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Momentum-dependent electron self-energy in nearly ferromagnetic systems:
Comparison of spin Suctuations and phonons
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The self-energy X is calculated in a two-parameter spin-Auctuation model. In contrast to the
electron-phonon system, paramagnons have considerable spectral weight at large energies, 0(EF),
even very near the magnetic transition. The momentum dependence of X is important and leads to
signi6cant changes in the chemical potential and in the ratio m /m and to restoration of particle
conservation, which is violated in the paramagnon model. The Eliashberg strong-coupling theory
must be modified. Our results support resolution of the question of paramagnon model versus

Fermi-liquid theory in favor of the latter.

I. INTRODUCTION

Since the early work of Doniach and Engelsberg' (DE)
and Berk and Schrieffer ' (BS), the paramagnon model
has been extensively applied to the calculation of normal
state and superconducting properties of nearly ferromag-
netic metals' and liquid He. Recent reviews have
been given by Stamp and Heal-Monod. In this model
the efkctive-mass enhancement is calculated from a one-
paramagnon exchange approximation to the electron (or
He atom) self-energy X. Although it was recognized at

the start that a paramagnon is not a well-defined excita-
tion, the analogy with phonons has been widely em-
ployed. In particular, it has always been assumed that
the momentum dependence of X can be neglected and
that, as the magnetic transition is approach, typical
paramagnon energies cosF are much smaller than the Fer-
mi energy EF. %'e find that both of these assumptions
are not valid: the paramagnons have considerable spec-
tral weight at energies 0 (EF) even in strongly exchange-
enhanced systems (Stoner factor 5 »1) and, primarily
because of this, the momentum dependence of X is im-
portant.

There have been some indications that paramagnons
cannot be treated on the same footing as phonons.
Layzer and Fay' pointed out that the X calculated in the
BS theory leads to a single-particle momentum distnbu-
tion inconsistent with particle conservation. Missing ver-
tex corrections were suggested as the cause. In related
work Hertz et al. " showed that there is no Migdal's
theorem for paramagnons.

%'e find that taking account of the momentum depen-
dence of X restores particle conservation and we suggest
that an "effective'" Migdal's theorem may hold in a phe-
nornenological interpretation of the theory. %e also 6nd,
in contrast to the phonon case, that the change 5p in the
chemical potential due to interactions is large (order EF }

and that the "Migdal" sum rule, Eq. (7), used in the
Eliashberg strong coupling theory ' does not hold. The
momentum dependence of X right at the Fermi surface is
however weak and thus, as for phonons, the relation
m'/m =1+i,, with 1,= —t)X/c)co, is a fairly good ap-
proximation. X itself is reduced by the inclusion of the
momentum dependence (about 25% in the case studied}
thus tending to alleviate the problem that the paramag-
non theory overestimates m */m.

II. SPIN FLUCTUATION
AND PHONON CONTRIBUTIONS

TO THE ELECTRON SELF-ENERGY

We consider a spin fluctuation (SF) contribution to the
self-energy of the form

X(p, co)=i I G(k, co')t(p —k, co —co'),
d4k

where 6 is the single-particle Greens function and t is the
particle-hole t matrix which, in the RPA-paramagnon
theory (RPA: random-phase approximation), has the
form

I Xo(q, co ) I Xo
t (q, co) =I +(—) =(—', )

1 IX&(q, co )
' —1 IXo—

Here I is the "contact" exchange interaction parameter
and Pp is the susceptibility of the noninteracting system
[Xo(0,0)=N (0)]. The Stoner factor is then S =[1—N(0)Ij ' and the last form is valid for large S. For
simplicity we assume zero temperature, uniform enhance-
ment, and neglect all band-structure e8'ects, i.e., essential-
ly a model for liquid He.

In our actual calculation of X we employed a more
general SF model in which I ~I (q) =I/(1+b q ).
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This is very similar to the potential and polarization po-
tential ' models used by other authors. It has long been
clear that the one parameter paramagnon model is inade-
quate for describing nearly ferromagnetic systems. A
two-parameter momentum-dependent exchange interac-
tion I(q) was apparently first used by Schrieffer' and
Hrinkman and Engelsberg. ' The effect of momentum
dependence in the interaction has been discussed more re-
cently by Ainsworth et al, ' and CoiTey and Pethick. '

In the present work we are primarily interested in the
effect of momentum dependence in the self-energy which
has not previously been investigated. From now on we
refer to the original one-parameter model' as the
"paramagnon" model and to the more general phenome-
nological models as "SF"models. Our results for X are
thus not restricted to the paramagnon model. Later we
discuss the validity of the RPA form, Eq. (2).

