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Superconductivity in primitive hexagonal germanium
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We present a first-principles calculation of the electron-phonon coupling constant A, (mass en-

chancement parameter) for the primitive hexagonal, high-pressure structural phase of Ge
(75 GPa Sp & 105 GPa). Using the calculated value of A, , we estimate the superconducting transi-
tion temperature T, to be in the range of 2 to 7 K. We discuss the contributions to A. from the
dN'erent phonon modes and its dependence on the phonon frequency, electron-phonon matrix ele-

ments, and Fermi-surface nesting. The results are compared with previous calculations for primi-
tive hexagonal Si.

TABLE I. Transition pressures for Si and Ge in GPa. The
table is based on the compilation of Refs. 3 and 4.

Diamond
P-Sn

P-Sn
ph

ph
hcp or dhcp

Theory
Experiment

9.3
8.8-12.5

120
13.2-16.4

41.0
35-42

Theory
Experiment

9.5
9.8-10.6

84
75

105
102

INTRODUCTION

The tetrahedrally bonded semiconductors Si and Ge
are known to transform under pressure into metallic
structures with higher coordination number. ' In both
Si and Ge the coordination increases with pressure from
the fourfold coordinated diamond structure which is
stable at zero pressure, to the sixfold coordinated P-Sn
structure, to the eightfold coordinated primitive hexago-
nal (ph) structure (these are the only elements known to
have a stable primitive hexagonal phase), and at very
high pressures to the twelvefold coordinated closed-
packed structures hcp and fcc. The fact that the se-
quence of phases is the same for Si and Ge is not surpris-
ing since these elements have similar chemical properties.
However, the pressures at which the phase transitions
occur are remarkably diferent. %hile the transition
from diamond to P-Sn occurs at similar pressures for
both Si and Ge, all the other transitions occur at higher
pressures in Ge than in Si (Table I). This diiference in be-
havior at very high pressures between otherwise similar
atoms was explained in terms of the influence of d elec-
trons on the Si and Ge metallic phases. The high-
pressure metallic phases have a fair amount of d charac-
ter in the occupied states, but Si does not have d electrons
in the core (i.e., the Si d pseudopotential is less repulsive
than in Ge) and thus transforms at lower pressures.

%'hen a covalent material like Si transforms into the
metallic state, the bonding retains a large amount of co-

valent character. Hence the distribution of the valence
electrons is inhomogeneous and some directionality of
the bonds can still be recognized. It has been argued
that in such a material local-field efrects enhance the
electron-phonon interaction and therefore enhance the
superconducting transition temperature. The primitive
hexagonal phase of high-pressure Si was predicted and
observed ' to be superconducting, with T, as high as 8.2
K, which is a relatively high transition temperature for
an s-p bonded superconductor. Furthermore the predict-
ed U-shaped behavior of T, with pressure was in reason-
able agreement with experiment.

In the present case we have calculated the electron-
phonon interaction parameter A, for primitive hexagonal
Ge as a function of pressure and, using an estimate ofp',
the Coulomb interaction parameter, and the McMillan
empirical equation, we estimate that T, is in the range of
2 —7 K with a most probable value of 4 K. The contribu-
tions of diN'erent phonon modes to 3, and their depen-
dence on the phonon frequency, electron-phonon matrix
elements, and Fermi-surface nesting are discussed. %e
find that the contributions from diN'erent phonons can
vary by an order of magnitude, and that superconductivi-
ty is enhanced by phonons with low frequency and large
electron-phonon matrix elements.

