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Andreev scattering at a rough surface of He-8
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Quasiclassical methods are used to study the reflection of wave packets at diffusely scattering sur-

faces of 3He. In addition to conversion into nonmagnetic and magnetic holes and partial specular
reAection into nonmagnetic and magnetic wave packets, di8'use background scattering of nonmag-

netic and magnetic particles and holes into all directions is found. The calculations are based on the
self-consistently computed order parameter in the vicinity of the wall.

I. INTRODUCTION

The microscopic dynamics of superAuid He-8 is con-
tained in the solutions of the quasiclassical 4X4 matrix
equation for the Keldysh Green's function. The matrix
space arises from the particle-hole and the spin degrees of
freedom. ' Half of the 16 modes are propagating excita-
tions and the other half are so-called Tomasch interfer-
ences. One can further separate the propagating modes
into particlelike or holelike according to whether their
group velocities are parallel or antiparallel to the wave
vector. Among the particlelike propagating excitations,
one is nonmagnetic and the other three are magnetic.
There are also the exact holelike equivalents. Finally the
Tomasch solutions are superpositions of particlelike and
holelike excitations. This makes for a rich variety of pos-
sibilities.

The complete dynamics of superfiuid 3He Bfeatures-
collective excitations in addition to the microscopic
modes. Quasiparticle excitations and collective excita-
tions are coupled in general. In this paper we assume a
low density of quasiparticles and, hence, do not explicitly
consider collective excitations.

Rapid variations in the order parameter lead to spec-
tacular behavior of propagating quasiparticle excita-
tions. %'hen a quasiparticle, originally on its way in
equilibrium with the surrounding order parameter, sud-
denly Ands itself completely out of tune with what it sees
around it, it stops on its tracks, converts into a hole and
turns back (Andreev scattering) or turns into a difFerent
kind of excitation (branch conversion process) flying ei-
ther in the original (transmitted) direction or precisely
against it (reflected direction). The walls of a container
are the obvious places where quasiparticles meet such a
fate. There the order parameter of a p-wave superfiuid is

known to become partly or completely suppressed '

which provides for the requisite rapid variation of the or-
der parameter.

The scattering problem of quasiparticles of a superfiuid
phase off a rough surface is of some theoretical interest.
It can be handled by the quasiclassical approach where
it looks, at a Arst glance, like an overdetermined problem.
Out of a single wave vector direction of incoming parti-
cles, the diffusely scattering surface sends excitations into
random directions in space but obviously only of those
kinds which propagate back into the fiuid from the sur-
face. This leads to a larger number of conditions to be
satisfied by the solution of the equation of motion for the
relevant Green's function than there are degrees of free-
dom available. It turns out, almost miraculously, that
the normalization condition of the theory eliminates just
those solutions which would violate ones intuition and
leaves behind exactly the correct number of coeScients
to be determined.

In principle, Andreev scattering or branch conversion
processes can be measured directly. %'hen they occur at
a wall, they also have important indirect imphcations on
the boundary condition of super6uid Row. ' The usual
boundary condition of hydrodynamics requires stationar-
ity of the Quid on a surface. If the mean free path of the
momentum-carrying particles becomes so long, however,
that full local equilibrium reigns no more, a Arst remedy
is a more general boundary condition where the velocity
is required to vanish only at a slip length s distance out-
side the surface. One understands easily that a quasipar-
ticle, which becomes Andreev reAeeted, exchanges very
little momentum with the wall. It, therefore, should
reduce the diffusivity of scattering at a boundary and
enhance the required slip correction to viscosity measure-
ments. ' At a wall which scatters quasiparticles specu-
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larly, A.ndreev reAection and the branch conversion pro-
cesses have been studied in detail by Kieselmann and
RMQer.

Having previously computed the order parameter near
a diffusely scattering wall, "here we report computations
on Andreev scattering and branch conversion amplitudes,
including scattering into diffuse background states of
continuous wave vector, at walls of arbitrary scattering
properties. (The values of the wall roughness p in the
previous report" were given divided by a factor of 2, i.e.,
they should be multiplied by that factor in order for them
to correspond to the figure of that paper. Similarly, the
stated values of the aIternative measure of roughness p,

'

n'/2 3
p = 1 —4 d 8 cos8 sin 8 exp( —2p/cos8)

should be changed into @=0.0, 0,095, 0.358, 0.562,
0.998.)

