- electron Green function, and the k depen-
dence of (f] t,—ofk _o ) is that of the f-electron Green
function. Thus, C(w,0) and D (»,0) can be expressed as
follows:
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where function. In the expressions (21) and (22) the integrals

Cdy, oo f Lo W=V fi,—arfl—e DN~y )

and Eq. (13) have been used in Eq. (21) and in the first
two terms of Eq. (22), respectively, with the replacement
of

T

by R(w'), and in the last term of Eq. (22) the expression
(18) has been inserted for

S ipmorf k= M -

f(w) is the Fermi distribution function and F(w) is the
Fermi-function integral given by
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and 7=40, B=1/T(kgp=1), and W¥(z) is the digamma

over g, can be performed and one obtains
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where the last two terms in Eq. (25) come from
(fk —ofk,—o ) terms in Eq. (17). Therefore, Egs. (19),
(14)-(17), and (23)-(25) constitute the self-consistent in-
tegral equation to solve for R (w),
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R(0)= ———— , 26)
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e =e,+ 2 (n, ) In | DL @7

Then, once R (@) is solved, the f-electron Green func-
tion fy ./t ) can be calculated from Eq. (18). On
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the other hand, the Green function in site representation
for the periodic nonmagnetic states is written as

(fiofia V= 2 L . (28)

kK R(w) 1=

W —Ey

C. The single-impurity system
and the single-site approximation
of the lattice in the decoupling scheme

In this subsection we compare the lattice f-electron
Green function obtained in Sec. II B with those of the
single-impurity system and of the single-site approxima-

tion for the lattice system within the same decoupling
scheme The impurity f-electron Green function
«fosf L imp has been obtained by Lacroix? essentially
in the same decoupling approximation, but it can be de-
rived easily here from Eq. (8). Reducing the f-electron
sites to the single site at the origin R; =0, using the rela-
tionship

«fk,a’fl',a »

together with £} =(1/VN )3, fl in Eq. (8), and then
operating the summation ¥, on both sides of Eq. (8) in-
cluding the off-diagonal terms lead, for U= w0, to the
impurity Green function

1
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1
and Eq. (30) defines the impurity self-energy 2, (w). = pr (33)
Next, we derive the lattice f-electron Green function w—€;—Zip(w)—
in the single-site approximation.!”3%3* In this approxi- N @8k
where

mation the f-electron self-energy part due to Coulomb
interaction U is treated on each site as an independent-
site effect. The self-energy is therefore the same as that
of the impurity Green function, Eq. (30), and is in-
coherent, contrary to the coherent treatment for the lat-
tice Green function (and the self-energy), Egs. (18) and
(26), in Secs. II A and II B. The f-electron Green func-
tion itself in the single-site approximation, however, is
treated as that of a coherent Bloch electron, as in Sec.
II A and B. Now, one can derive the single-site Green
function from the impurity self-energy Z;,.(w), but in
order to elucidate the relationship between this approxi-
mation and that of the coherent treatment, we derive it
from the equations of motion given earlier in Sec. Il A.
In the equations of motion Egs. (3)-(6) we reduce those
Bloch factors with the same wave numbers as those of
the average quantities to unity, regarding that the scat-
tered waves other than the propagators are confined to
the single site R;=0. Then, the similar calculations as
before lead to the single-site Green function using the
impurity functions A4;,.(») and B, (w) [Egs. (31) and
(32)] with the replacement of {(n_, ) by (n; _,),

Gimp(a))E «fa’fz »imp

and its expression (30) has been used together with the
impurity self-energy X, (w). The impurity self-energy
2implw) defined in Eq. (30) is written as

_1__[ B.

Zimplo)= Am(@)

imp (@) + (A (@) — 1w —e[)] .

(34)
Therefore, the distinction between the two Green func-
tions Egs. ) and (33) is whether or not the k-
dependent average quantities are treated as the coherent
ones in the self-energy. The Green function in the site
representation is written as

«fi,a’fi?a »:

1 1
-%3
N 4 V2 1 y?
Gimp(w) + N % 0—gp - w—gg
(35)
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That impurity Green function Eq. (30) is of course
identical with that derived by Lacroix,?® and the single-
site Green function Eq. (35) has the same form as the f-
electron Green function obtained by Grewe!” in a per-
turbative method, where the self-energy is expanded by
the skeleton diagrams essentially in the single-site ap-
proximation. So, within the same decoupling approxi-
mation the single-site Green functions used by Grewe
and others®?33 as well as the impurity Green function of
Lacroix®® can be examined with respect to the lattice

Green function Eq. (18) in the present coherent treat-
J

Gimp(@")* fle')
plo)* flo 4

A
I—(n_y+=

347

ment.