THEORY

The electronic properties of primitive hexagonal Ge
are calculated with the ab initio pseudopotential-local-
density formalism with a plane-wave basis set. For a
fixed crystal structure, we calculate the total energy
E(R') as a function of the atomic positions R', the self-
consistent potential u„(r,R'), and the one-particle wave
function tt &(r) and eigenvalue E z for wave vector k
and band index m. By studying the total energy as a
function of atomic positions (the Born-Oppenheimer sur-
face), we are able to calculate the frequency coq„and po-
larization vector e „ofa phonon with wave vector q and
mode v, using the frozen phonon approach. The same
frozen phonon approach is then used to calculate the
electron-phonon matrix elements.
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The electron-phonon matrix element g(mk, m'k', qv)
for the scattering of an electron from the state m k to the
state m 'k' by a phonon qv is„ for the case of a single atom
per unit cell of mass I (the case for primitive hexagonal
Ge) Io —12

g (m k, m 'k', qv)

5 g g oI(mk m'k qv) (la)

I(mk, m'k', qv)

=N J f' z(r)e V„OU (r, Ro)g „(r)d'r, (lb)

where X is the number of unit cells in the crystal, and 6
is a reciprocal-lattice vector. The integra1 is taken over
the whole crystal„ the wave functions are normalized to
unity in the crystal volume, and the gradient of U is tak-
en with respect to the displacement of the atom belonging
to the unit cell at the origin R . The gradient of v„ is
calculated numerically within the frozen phonon tech-
nique, ' hence the rigid-ion approximation is not used.

From the lowest-order contribution to the electron
self-energy by the electron-phonon interaction we can
determine the single dimensionless parameter'

A, =2D(e ) g (( ~g(mk, m'k', qv)
~

))„, (2)

where D (ez) is the density of states per spin at the Fermi
level EF, and

It is useful for our subsequent discussion to consider
four difFerent contributions to A.~„. (i) The phonon force
constant Kp =Mao is the second derivative of the total
energy with respect to the atomic displacements and is
therefore independent of the atomic mass M; its typical
value is M~D, where ~D is the Debye frequency for the
material being considered. (ii) The degree of nesting of
the Fermi surface, given by the dimensionless quantity
((N5z+z &. o))zs, which is proportional to 1/q for a
spherical Fermi surface. The divergence for q=O is in-
tegrable in three-dimensional space. The nesting depends
on the geometry of the Fermi surface and its value is of
order unity. (iii) The density of states per spin per unit
cell D( ze)/X, which is the same for all phonons. (iv)
The average value of the square of the electron-phonon
matrix element,

((
~

I(mk, m'k, qv)
~

$5 +g g o))ps
&(~5„, „.,))„

takes into account the detailed interactions between the
phonons and the electrons near the Fermi surface, For
the case of atoms with different masses in the unit cell a
small dependence of this term on the atomic mass is in-
troduced through the phonon polarization vector. The
final expression for the contribution of a speci6c phonon
to the electron-phonon parameter is

D(e~)
3n (&E5 +g g o))psI

Mm, ,

((x))„='" g X5(e ~
—e~)5(e ~

—e~) Eq„
g ph

))„,
where we have defined a new quantity,

However„ for our discussion, we wou1d like to evaluate
the wave-vector dependence and separate the contribu-
tion of individual phonon modes to A, . Using Eq. (2) it is
possible' to express A, as an average over the Brillouin
zone of the dimensionless function A,

at ~=] q

(3)

where 3n „ is the number of phonon modes (three times
the number of atoms per unit cell, i.e., 3n„=3 in our
case). We notice that A,„ is proportional ' to the ex-

perimentally accessible electron-phonon contribution to
the phonon linewidth y&,

3n„Xy
nD (E~)%co

defines the appropriate double average over the Fermi
surface (FS).

The electron-phonon interaction parameter k is usually
expressed as an average over the phonon frequencies co of
a F(co), the dimensionless Eliashberg function, "'

2y~ a F(co)d

D(eF)K, 3n„ I „
which can be classified as an "electronic" force can-
stant. Since the electron-phonon coupling constant
g -(fuone~ ), then the electronic force constant is also
of the order of Mesa, and the electron phonon parameter
A,

q
is a dimensionless quantity of the order of unity.