The probability of Andreev re6ection, and all other
coefficients of various branch conversion processes, de-
pends on the quasiparticle energy and the incident angle
of approach into the wall region in addition to the rough-
ness of the surface and the temperature. It is clear that
there is no way of sensibly presenting an exhaustive ac-
count of all the conceivable branch conversions and other
processes. In order to cut down on the number of
coeScients to be calculated, we ahvays consider an in-
cident nonmagnetic particlelike excitation. One just
needs this (and the completely equivalent holelike non-
magnetic initial excitation result) for the hydrodynamic
slip length, for example.

Section II is a summary of the theory of scattering of
an excitation off a rough surface. The relatively involved
numerical calculations are discussed in detail. In Sec. III,
plots of the conversion coeScients are discussed in a set
of illustrative cases. These consist. of the energy depen-
dence of the different coeScients at given incident angles
and given surface roughnesses at a given temperature, as
well as of the angular dependence at a given energy and
several roughnesses. There are a number of plots of the
amplitudes of the difFuse background scattering as well.
There is ffnally a short discussion of the results.

The theoretical framework used here is the quasiclassi-
cal approach to superAuid He as reviewed by Serene and
Rainer. Their notation is essentially used throughout.

Disuse scattering of quasiparticles at a wall would nor-
mally be an unpleasantly complicated boundary condi-
tion on the quasiclassical Green's functions. That
problem is taken care of with a model of Ovchinnikov'
slightly generalized by Culetto et aI. ' where a specularly
rejecting wall is thought to be covered with a thin layer
of dirt providing the diff'use scattering. The thickness of
the layer d and its scattering mean free path I are imag-
ined to be very small compared to the coherence length,
in which case the thickness becomes an irrelevant param-
eter and the roughness of the wall is determined by the
ration p =d /I.

%e basically need solutions to the transportlike equa-
tion for the Keldysh propagator g (k, R;e). In order to

for the Keldysh propagator in the scattering layer. The
propagator depends only on the scaled distance g=z/d.
The dot product between k and the gradient operator is
thus replaced by kj1/dg. The superscripts A and R
denote the advanced and retarded propagators, and the
angular brackets stand for an average over the Fermi
sphere with respect to k.

Outside the scattering layer, the retarded and advanced
functions obey the same diff'erential equation as g . This,
of course, is the same equation as obeyed by the Matsu-
bara Green's function when the latter is interpreted as be-
ing taken at an energy approaching the real axis from
above or from below, i e„~ e+ 0+. All the equations are
identical because the order parameter 6 is analytic across
the real axis which implies 5 =5 =h. Although the
retarded and advanced Green"s functions are not needed
in the equation for the Keldysh propagators in the He,
they are required in the scattering layer, as can be seen in
Eq. (2.2). There they obey the equation

z, x+[
P

Obviously g and g" have to be calculated in the He as
well, in order to establish them in the scattering layer.
Asymptotic values for them in bulk He are given in the
review article of Serene and Rainer. They obey the nor-
malization condition

[gR, A(k R &)]2 ~2

and the boundary condition on the outside wall

y~a, A, K( I () e) y~R, A, K(i () )

(2.&)

(2.5)

and their numerical calculation is routine. Actually only
one of them needs to be calculated because of the symme-
try relation

g =~3(g (2.6)

The final step is finding the Keldysh Green's function.

incorporate the dilFuse scattering we also need the same
function in the scattering layer where we call it y . The
two have to be matched at the surface between the He
and the scattering layer. The boundary condition for y
behind the scattering layer is taken to be specular. In the
helium region, the equation for g reads

[e1 g
—k, g ] + lUFk V'ag =0 . (2.1)