As in the lattice Green function in Sec. II B, the im-
purity Green function G, (@) in Eq. (30) also consti-
tutes an integral equation similar to Eq. (26), because the
average quantities in A;,.(®) and Bi,,(w) must be
determined using Gj, (@) in a self-consistent manner.
Expressing these averages in terms of the imaginary
parts of the Green functions and performing integrals
over g the following integral equation for G, (@) is

obtained:®

) (36)
do'

[

broadening and the shift from F(w) in both cases.] Fi-
nally, we point out that the absence of the incoherent in-
tegral term in the denominator of the R(w) function in

' . 2
Gimp(a))= O —9—17
Gimp(@')* fl)
co——e}—i—iA+F(co)—+—2AiA f ———"n—‘,’——f—_——
T o' —w—in
where Eq. (23) has been used, and here
A D+w
5;=5f+—ﬂ_—ln —D-—_a)— 37)

The single-site Green function fy .,/ Lo Vs> Eq. (33),
can be evaluated once the self-consistent solution of the
impurity Green function is obtained.

Let us now compare the lattice f-electron Green func-
tions in the coherent treatment, Eqgs. (18), (26), and (28),
with those of the impurity system, Egs. (30) and (36),
and of the single-site approximation of the lattice sys-
tem, Egs. (33) and (35). Apart from the presence of the
coherent hybridization term reflecting the periodic sys-
tem in the denominator of the lattice Green function
((fk,a,f;_a », Eq. (18), it is the R(w) function and its
integral equation Eq. (26) that should be compared to
the impurity Green function Eq. (36). Although R(w)
and G;j,,(@) have similar forms, the important difference
is the absence, in the denominator of the former R (w),
of the integral term with the infinitesimal imaginary
denominator other than the common term F(w), because
this term can become dominant together with F(w) at
low temperature near w ~€,. This term comes from the
incoherent treatment of the multiple scatterings due to
Coulomb interaction at each site, and therefore also ex-
ists in the single-site Green function ( fy ,,f Lo Vs> Eq-
(33). Actually, it originates both from the off-diagonal
(diz,—adk,,~a> terms of Bj,,(w), Eq. (32), and the last

term of A, (w), Eq. (31). These terms from
independent-site incoherent Coulomb scatterings are val-
id and should be present in the impurity system, but are
not justified in the periodic system, especially when they
become dominant. It is not clear whether Grewe’s im-
purity Green function Gj,,(w) actually contains these
terms or not. Other differences between R(w) and
Gimp(@) are minor and details; e.g., while the broadening
iA and/or the f-level shift Ae,=e} —e, come from the
one-body hybridization in the impurity and the single-
site systems, they (2iA(n; _,), etc., and Ag/) arise from
the Coulomb interaction plus hybridization in R (w) and
would vanish for U =0. [There are of course the

the lattice case leads to the small imaginary parts of f-
electron self-energy at low temperatures over a finite
range of w around the Fermi energy.

III. CHARACTERISTIC TEMPERATURES

In this section we explore the characteristic tempera-
tures of the impurity and lattice systems in the Kondo
limit from the Green functions obtained in Sec. II. We
find that in the single-impurity Anderson model there is
only one characteristic temperature Ty for the Kondo
resonance, whereas in the Anderson-lattice model there
exist two characteristic temperatures of several times T
and T, respectively, for the onset and completion of the
crossover from the incoherent Kondo-resonance to the
coherent Kondo-lattice (heavy-fermion) state. In the
latter, however, T, can be expressed in terms of Ty
which becomes the only temperature scale.

A. The single-impurity Anderson model

The Kondo temperature Ty is often defined as the
characteristic temperature to give rise to the Kondo res-
onance at the Fermi energy in the f-electron density of
states.?»?>261.35  We give here the Kondo-resonance
temperature Ty for the single-impurity model including
the orbital-degenerate case.