The parameter A, can be used to estimate the supercon-
ducting transition temperature T„through the McMillan
equation,

OD —1.04(1+A, )
T~ = exp

A, —p* —0.62k,p'

where OD is the Debye temperature, and the repulsive
Coulomb interaction parameter p* has a typical value of
-0.1. This equation usually gives a good approximation
to the solution of the Eliashberg equations for values of
I, 5 0.7, which will be the case in our calculations.

The value of the interaction parameter k obtained from
averaging the contributions of the phonon modes shown
in Table II is X=O. 5 and the average value of the phonon
frequency is ( co ) =41 THz, corresponding to a Debye
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TABLE II. The electron-phonon parameter k~, the phonon frequency ~~„, the phonon and electron-
ic force constants, and the Fermi-surface nesting parameter (de6ned in the text) are shown for several

phonons. The phonon polarization is indicated by L for longitudinal, T for transverse, and X, F,Z for
0

the three directions in space. These results were calculated for a lattice constant of 2.41 A and a c/a
ratio of 0.945.

(0,0, q
)L

(0,0,—,')T
0.29
0.09

co@ (THz) g ph (Ry/a. u. )

0.98
0.025

I(
q (Ry/a. u. )

0.49
0.004

&(Xs))„,
0.57

0.57

( -', 0,0)L
( 2,0,0)Ty
( 2,0,0)Tz

0.23

0.30
0.30

76
33
13

0.90
0.17

0.028

0.33
0.084
0.013

0.62
0.62

0.62

0.45

2.77

0.43

0.65

0.053
0.73

0.43

0.22

0.47

0.68

0.68
0.68

{3,0,0)L
{3,0,0)Ty
( 3,0,0)Tz

0.26
0.43
0.33

67

29

15

0.69
0.13

0.032

0.22

0.070
0.013

0.80

0.80
0.80

temperature of 8D =420 K (for comparison the Debye
temperature of Ge at zero temperature and pressure is
374 K). Combining these two values with a typical value
of the Coulomb parameter for s-p bonded metals of
iu'=0. 1, we obtain from the McMilian equation [Eq. (6)]
a superconducting transition temperature of T, =4.2 K.
According to this equation, T, depends linearly on 8D
but exponentially on A, and p'. Hence T, depends very
sensitively on the variations in these two parameters.
The p' parameter enters Eq. (6) mainly through the
difference A, —p, ', therefore a study of the e8'ects of
changes in A, is suScient to estimate the sensitivity of T,
to the determination of the various parameters. For a
value A, =0.6 we find T, =7.9 K, and for A, =0.4 we find

T, =1.5 K. These two limits can be used as an estima-
tion of the uncertainty in our calculation of T, .

The number of wave vectors included in the averaging
of A, is very small, because the use of a larger number of
points is computationally expensive in the frozen phonon
approach. ' Since the contributions from the phonon
modes shown in Table II can vary by as much as an order
of magnitude, it is necessary to examine the contributions
from various parts of the wave-vector set. If we disre-
gard the large contribution to A, from the ( —,',0, —,

'
) phonon

polarized in the y direction, and for balance the small
contribution of the ( —,', 0,0) transverse phonons, we obtain

a value of k=0. 34, and a corresponding T, =0.5 K. A

single phonon mode is suScient to increase T, by almost
an order of magnitude in our sampling. This phonon
mode is at s high-symmetry point in the Brillouin zone,
snd is nondegenerate, therefore the gradient with respect
to q of both the phonon frequency m& snd the coupling
constant Afq~ is zero. Hence there is signi6cant weighting
of these phonons. The other points included in Table II
also have high symmetries. They are associated with

singularities in the phonon density of states with the ex-

ception of the ( —'„0,0) wave vectorwhic, h was included

because it is in the center of the —, wedge of the Brillouin

zone which csn be considered as an "average" wave vec-
tor.