The matrix 6 is the order parameter previously deter-
mined self-consistently. " In homogeneous He, the 16
basic solutions of eq. (2.1) are the excitations referred to
in the Introduction. Actual quasiparticles, packets of ex-
citations, can be constructed out of these. ' In the
scattering layer, the scattering is so strong as to drown all
other sources of self-energy and the commutator
[er3, g ]. The self-consistent Born approximation is tak-
en for the advanced, retarded, and Keldysh self-energies
resulting in

~K ~R( ~K) ~K( ~ A)+7 7 +7
P
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Here the problem splits into two stages. The incident
and specularly scattered rays csn be treated separately
from the background scattering continuously distributed
in k. An incident unit amplitude "plane wave" of quasi-
particles in some direction k~ is considered. A complete
trajectory, including the collision with the wall, consists
of the initial branch and the branch specularly transmit-
ted at the wall. The incident ray trajectory and its mirror
reflected partner, the "principal rays" are a special pair
in the present problem. They each have an infinitely
large weight compared with any one k background scat-
tered ray. Therefore, only two self-energy terms of Eq.
(2.2} have to be included for them. The result is the
simpler equation

~ir+PK( ~ A) (PR) ~K 0
p 'dg~ (2.7)

The 6nal state will consist of s number of excitstions
along the initial trajectory and along the transmitted tra-
jectory. One expects part of the incident wave to be An-
dreev reflected into any of the four possible holelike
states that propagate backward in k. The presence of ex-
citations propagating in opposite directions, furthermore,
calls for the presence of Tomasch solutions on the initial
branch of the trajectory. On the trajectory transmitted at
the wall, there should be no excitations running toward
the wall in the asymptotic region far from the wall.
There should, therefore, be no Tomasch interferences ei-
ther. This leaves four possible psrticlelike modes propa-
gating outward. There are thus 16 asymptotic ampli-
tudes to be fixed altogether, four plus eight on the initial
branch of the trajectory and four on the transmitted part.
This ean be accomplished using the 16 conditions of spec-
ular re6ection at the wall behind the scattering layer
(2.5). The amplitudes are directly the Andreev re6ection
and transmission plus branch conversion coefficients re-
lating to an incoming particlelike excitation.

There are two aspects worth mentioning about the
background calculation. The 6rst one is the self-
consistency problem in the source terms of Eq. (2.2) that
were not present in the principal ray calculation. These
terms feature the angular average of g in which there
are contributions from the principal ray and the back-
ground solution itself. The latter input must be deter-
mined self-consistently. For this purpose it looks like a
fruitful strategy to compute, instead of each trajectory
separately, a global solution of the linear simultaneous
equations of all the trajectories thus automatically taking
care of the self-consistency. As s cost of the
simpli6eation, the dimensionality of the differential equa-
tion becomes multiplied by the number of points of the
(Gaussian) integration of the trajectory wave vector over
the Fermi surface.

The second noteworthy feature of the background
problem is that it appears overdetermined. Intuitively
there shall be only outgoing excitations in the back-
ground scattering snd, therefore, no Tomasch interfer-
ences either. On each specularly reflected pair of rays
there are thus altogether eight free amplitudes st our

disposal, those of four holes on the part of the trajectory
with k pointing into the wall snd those of four particles
on the outward half, snd this should be suffice to satisfy
the 16 conditions of specular reflection at the wall. It is

the normalization condition of the theory that guarantees
the existence of this kind of a solution. The normaliza-
tion condition for the Keldysh Green's function

g (k, R, e) reads

g"g'+g g'=O (2.&)