At low temperature and for w’~¢€ the »’ dependence
of Gipp(@')* in Eq. (36) can be shown to have a slow
logarithmic behavior across €, as compared to the other
integrand functions in the integrals. Thus, just for the
purpose of discussing the characteristic temperatures,
Gimp(@')* in the integrand can be represented by the
value G;,,(0)* for w'=w, and the self-consistent in-
tegral equation (36) can be approximated by the algebra-
ic one, (ef=¢;),

1—(n_, ) +Gpp(0)*Flw)
0—€;+iA+F(0)+2iAG iy (0)* Flw)
(38)

Gimp(w)z
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as was done by Lacroix.”> We have checked this ap-
proximation numerically in detail and confirmed its ac-
curacy. To solve this self-consistent equation one puts
Gimp(®@)=x(@)+iy(w), whose imaginary part y(w) gives
the f-electron density of states by

PP (@)=(—1/m)ImG p(0)= —y (@) /7 .

From Eq. (38) y(w) is calculated in the approximation
A/(ep—€s) << 1 and is obtained as

(@)=L |_ &2
POI=31" 2aa
2 172
_ | |Ef2e | A |2 L
2aA e e 2a ’
(39)

where

E=w—¢s, (40)

a=F(w)—iAf(w), 41)
and

p=1—(n_,) . “2)

An examination of the expression (39) for y(®) yields the
following characteristic f-electron densities of states
near the Kondo-resonance peak at the respective ener-
gies o for T=0 or for the temperatures T at w=¢€p.
While the Kondo-resonance peak pi}“"(w)~ 1/mA is real-
ized at w~¢€p (approximately at €; because of the ap-
proximate treatment above) for 7'=O0, the half-peak
pi}“"(w)~1/2'n'A is obtained at the Kondo energy
|wo—€p| =T for T=0 or at w=€; for the Kondo
temperature T=Tg. On the other hand, while for

(ng) /Ny +Gipp@)* (N, — F (o)

|w—€p| >>Tg at T=0 or for T >> Ty at o=¢p,
PiFP(w)~(1/2m)A /(0 —¢, )

is obtained as the tail of the f-level resonance peak at
€7, the energy |w—ep | =T at T=0 and the tempera-
ture T=Tx at w=e€p give the increase of the Kondo-
resonance peak by pif“‘p(w)~1/1r(ep—sf ). These two
temperatures Ty and T are obtained from Eq. (39) as
follows:

m(€p—¢yf)
T¢=1.14 Dexp —a | (43)
, m(€p—¢yf)
Ty =1.14 Dexp RN (44)

Therefore, in the present nondegenerate impurity model
the Kondo resonance appears very close to the Fermi
energy €, and the height and the width of the resonance
peak at T=0 are ~1/7mA and ~ T, respectively.

These results carry on to the N -orbital-degenerate
Anderson model with the spin-orbit coupling in the
present treatment but is in sharp contrast with the re-
sults®2%35 obtained in the large orbital-degeneracy limit,
Nf—+ w, V20 with Nf VZ?=constant, as is shown
below. Similar discussions can be made for the Kondo
resonance if one makes the following model assumption
which is unrealistic but commonly used?3%3¢ to deal
with the orbital-degenerate models; the component M of
the total angular-momentum quantum number j of an f
electron in the spin-orbit level with degeneracy
N;=2j+1 is conserved in the hybridization mixing
with a band electron. The f-electron Green function®
for each channel M can thus be obtained and approxi-
mated for o ~ €y at low temperatures as

Gimp(a))=

By solving this equation as before, one finds that the po-
sition of the Kondo resonance for T'=0 lies very close to
€p with the peak height ~1/7A and the width ~Ty,
which is, in this case, given by

7T(€F'—€f)

N, —Da |- (46)

Tx=1.14 Dexp

On the other hand, in the large orbital-degeneracy lim-
it>>3 the last term in the Green function denominator in
Eq. (45) can be neglected,” and the position of the
Kondo-resonance peak comes to w~Tx [Eq. (46)] with
J

R(w)

0—&;+iA+(N;— DF(0)+2iAG;p,(0)* (N, —1F (o)

D —o0+VR(w)

(45)

r

the height ~1/7A [A=(N,;—1)A] and the width ~Tx
for the total of all the N, channels.””3>3

B. The Anderson-lattice model

The f-electron density of states is defined by
11
pf(w)=—;—ﬁ§1m«fk,a,f1,g », (47)

and is expressed in terms of the function R(w) of Eq.
(26) using Eq. (18) and carrying out the summation over

’

I——AR(w)Ln
T

1
pf(a))— - - Im

—D —w+VR(0)