The strong-coupling treatment ' of Eq. (1) leads to
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FIG. 1. Electron self-energy. Solid curves: ReX/E+ and
IrnX/EF for the paramagnon case with parameters X(0)I=0.95
and b=0.3/kF (chosen so k=4.2) with y =co/EF. Dashed
curves: ReX/(2m»3 and ImX/(2'») for the phonon case,
p =CO/6) g.

sgnco f dc@' f" daklmG(s„, co')
0 —EF

X F (e~, ei, co —co'), (3)

where p =
~ p ~, s =p'/2m EF, and—

F(e,e„,co) = X(0) u+k qdq Imt(q, co) .
I p —&! 2k'

ReX can be obtained from a Kramers-Kronig dispersion
relation. The p dependence of X occurs only in the pre-
factor in Eq. (3) and in the limits of Eq. (4). In the stan-
dard treatment one now follows Berk and argues that F
is a weak function of p and k. This allows the replace-
ment

F~P (co) = X (0) 2"F qdq
2 Imt(q, ro) .

o 2kF2

P (co) is the paramagnon spectral function used by a num-
ber of authors ' and corresponds to the a F of the pho-
non case. For cosF g&EF, we can set p =k„ in the pre-
factor of Eq. (3) and X depends on co only. As for pho-
nons, m*/m =1+I,with

which roughly corresponds to He near the melting pres-
sure. X(0)I is determined from X(0,0) and b was chosen
so A, =4.2. In this approximation X has the symmetries

ImX( —co) = ImX(co), ReX( —co) = —ReX(co)

and thus ReX(0)=5p=0. Also shown in Fig. 1 are the
corresponding phonon curves calculated from a Lorentzi-
an spectral function centered on co=~» and adjusted to
yield the same k. Although the phonon and SF curves
are quite similar, the important point is that X z is mea-
sured relative to ~ b while XsF is measured relative to EF.
The variation of X is con6ned to energies below several
co~i,(EF ) for the phonon (SF) case and the maximum mag-
nitude is order co» for phonons but order EF for SF. Due
to the size of cosF, extending the limit from —EF to —oo

in Eq. (7) was actually not allowed for the SF case con-
sidered.

III. KI.ECTRON MOMENTUM DISTRIBUTION
AND PARTICI.K CONSERVATION

The electron momentum distribution n (s~ ) is given by

n(s~)= f A (s,co)dao (9

where 3 is the electron spectral function given by

~=2f ~
P( )

0 N

Equation (3) is now solved by employing a "sum rule" in-
troduced by Migdal' for the phonon case:

A (s~, ru) =—1
~

ImX
~ (co —s —ReX) + ( ImX )

which satis6es the sum rule

(10)

This is equivalent to replacing 6~Go in Eq. (1) and
should be valid to within corrections of order sos„/EF.
Equation (3) is thus reduced to a one dimensional integra-
tion.

In Fig. 1 we show the self-energy X(co) that results for
the SF-model parameters N(0)I=0.95 and b =0.3/kF

n( —e )=1 n(s ) . — (12)

This can be seen in Fig. 2 where we show n for the cases
of Fig. 1 with co „=0.01EF. The behavior of n (e ) re-

Eq. (113 is exact, in contrast to the "Migdal" sum rule,
Eq. (7).

For the momentum-independent X, Eq. (11) is satisfied
and with Eq. (8) it is easy to show that n (s~) is. sym-
metric about the line n = —,':
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FIG. 2, Single-particle momentum distribution as function of
x = c~ /EF for the parameters X(0)I=0.95, b =0.3k& and, for
the phonon case, u» ——0.01EF. Solid curves: Paramagnon
model. Dashed curve: SF model with momentum-dependent X.
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suiting from Eq. (12) shows that neglecting the p depen-
dence of X necessarily leads to a violation of particle con-
servation. For the parabolic-band case, the particle num-
ber is

X=—,'Eo f dx(x+1)'i n(x) (13)

where Xo ——(2mEF) ~ /(3m. ) is the particle number for
the noninteracting system and x =a~ /EF. When
X=X(co), it follows that for x ~ ao, n (x) cc 1/x and X
diverges. This does not cause concern in the phonon case
because a completely momentum-independent X is not
physical; momentum dependence on a scale of kF is ex-
pected in any case and this will cause convergence of the
integral in Eq. (13). Due to the smallness of co„h/EF,
however, such momentum dependence will have negligi-
ble effect on physically interesting quantities. The shape
of n h(e ), for example, will be essentially unaltered. For
SF with cps„0(EF ), thi——s is not the case and the momen-
tum dependence can be important.