The normalization is conserved by all the quasiclsssicsl
equations of motion. We can demand it in the fsr region
into the bulk where the asymptotic nature of the solu-
tions is clear. All the diferent Green's functions are
analytically known in bulk He where the order parame-
ter is s constant. We know that the advanced and retard-
ed Green's functions are linear combinations of the ana-
lytic continustions of physical constant Matsubara
Green's functions and two components which decay into
the bulk. We used the symbolic expressions manipulating
program Mscsyma to calculate the normalization expres-
sions between the various asymptotic Keldysh Green's
functions propagating into the fluid snd the three con-
ceivable components of the advanced and retarded func-
tions. All of the 24 conditions were individually satis6ed.
This implies that the outgoing solutions can exist without
the presence of either incoming or Tomasch solutions. If
the normalization expressions are calculated for either of
the latter two with the retarded and advance functions
"decaying" into the bulk, it is found that only s linear
combination of incoming and Tomasch solutions can
meet the normalization condition, neither kind of the two
alone. The upshot is that the Tomasch amplitudes are
6xed by the incoming solutions alone although they
super6cislly look like they are interferences of the incom-
ing snd outgoing solutions. We, therefore, know that a
background solution exists which consists only of outgo-
ing solutions. In the practical computation, the ampli-
tudes of the outgoing solutions were simultaneously opti-
mized for all the background trajectories. Minimum
square deviation from a 16-amplitude specular match per
trajectory at the outside wall of the scattering layer was
sought. The match was perfect within numerical accura-
Cy.

The various transmission and reflection coefficients are
de6ned as ratios of the corresponding amplitudes to the
incoming amplitude. Following Kieselmann et a/. we
assign two subscripts to the transmission coe%cient T;.
and the reflection coefficient R, -. The 6rst of these sub-
scripts refers to the nonmagnetic (0) or magnetic (1—3)
quality of the initial rsy, and the latter to the transmitted
or the reflected ray. Because of the particle-hole symme-
try, it does not matter for the numerical values of the
various coefficients whether the initial rsy is particles or
holes. We extend the symbol R,„ to refer to the excita-
tions (holes in the present numerical calculation} running
away from the wall on s background trajectory pointing
toward the wall. The conservation of the number of exci-
tations requires
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It. &' &)+ g ln.k.il T «..»
&' &)= In &'l(1 —T' —~')

k;„ k
Ou OO Out» OO OO

ottt

(2.9)

where the sums run over the unit wave vectors pointing
into and out of the wall, respectively, n is the normal to
t e wall, and the superscript p distinguishes the principal
ray rom the rest. In the absence of background scatter-
ing, Eq. (2.9) reduces to the simpler form'

OO OO (2 10)

The conservation of the number of excitations is not the
same as the conservation of physical particles. The num-
ber of physical particles (or holes, for that matter) is not

conserved in the scattering unless collective degrees of
freedom are kept track of.

III. RKSUI.TS

In our first set of figures, Figs. 1(a)-1(c), the various
Andreev conversion coeScients alon th

'
1e princrpa rays

are plotted as functions of the incident angle with respect
to the plane of the wall. The temperature is chosen as

=0.3T, and the incident energy as e=1.098, as mea-

p=0.000 t=0.300 a=1.098 p=o.ohio t.=o.Boo a=&.098
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sured in units of the bulk gap. Figure l(a) plays the role
of a point of comparison displaying the specular scatter-
ing result. Figures 1(b) and 1(c}show the eff'ect of difFuse

scattering of quasiparticles at two different roughnesses
of the wall, p =O.02 and 1.00. In addition to the
coefFicients R and T and their sum, we plot the
coefFicients R,„and T,„which carry information about
the conversion rate of the unpolarized initial beam into
spin-polarized refiected or transmitted states. ' The sub-
script n of R,„or T,„points to the spin-polarization
direction of a magnetic excitation. It turns out that on1y
one magnetic branch is excited in the principal beam. Its
magnetization is parallel to the wall and perpendicular to
the incident k, if the 8-phase rotation matrix is chosen to
be the unit matrix. If (say the energy minimizing} rota-
tion around the perpendicular direction to the wall is tak-

en into account, the magnetic branch still has its magne-
tization parallel to the wall but now perpendicular to the
spin direction rotated away from the initial k direction.
With specular scattering, Fig. 1(a) the simple sum rule
(2.10) is obeyed and R,„and T,„are symmetrical about
the value zero. %hen diffusive scattering sets in, Figs.
l(b} and 1(c), the sum simple rule (2.10}becomes violated
to a degree which depends on the angle. The symmetry
of A,„and T,„ is &hen destroyed.