’ . (48)
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(Here, Lnz =In |z | +i argz, —m <argz <m.) Since A is
small (typically A/D <<1) for the relevant systems, the
second term in p,(®) is negligible unless R(w) becomes
of order O(A~'), and the f-electron density of states
pslw) is usually determined by R(w) at high tempera-
tures. As temperature is decreased, the function R(w)
grows and the density of states p,(w) starts to form a
broad resonance near the Fermi energy, but the second
term in Eq. (48) does not become large enough to con-
tribute down to a temperature of several times Ty [Eq.
(43)]. Therefore, this is the so-called incoherent Kondo
resonance that takes place at individual sites of the
Kondo-lattice system before the second-term contribu-
tion of p,(w) from the k-dependent origin sets in, i.e.,
the k-independent resonance in R(w) corresponding to
the impurity Kondo resonance in G, ,(@). As tempera-
ture is further decreased below several times Ty, the
Kondo resonance starts to split due to the second term,
which signals the onset of the effect of the k-dependence,
i.e., that of the crossover to the coherent Kondo-lattice
state. Contrary to the picture that in the Kondo-lattice
state the coherence sets in after the individual-site Kon-
do effects are fully accomplished, the crossover to the
coherent Kondo state starts at a temperature above Ty
and thus the lattice Kondo effect is distinguished from
the impurity Kondo effect.

In the crossover transition from the incoherent to the
coherent Kondo state, at first the coherent lower-energy
peak is produced at €, and the higher-energy one at an
energy o, approximately equal to several T, -10Ty
above €r, with the dip between the split peaks being lo-
cated at w approximately equal to the temperature T
above €. With a decrease in temperature, the coherent
lower-energy peak becomes higher and sharper with the
position being shifted slightly of order O(Ty ) below €,
and the dip becomes deeper and sharper with the posi-
tion w,; approaching € with the relationship w; ~7,
whereas the higher-energy peak remains as a broad peak
at the same position. Here, there seems to exist a
characteristic temperature for the coherent Kondo-
lattice state. Below the temperature ~0.1T, the height
and position of the sharp coherent peak and the entire
spectrum around € stay the same, except the dip which
further tends to become a deeper pseudogap on the Fer-
mi energy €p as temperature is reduced. We assume
that at this temperature ~0.17T, the coherence is fully
developed between the individual Kondo sites, and we
call it the coherence temperature T,,. Therefore, below
Ty, (~0.1T) the Kondo lattice is essentially the
coherent Kondo state, and its complete coherence is fur-
ther achieved by reducing the small imaginary part of
the self-energy at lower temperatures. The sharp
coherent lower-energy f-electron peak is responsible for
producing the heavy quasiparticle fermions. The stable
heavy-fermion quasiparticle band is formed below T, but
decays quickly with temperature above T, because the
sharp coherent lower-energy peak decays above it.
Therefore, it is not the heavy-fermion quasiparticle
bandwidth [~O(Tg)] but its stability temperature
(binding energy) that determines the coherence tempera-

ture T, and the low-temperature properties. In the
crossover temperature range 1, < T < several Ty there
arises the problem of disorder for impuritylike Kondo
resonances at individual sites.

IV. f-ELECTRON DENSITY OF STATES

The densities of states of f electrons p,(w) are calcu-
lated numerically as functions of temperature for the
infinite Coulomb repulsion U= in the valence-
fluctuation regime, as well as in the Kondo-lattice re-
gime of the Anderson lattice model. In order to study
the structures of the coherent heavy-fermion peak, the
incoherent Kondo-resonance peak, and the valence-
fluctuation peaks in the f-electron densities of states
near €, we have performed the following self-consistent
calculations of p(w) as accurately as possible.

First, for a constant f-electron number per site
ny=(n;)=2(n; _,) the integral equation for the func-
tion R(w), Egs. (26) and (23)-(25), is solved until the
self-consistency is attained within the accuracy of 2%
for each w. Then, the densities of states p (@) are calcu-
lated by Eq. (48). Using the resultant densities of state
ps(@w) we have computed (n; _,) which is compared
with the previous (n; _,). This set of calculations has
been repeated until the f-electron number per site n, be-
comes self-consistent within 1%. As a result, p f(w) has
also become self-consistent within an accuracy of 2%.
In order to compare the lattice Kondo resonance with
the impurity Kondo resonance the impurity densities of
states p}"P(w) are also calculated in the Kondo regime
for the same parameters. The similar self-consistent cal-
culations of the Green functions G,,,,(®) corresponding
to those of R(w) are carried out by solving the integral
equation Eq. (36) with the same accuracy. The total
electron number n per site in the Kondo regime is not
fixed for different temperatures, but as we will see, the
Jf-electron number n; as well as the total one n does not
change below some temperatures ( ~200 K).