Although it has been pointed out that "'high-energy"
paramagnons do not have to be treated on the same foot-
ing as phonons in strong-coupling superconductivity, it
has always been assumed that for 5 && 1 the phonon anal-

ogy should be useful. %e find that this is not the case. In
Fig. 3 we plot P(co) from Eq. (5) for several Stoner fac-
tors for the paramagnon model, b=0. The important
point is that, although the peak moves to smaller cu as S
increases, I't remains aide. In Table I we compare several
measures of ~sF. The position of the peak ~ „k, the often
used EF /5, and the normalized first moment of
P (to), cosF, where we have cut the integrals off' at
co=1.5EF. It is seen that cosF remains on the order of
EF /2 even for extremely large 5 and that EF/5 and co„„„
are not useful measures of typical SF energies. Thus the
phonon analogy is for practical purposes neUer reasonable
and the effect of momentum dependence and the large
Msp must be investigated.

IV. HUMERI| AL COMPUTATION OF X( p~, a) )

We have numerically solved Eq. (3) with the
F(ep, Ek, co) of Eq. (4). Slllcc tllc rcplacclIlcllt, Eq. (7), ls

FIG. 3. Paramagnon spectral function defined by Eq. (5) for
various Stoner factors.

TABLE I. Typical definitions of paramagnon energy in units
of FF and k from Eq. (6) for b=O.

2

10
20
50

100
200
500

1000

F.F /S

0.500
0.250
0.010
0.050
0.020
0.010
0.005
0.002
0.001

0.720
0.450
0.240
0.160
0.080
0.050
0.030
0.016
0.008

SF

0.81
0.72
0.64
0.60
0.57
0.56
0.55
0.54
0.54

0.5
1.8
4.5
6.9

10.6
13.5
16.5
20.5
23.6

not valid, Eq. (3) is now a nonlinear integral equation for
ImX(c~, co). ImG can be expressed in terms of ReX and
ImX through Eq. (10) with ImG = —IrA. The general
strategy is to use the momentum-independent results for
X as input, compute ImX from Eq. (3), ReX from ImX
with a Kramers-Kronig dispersion relation and then use
these results as input for the next iteration. %e actually
used as our starting approximation ImX obtained by set-
ting ImG(c„,co')= n5(to—'

ek) i—n Eq. (3) which then
reduces to an integral over the momentum-dependent
spectral function F(e,cu', co ~'). In fact, a large part of
the correction to X(~) is already contained in this ap-
proximation; about 50% of the total correction to
m */m, for example. We find good convergence after two
or three further iterations.

The integrations were performed with Simpson's rule
with mesh sizes adjusted to give a maximum error in the
final X of about 5%. The ek integration was particularly
time consuming due to the complexity of the function F.
This function is nonzero only for certain regions of c~
which depend on c and cu —u'. A variable integration
mesh size must be employed to insure inclusion of all
contributions in a reasonable amount of computer time.
We evaluated X(c,co) at 40 values of e~ between —EF
and 300EF and at 70 values of ~ between —300EF and
+ 300EF with most of the points in the region of small
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and co where X varies most rapidly. A linear interpola-
tion was made between these points. The results were not
sensitive to the way X was extrapolated to zero for large

Fp SIKE 6).
%e have not computed the special case of the range

parameter b=O because the 5-function approximation
then yields an ImX(e, co) that increases linearly with co

for large co. The calculation of ReX is then more compli-
cated; a twice-subtracted dispersion relation is necessary,
for example. Although a hnearly increasing co depen-
dence is apparently not forbidden on general grounds, the
contact exchange interaction, 6 =0, is a rather unphysical
approximation and we leave the study of the momentum
dependence of this case to a future investigation.

Results for X(a~=0,cu) are shown in Fig. 4 for the
same SF parameters as in Fig. 1. All curves approach
zero as co~+oo. The symmetries, Eq. (8), no longer
hold, 5p, =1.6EF is large, and the exact sum rule, Eq.
(11), is fulfilled. The momentum distribution, also shown
in Fig. 2, now has a reasonable form for which Eq. (12)
no longer holds, and the particle number is now con-
served (N =No ) to within about 2%.

As functions ofp, ReX, and ImX vary rather slowly for
O~p g2kF and fall off fairly rapidly for p g2kF. Typical
curves are shown in Fig. 5. For cu near zero and p near
k, the e variation of ReX is slow: BReX/Bs =0.07.
Thus the direct contribution of the p dependence to
m'/m =(1+A,)/(1+BReX/Be ) is small. However, A,

is reduced from 4.2 to 3.2 by the inclusion of the momen-
tum dependence yielding a overall reduction of m '/m of
about 25%.

%e have not made a systematic study of the efrect on
the momentum dependence of X of varying the SF pa-
rameters I and b separately. The momentum dependence
does not seem particularly sensitive to these parameters
aside from the general diminishing of SF e8ects for de-
creasing I and increasing b which can be seen in Table I:
for example, for S=20, the b=O value A, =6.9 is reduced
to A, =4.2 for 8 =0.3/kF.