Irrespective of the symmetry between E.,„and T,„,
magnetization is transported into the Quid. The missing
magnetization must go into some kind of collective exci-
tations which should be an observable effect. ' By the
time the roughness has reached the value p = 1, most of
the scattering is diffuse and there is practically no
transmitted wave or conversion into magnetic branches.

p=0.000 t=0.300 8=30 p=0.020 t=0.300 8=30
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FIG. 2. The Andreev transmission and reflection coe%cients as functions of the incident energy at the incident angle 0=30 and at
the reduced texnperature t =0.3. The di6'erent lines are the same as in Fig. 1. The diiT'erent roughnesses are also the same as in Fig. 1.
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One also observes that scattering into magnetic states
mostly takes place at glancing angles and is no more
present at perpendicular incidence. Another observation,
not in conflict with ouf intuition, is the vanishing of the
transmission coefficient at all at glancing incidence at en-

ergies near the bulk gap edge.
The next triplet of pictures, Figs. 2(a) —2(c), are analo-

gous to the above but now at a fIxed angle of scattering,
8=30', as a function of the initial energy of the incoming
beam. Again there is symmetry of the magnetic conver-
sion in the case of specular scattering which is broken
when difFusivity sets in. It is intuitively pleasing to notice
that the reflection coeScient is high at small energies, In
the roughest case, all coeScients, apart from the simple
Andreev reflection, are small at all energies. Figures
3(a)—3(c) are the same as Figs. 2(a) —2(c) but at perpendic-
ular incidence. There is no magnetic conversion, and the

transmission coefFicient saturates at high energies at a
value which is a function of p. At the same time, the
refIection coe%cient becomes an ever steeper function of
the energy vanishing already at quite small energies at
high values ofp.

Four figures, 4(a), 4(b), 5(a), and 5(b) display the back-
ground scattering coefFicients at two difFerent roughnesses
of the wall with two difFerent angles of incidence of the
incoming ray in both. In order to keep the amount of in-
formation within bounds, only the nonmagnetic, i.e., total
amplitudes are given; they have not been analyzed into
the difFerent magnetic components. In all figures, the
transmission coeScients are given as functions of the en-

ergy (scaled to the bulk gap). As defined above, the sym-
bol T is used for particles along outgoing wave vectors
and the symbol 8 for holes outward along incoming wave

vectors. The two are plotted with identical lines in all the
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FIG. 3. Same as in Fig. 2 but at the incident angle 8=90, i.e., normal incidence. There is no magnetic conversion present.
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figures at p= l. It should be noticed that the scales are
difFerent in the two sets of figures at difFerent roughnesses
because of the higher total intensity of the background
with the more difFusely scattering surface.

IV. DISCUSSION

We have calculated the fate of a particlelike excitation
of He when it meets a difFusely scattering wall. %'e

chose the rather low temperature t=0.3 since the ques-
tion studied gains in experimental significance at low
temperatures.

As explained in the Introduction, there is an enormous
amount of information in the various magnetic and non-
magnetic amplitudes as functions of the incident beam
energy and direction, the roughness of the wall, and the
temperature. The set of figures is an attempt to give an
overall impression of the wealth of phenomena going on.
The whole information can be translated into fairly com-
pact form by computing hydrodynamic slip lengths and
viscosities in the ballistic regime, ' for instance, to
which we will return in a later publication.

The general features of the results are not in convict
with our intuition. For example, the amplitude of the
specularly transmitted ray diminishes rapidly when the
difFusivity of the surface increases and an increasing share
of the scattered excitations go into a difFuse background
scattering. At lowish dift'usivities of the wall, the difFuse

scattering is backward weighted for particlelike excita-
tions and forward weighted for holelike excitations but
becomes azimuthally symmetric when the wall becomes
very rough. The momentum transport to the wall is
mainly determined by the portion of the incident ray
which is difFusely scattered; the integrated parallel
momentum of the background scattering is small, but
backward weighted, at all roughnesses. This may be an
artifact of the thin-dirty-layer model of a difFusely

scattering surface.
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