~We show in Fig. 1 the f-electron densities of states
pf(w) as functions of temperature for the impurity An-
derson model in the Kondo regime with Tx =4.3 K. As
temperature decreases, it is seen that the Kondo reso-
nance starts to appear23 at w ~ € near the onset temper-
ature Ty =224 K and grows to half the full peak at the
Kondo temperature Ty =4.3 K. For T—0 the height,
the position, and the width of this resonance peak agree
approximately with the analytical results, 1/7A~2,
w~€p, and ~Ty (=4.3 K), respectively. The Kondo
resonance has a skew line shape around € in this
infinite U asymmetric Anderson model.

The f-electron densities of states p (w) of the Ander-
son lattice model are shown in Fig. 2 for the same
Kondo-regime parameters. It is noticed that with de-
crease in temperature, the f-electron spectra start to
create  the incoherent Kondo-resonance peak
(T'=200 K) near the impurity onset temperature
Ty =224 K. At a temperature of about several Ty
(T ~20 K) the Kondo resonance begins to split into the
lower-energy peak at w~e€, and the higher-energy one
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FIG. 1. Temperature-dependent f-electron density of states pi}“"(w) [(a) and (b)] for the single-impurity system in the Kondo re-
gime. (b) is the expanded scale. The Kondo-resonance peak appears near €, for T ~ T (=224 K) [Eq. (44)], grows to ~1/27A=1
for T=Tx (=4.3 K) [Eq. (43)] and saturates at 1/7A=2 for T=0 K. Notice that the resonance peak comes very close to €y for
T < Tk, and the half width is about Tx. e,=—0.4, ¥=0.32, U= 0, 7A=0.5, €-=0, p=%, and D=1(—-D <g, <D). n;=0.82

for T <1000 K.
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FIG. 2. Temperature-dependent f-electron density of states p (w) [(a) and (b)] of the Anderson-lattice model in the Kondo re-
gime for the same parameters as Fig. 1 [(b) is expanded scale]. The incoherent Kondo lattice resonance arises for T~ Tk (=224 K)
and splits, for T~ several Ty (=4.3 K), into the low-energy, sharp coherent peak, starting on € and shifting to o ~ T below €,
and the high-energy, broad incoherent peak at w~ 10Tx. The dip at w ~ T becomes a sharp pseudogap for T < Tx. The tempera-
ture dependences of the entire p,(w) structures stop at T ~0.1T except the vanishing pseudogap on €r. n,=0.73 for T <1000 K.
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at w~10Tg (Tx=4.3 K). As temperature is reduced,
the former peak shifts slightly [of order O(T%)] below
€p, becomes sharper and grows, while the latter one
remains almost the same. The dip between the two
peaks becomes deeper and its position is always located
at about o~ T, approaching € as T—0. As one can
notice in Fig. 2, for temperatures below T, ~0.1T¢ the
sharp lower-energy coherent peak and other p,(w) struc-
tures around € except the narrow dip are stabilized and
do not change. The height of the sharp peak below
Ty~0.1Tg is S1/mA and the peak position is about
Tk, but the width is a little wider (approximately several
Tx) than the impurity Kondo-resonance peak. Here, the
relative positions of the sharp peak and the dip with
respect to € are very accurate and reliable, being ir-
relevant of the uncertainty of the absolute Fermi-level
position € due to the resolution (1%) of the self-
consistent total electron number, because these struc-
tures move together in precisely the same relative posi-
tions with the small shift of €z. As to the f-level reso-
nance at e}, the periodic system, which would have two
hybridization-split peaks under vanishing or small
Coulomb repulsion U, has a single broad peak in the
Kondo regime due to the many-body hybridization
broadening effects under strong Coulomb interaction, as
discussed at the end of Sec. II C, which is in agreement
with the result obtained by perturbation expansion in U
at T=0."7

The temperature dependence of the conduction-
electron densities of states p.(w) per lattice site is also
studied for the same Kondo-regime parameters as in Fig.
2. p.(w) is expressed in terms of the function R(w) of
Eq. (26) using Eq. (20) and carrying out the summation

!
1.2+ : 4
pc(w) - : J
o8} 2000K . 1
0} T —""T" s00x
L e €. 220K J

f F
o i l\i A\l n ' A

P =
16 1
12 : ]

pc(u) B .
08 : -
-04 0 04 08 w

over k,
11 +
PC((I))=““;Nzlm«dk’o.,dkyo»
k
I D—w+V’R(w) 49)
T —D—w+VR(w) ||’

where Ln is understood as before and the noninteracting
conduction density of states p=1/2D =0.5 is used. Fig-
ure 3 illustrates the temperature variations of the p (w)
curve with a sharp dip at w R € which corresponds to
that of p,(w) but is much deeper than the latter. Again,
the bottom of the dip is situated at w~T and ap-
proaches €5 as T tends to 0 K.