LL
UJ

1,0
ll
3

~ 0.5

0-,
0

Our results shed some light on the long-standing con-
troversy over the validity of the RPA susceptibility in Eq.
(2). For q=0 and re =0, the paramagnon X is given by

Xp(0, 0)/70 ——1/[1 —N (0)I] (14)

where N(0) is the bare density of states. On the other
hand, Landau theory yields the exact relation

Xr (0,0)/Xo —(m*/m)/(1+F0) . (15)

The difference in these two forms becomes important for
finite q and ~: if the Landau form is extrapolated away
from q =co =0 with the RPA-Lindhard function Xo(q, m),
the spin Auctuations are considerably weaker than in the
paramagnon model. Unfortunately, the Landau theory
does not tell us how to extrapolate Eq. (15) away from
q=O. BS justified Eq. (14) by a rather convincing argu-
ment which, in light of our present results, appears to be
incorrect. BS start with I expressed through the exact
particle-hole t matrix and replace the irreducible interac-
tion with the constant I [or, more generally, I(q, co)].
This should not introduce factors of rn*/m and allows
summation to

FIG. 5. Momentum-dependent self-energy as a function of
momentum computed from the nonlinear equations (3) and (4)
for X(0)I=0.95 and b =0.3/k .

E(k, u)

with

d4k
Q(q, ~)=i f G(k, ko}G(k+q, ko+m) .

(2n. )
(17)

03"
1D 2D ~ 50 60
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FIG. 4. Momentum-dependent self-energy as a function of
energy computed from the nonlinear equations (3) and (4) for
X(0)1=0.95 and b =0.3/kF.

A very simple argument ' now shows that Q(0, 0)
=Xo(0,0)=N(0), if BXBp=O and cosF ~~EF. Since nei-
ther of these conditions holds for SF, the 8S argument
fails. In fact, it has been shown that relaxing the condi-
tion BX/By=0 leads to multiplicative renormalization of
Xo. The BS argument does apply to the phonon case and
shows that 7 is not afkcted by phonons to leading order
ln coph /EF It thus seems that Fermi liquid models, such
as the polarization potential model, which reduce to
Xl (0,0) should be given preference.
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VI. DISCUSSK)N

Concerning vertex corrections in the diagram for X, we

point out a dift'erence in the philosophy of the BE and BS
approaches. BE start with a Hubbard-type Hamiltonian
containing a parameter IDE. The connection between

IDE and 7 is not direct, i.e., the irreducible particle-hole
interaction is a complicated function of IDE. Vertex
corrections are important" and can be included without
double counting. This is not the case with BS who do not
write down a Hamiltonian. Their I is a phenomenorogical
parameter, essentially the I(0,0) in Eq. (16), determined
from the static, uniform susceptibility. It is thus very
diScult to see what sort of vertex corrections could be
added to the one SF exchange self-energy without
double-counting contributions already efFectively includ-
ed in I ~

The related fact that the paramagnon model is not con-
sistent (conserving ) in the sense of Kadanoff and Baym
is probably not particularly relevant in the phenomeno-
logical approach when one goes beyond the one-
parameter model. Even in the paramagnon model of DE„
the diagrams that must be added to make the theory con-
sistent seem to be of the particle-particle ladder type that
are not singular in the ferromagnetic limit.

%e conclude thai, although the phonon analogy is

poor, an analog of Migdal's theorem may apply, nonethe-

less, and reasonable results can be obtained with the one
SF exchange self-energy if account is taken of the
momentum dependence and the large asF and if a phe-
nomenological SF propagator is used that reduces to the
Landau Xt (0,0). It should be emphasized that our results
do not alter the basic SF-paramagnon concept, i.e., the
importance of particle-hole diagram in nearly magnetic
systems. Only the technical details and, to some extent,
the interpretation are modified. In fact, we believe we
have supplied some justification for the use of (suitably
modified) SF theory.

SF models have recently been applied to heavy-fermion
systems: the T lnT term in the specific heat has been an-
alyzed in terms of the paramagnon model ' and in terms
of more general SF models. ' ' Several authors have
applied antiferromagnetic SF models to these systems.
Improved calculations in this area should take into ac-
count the corrections discussed here, not only for the
spin Auctuations but also for the phonon case since here
co I,

& EF -bandwidth.
Our modi6cation of the Eliashberg strong coupling

theory may also be important for the calculation of the
superconducting transition temperature. In particular,
since the e8'ective SF energy is of the order of Ez, it is

possible in principle that the paramagnon exchange
mechanism could lead to much higher triplet transition
temperatures than previously expected.
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