We have analyzed the diff'erent contributions to A,~„
and determined the origin of the large variations in its
value. Inspection of Table II shows that this variation is
not due to the Fermi-surface nesting, which is roughly
constant, or to the density of states at the Fermi level
D(eF)/N =0.12 eV ' which does not depend on the
choice of phonon mode (for comparison the free-electron
value is 0.17 eV '). The important quantity for under-
standing the values of A,z is the ratio between the phonon
and the electronic force constants. The electronic force
constant K~„ is an average [Eqs. (4) and (6)] of the square
of the electron-phonon matrix elements [Eq. (lb)] over
the Fermi surface and is always positive. The phonon
force constant E~~"„has two contributions, one from the
Msdelung term in the total energy used to define the
"bare" phonon frequencies, and another from the elec-
tronic screening of the bare phonons. Each of them can
have either a positive or s negative sign, but their sum
must be positive in s stable crystal. If a phonon mode
stresses a nearest-neighbor interatomic bond, i.e., the in-
teratomic distance is linear in the phonon amplitude, we
expect large contributions to the electronic force con-
stant, to the bare phonon frequency, and to its screening.
If the phonon mode shears the bond, i.e., if the intera-
tomic distance is quadratic in the phonon amplitude,
then we expect only small contributions from that partic-
ular bond. The electronic force constant being positive
definite will reAect the number and strength of the
stressed bonds while the phonon force constant could be
accidentally small through the cancellation of large con-
tributions with opposite signs.

There are four phonon modes with low frequencies
(less than 20 THz) in Table II. The transverse (0,0,—,')
mode and the (q, 0,0) transverse phonon modes polarized
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in the z direction do not stress bonds and therefore they
have also small electronic force constants. Their contri-
bution to A, varies from small to average. The y-polarized
( —,', 0, —,') phonon mode, on the other hand, stresses the
bonds in the xy plane and has a large electronic force
constant. The sma11 va1ue of K~"„ for this mode is due to
a large electronic screening of the bare phonon frequen-
cy. The contribution of this mode to A, is very large. The
other phonon modes in Table II stress some bonds, have
large electronic and phonon force constants, and give an
average contribution to A, .

Two of the low-frequency phonons are related to the
structural phase transitions of Ge with pressure. The
atomic displacements transforming the primitive hexago-
nal phase into the P-Sn phase correspond to the displace-
ments of the y-polarized ( —,',0, —,

'
) phonon of the primitive

hexagonal phase, and the displacements transforming the
primitive hexagonal phase into the hcp phase correspond
to the transverse (0,0, —,') phonon. The low frequency of
these two modes re6ects the incipient instability of the
primitive hexagonal phase with respect to the P-Sn and
hcp structural phases, as was discussed previously.

Our calculations of A, and t0 as a function of pressure
show that we should expect a decrease of T, of the order
of 30% when the pressure is increased from 85 to 105
GPa. This is a consequence of a calculated 10% reduc-
tion of A, and a 5% increase of ez. Our results show that
this decrease should be essentially linear with pressure.
The main reason for the decrease of k is the increase in
frequency of the y-polarized ( —,', 0, —,

'
) soft phonon.

Comparison with the calculations for Si shows similar
values for k, which is not very surprising since A, is in-
dependent of the atomic mass and these atoms have simi-
lar electronic properties. Hence the difkrence in T, be-
tween the two crystals will depend only on their respec-
tive Debye temperatures. As was mentioned before, the
pressure range where primitive hexagonal Si is stable is
difkrent from the range for Ge. The large decrease in T,
for Si with pressure followed by an increase is due to the
hardening of the ( —,', 0, —,') phonon as the pressure in-

creases from its value near the P-Sn structural transition
followed by the softening of the transverse (0,0,—,

'
) phonon

as the pressure of the hcp structural transition is ap-
proached. In the case of Ge near the hcp transition the
softening of the transverse (0,0,—,

'
) phonon does not affect

A. noticeably and the hardening of the ( —,',0, —,
'

) phonon is
small, thus T, as a function of pressure for primitive hex-
agonal Ge will not have a U-shaped curve but only a gen-
tle linear decrease.
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