Figure 4 shows another example of the crossover tran-
sition in the f-electron densities of states p () from the
incoherent to the coherent Kondo-lattice state with tem-
perature for the Kondo regime close to the valence-
fluctuation regime. The f-level resonance peaks at &}
merge into the enhanced Kondo-resonance peaks at
lower temperatures here. Again, the crossover splitting
to the coherent state starts at several Ty (T, =20 K),
and the lower-energy coherent peak grows very sharp,
shifting its position from ey to of order O(Ty ) (here ~6
K) below €, and finally is fixed below the temperature
T(~0.1Tg. The dip continues to become deeper on €.
Therefore, these features seem to be universal in the
Kondo-lattice system, and T, ~0.1T can be defined as
the coherence temperature. Here, the width of the sharp
coherent peak is of order O(Ty ) below the temperature
T, and causes the heavy-fermion quasiparticle band-
width to be as wide as ~Tx. However, as we mentioned
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FIG. 3. The density of states p.(w) [(a) and expanded (b)] of conduction electrons for the Anderson-lattice model, corresponding
to the Kondo regime of Fig. 2 for the same parameters. p=1/2D =0.5 is the unperturbed conduction density of state.
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in Sec. III B, this quasiparticle bandwidth itself does not
play as the coherence temperature T, because it is the
maximum temperature above which the quasiparticle
state is destroyed.

Next, we study the cases of the valence-fluctuation re-
gime in the behaviors of p (@) and the f-electron num-
ber per site n, with change in temperature. First, we
show in Fig. 5 the temperature dependence of p,(w) for
the case of the bare f-level €, placed right on the Fermi
level € which is kept at zero, € r=€p=0 [in which case
e} =€, in Eq. (27)] without fixing the total electron num-
ber n =n,+n.. It is seen that with decrease in tempera-
ture the renormalized f-level €7*(7T), whose renormal-
ization still comes from F(w), Eq. (23), at the position of
the hybridization dip moves above €, being settled at
the energy given

ef*(0)—ep=(A/m)In[D /(e}*(0)—€f)]

as T—0, and the enhanced double-peak resonance ap-
pears. The hybridization dip at €7*(7) tends to saturate
in depth for T-—-0. Above the temperature
T ~€3*(0)—e€p the renormalized level e3*(7) shifts and
the electron numbers n, and n decrease but they do not
change below it (in this case ~200 K).

If for decreasing temperature the chemical potential
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FIG. 4. Another case of the crossover behavior of p,(w) for
the Anderson-lattice model in the Kondo regime close to the
valence-fluctuation regime. Ty =20 K, £¢,=-0.03, V'=0.1,
U=, TA=0.05, =0, and D=1. n;=0.69 for T <200 K.
The temperature dependences of the p,(w) structures below
T =0.1Tg do not change as in Fig. 2.

20 T
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FIG. 5. Temperature-dependent p,(w) of the Anderson-
lattice model in the valence-fluctuation regime (e, =¢€y) for the
fixed Fermi level (ex=0) without fixing the total number of
electrons, n=n,+n.. V=0.1, U=, 7TA=0.05, and D=1.
n;=0.38 for T<10 K and n,;=0.45 for T=100 K, and
ny=0.64 for T=1000 K.

is adjusted self-consistently so as to keep the constant to-
tal electron number n, then the valence-fluctuation spec-
tra as shown in Fig. 6 are obtained. The amount of the
shift of u approximately corresponds to the shift
[e}*(T)—e€f] of the dip of Fig. 5 (as if the shifted chem-
ical potential u came to the dip), but instead of the dip a
very large f-resonance peak tends to sit on the new
chemical potential. It is remarkable that when the
nonhybridized bare f-level €, is placed just on the Fermi
level € (e,=¢€p), as is the case of the valence-
fluctuation situation, then to keep the same total elec-
tron number n with decrease in temperature, the shifted
chemical potential u is always pinned down on the large
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FIG. 6. Valence-fluctuation p,(w) for the constant total
electron number n=n;+n, (=1.63) with fixed f-level €,=0.
The chemical potential p shifts with decreasing temperature,
but stops below T~ 10 K. Notice that the chemical potential
p exactly follows the position of the lower-energy resonance
peak: u=0 for T=1000 K (n,=0.64); £=0.0190 for T =100
K (n;=0.62); ©=0.0215 for T <10 K (n;=0.61). The other
parameters are the same as in Fig. 5.
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(and sharp) f-resonance peak obtained in the self-
consistent density-of-states solutions.

In Fig. 7 we show the crossover transition from the
Kondo-lattice states to the valence-fluctuation states in
pr(w) with approach of € level to the Fermi level at the
constant temperature T =3.7 K. As the f-level reso-
nance passes through €, the sharp and broad Kondo-
lattice peaks are swept away to become the double-peak
resonance of the latter states.

V. DISCUSSION

The present Green-function decoupling theory is an
approach from the high-temperature regime, where the
physical properties of the Anderson-lattice model from
the Kondo-lattice regime to the valence-fluctuation re-
gime through the crossover regime are correctly derived
in the systematic and unified treatments. The single-site
Kondo-resonance phenomenon has been extensively
studied in the decoupling?®?* and other**3® approxima-
tions in the impurity Anderson model; however, we are
not yet familiar with how the lattice Kondo resonances
arises in the Anderson-lattice model.'”"!® Therefore, it
was our main purpose to study how the coherent
Kondo-resonance phenomenon shows up in the Kondo-
lattice system of the Anderson-lattice model, in particu-
lar in relation to the heavy-fermion quasiparticle states.
It is quite interesting to find, as we have seen, that the
incoherent Kondo resonances at individual sites begin to
crossover to the coherent Kondo state above the impuri-
ty Kondo temperature Tk, and the coherence in the
Kondo lattice is fully developed at the temperature
~0.1T. This crossover behavior exhibits the difference
between the lattice and the impurity Kondo effects. The
crossover transitions from the Kondo-lattice states to
the valence-fluctuation states with the f-level ¢, ap-
proaching the Fermi level €, reveals the range of the ap-

20F
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FIG. 7. Crossover transition from the Kondo-lattice states
to the valence-fluctuation states for the constant temperature
T=3.7 K with the movement of the f-level &,: (a)
e,=—0.04, n;=0.75, Tx=3.7 K; (b) ¢,=—0.03, n;=0.68,
Tx=20K; (c) e,=—0.02, n;=0.60; (d) e, = —0.01, n;=0.49;
(e) e,=0, n;=0.38. The lower-energy Kondo peak near €, be-
comes the maximum when it falls exactly on € in the critical
situation between the Kondo and the valence-fluctuation re-
gimes. V=0.1, U=, 1A=0.05, =0, and D=1.

pearance of the lattice Kondo states and the relation be-
tween the valence-fluctuation spectra and the Kondo-
lattice spectra.

If we write the Green function of Eq. (18) as

1

U SfeorfloN= el (50)
o—¢gr—2(w)—
W —E&y
then the self-energy Z(w) is written as
1
E(w)—m{B(m)+[A(w)—1](w—ef)} . (51

An advantage of this high-temperature approach is to be
able to show easily that near the impurity Kondo tem-
perature Ty this self-energy =(w) exhibits the logarith-
mic Kondo resonance and its derivative 1—02(w)/dw
gives the large renormalization of the hybridization from
V to V ~T}/? respectively. We have seen through the
Green functions in Sec. II C that this self-energy 2(w) is
different from the self-energy Z;,,(») of the single-site
approximation or the impurity system. The imaginary
part of the lattice self-energy 2(w) is much smaller than
that of the impurity self-energy in the wider region
around the Fermi energy. The quasiparticle renormal-
ization factor 1 —902(w)/dw is smaller in the lattice case
than in the impurity case.

A comparison of Figs. 1 and 2 reveals that the lattice
Kondo states deviate from the impurity Kondo states
below the temperature of several Ty, where coherence
has begun to be introduced, although the former in-
coherent Kondo resonance is very similar to the impuri-
ty one above that temperature. The essential differences
between the lattice and impurity Kondo states at the low
temperatures are that (i) the sharp and larger low-energy
peak comes of order Ty below €p in the former, while
the broader Kondo peak tends to the Fermi level €,
from above as T—0 in the latter, (ii) the temperature
dependence of the lattice Kondo resonance stops below
~0.1T%, and (iii) there exists a very sharp pseudogap on
the Fermi level in the Kondo lattice state where
prlep)—0 as T—0. However, if the quasiparticle den-
sities of states are constructed from the lattice Kondo-
resonance peak, the renormalized huge quasiparticle
spectrum of the width ~O(Ty) has a finite density of
states without a pseudogap at €y, and tends to be fixed
below Ty ~0.1Tk. Thus, the Kondo-lattice system is ex-
pected to exhibit the strong temperature-dependent
properties in the crossover regime, several Ty R TR T
(~0.1Tg), which is different from those in the in-
coherent Kondo regime at higher temperatures, and the
weak temperature-dependent properties in the heavy-
fermion quasiparticle regime, T ST,

These remarkable differences lead to the results which
are consistent with the recent experimental observa-
tions” !>~ 15 that in the heavy-fermion Kondo-lattice sys-
tems there is a maximum v, in the temperature depen-
dence of the enhanced specific-heat coefficient y(T)
below Ty, whereas in the impurity Kondo systems or
the Kondo alloys the y(T) shows a monotonous in-
crease.'”’ Furthermore, the experimental data for the
y(T) of the Kondo lattice CeAl; obtained by Andres et
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al.® and Bredl et al.'® [and probably for CeCu,Si, (Ref.
13) and CeCug (Ref. 15) also] show that the y(T) ap-
proaches some constant value after decreasing from the
maximum ¥, as T tends to 0 K. The low-temperature
behaviors of the coherent Kondo resonance in Figs. 2
and 4 suggest that as temperature is decreased, there are
several competing factors for the quasiparticle contribu-
tions to the specific-heat coefficient y(T), resulting in a
maximum ¥, in the crossover region: the growth and
the shift of the lower-energy coherent peak, the initial
development of the rather wide pseudogap, the thermal
excitation comparable to the peak width, and the some-
what growing quasiparticle renormalization factor.
Near the temperature T, ~0.1T, the whole f-electron
spectrum has been fixed except only the sharp pseudogap
on €r becoming deeper. Since the source of the quasi-
particle spectrum comes entirely from the sharp
coherent peak of the f electron, and there is no quasi-
particle spectrum in the pseudogap, the quasiparticle
spectrum is also locked near this temperature. We have
recently studied the temperature-dependent quasiparticle
densities of states based on the results of the present
study and have obtained the specific-heat coefficient
y(T) as a function of temperature. According to this
study the origin of the appearance of y,,,, and the subse-
quent decrease to a constant value can be interpreted
along the lines explained above. The details of this in-
vestigation will be described in a separate paper.

The existence of a gaplike structure in the periodic
Kondo resonance was first suggested by Martin.'® The
temperature-dependent f-electron spectra have been
studied in the Kondo-lattice system of the Anderson

model by Grewe,!” who has first demonstrated by nu-
merical calculation that the Kondo-lattice state gives
rise to a splitting in the Kondo-resonance peak with a
pseudogap being developed for temperatures T << Ty
[his Tk corresponds to Ty in Eq. (44) here]. Although
there is similarity in the position of the low-energy peak
to the present result, the width of the pseudogap is
~ Tk /4 wide and the higher-energy peak is not as broad
as ours. Koyama and Tachiki!® have recently obtained
the f-electron densities of states near the Fermi level at
finite temperatures for the Kondo regime in the one-loop
approximation of spin fluctuation. They found the sharp
lower-energy peak centered on € and the broad reso-
nance peak at a higher energy, and observed that the
narrow peak responsible for the heavy-fermion states de-
cays easily to the single-impurity-like incoherent Kondo
resonance states with a small temperature increase. This
latter result is very similar to the present one, but the
significant discrepancy is the position of the sharp
lower-energy and the absence of a clear pseudogap.

We have seen in Fig. 6 that for the typical situation of
the rare-earth valence-fluctuation systems where the
nonhybridized f-level €, is just on the Fermi level, the
shifted chemical potential u is always pinned on the
Kondo-like sharp f-resonance peak. This f resonance
peak on the chemical potential becomes very sharp by
fast charge and spin fluctuations at low temperatures.
However, the parameter situations which more closely
resemble the collapsed metallic SmS with a pseudogap
and the semiconducting SmB, with a small real gap
would be rather close to the Kondo-regime parameters
of Fig. 4.
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