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Elastic constants of Nbc and MoN: Instability of B t-MoN
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Total energies of MoN have been calculated for small strains from the cubic 8& structure to or-
thorhornbic and trigonal structures, and 8,™MoNwas found to be unstable. To check the reliability
of the calculations, we have also calculated the elastic constants for 8i-NbC and obtained good
agreement with experimental results.

I. INTRODUCTION II. CAI.CUI.ATIONAL METHOD

Several recent theoretical calculations' have indicated
that molybdenum nitride (MoN) in the B~ (rocksalt)
structure would possess some extreme properties, e.g. , a
superconducting transition temperature ( T, ) of about 29
K (which used to be considered high before the advent of
the new copper-oxide ceramic superconductors). Follow-
ing the initial prediction of its high T„several investiga-
tors have reported the synthesis of MoN in the 8,
phase; however, no high T, has yet been found. The
discrepancies between the prediction and experiments
were attributed to the inevitable defects of the 8&-MoN
samples prepared with the various techniques. These
defects include vacancies on the nitrogen sites, nitrogen
occupation on the interstitial sites, and nitrogen incor-
poration on Mo sites. Some attempt was made to im-
prove the quality of the B,-MoN crystals by high-
pressure annealing in the hope that the nonequilibrium
8

&
phase would be stabilized and that nitrogen vacancies

would be 611ed by interstitial nitrogen atoms, because the
density of the 8I-MoN is larger than that of the equilibri-

um hexagonal MoN. However, it was found that the

B,-phase MoN was converted mainly to the hexagonal
phase under pressures as high as 6 Gpa. The experi-
ments and calculations carried out so far still appear to
leave the following question open: Is the pure 8, phase
of MoN stable~

In this paper, we investigate the stability of B,-MoN

by performing total-energy calculations for small strains
of the 8& structure. In order to estimate the reliability of
the calculational results for MoN, we also calculate the
total energies for 8&-NbC versus several kinds of small
strains. Analytical 6ttings of the total energies yield
several elastic stiff'ness constants which are then com-
pared with the experimental results.

The total energies are calculated within the local-
density-functional approximation (LDA) using the self-
consistent hnearized augmented-plane-wave (LAP%)
method ' with the Hedin-Lundqvist exchange-
correlation potential. The calculational method em-

ployed in the program has been described in detail previ-
ously. BrieAy, a LAP% basis function in the interstitial
region is a plane wave which joins continuously and
difkrentiably with a scalar-relativistic solution to the
spherical component of the muSn-tin potential centered
on each atom. The nonspherical components of the
mu5n-tin potential are included in the variational deter-
mination of the eigenstates. In each iteration, we recom-
pute the eigenstates of the core electrons which are treat-
ed fully relativistically in an atomiclike approximation.
The 4p core states of neighboring atoms overlap slightly
and about 0.3 electron per unit cell is in the interstitial re-
gion. These semicore states are treated as variational
band states in a separate "energy window. "

A well-converged basis set of about 200 LAP%'s is
used. The charge density is summed over the irreducible
Brillouin zone using a set of special discrete k points: 60,
144, 204, and 288 k points for 8, , tetragonal, trigonal,
and orthorhomibic structures, respectively, such that the
total number of k points in the full 6rst Brillouin zone is
the same for every structure.

III. RKSUI.TS AND DISCUSSION

A. NbC

As mentioned, to check the reliability of the calcula-
tions, we calculate the elastic constants for 8l-NbC. The
results are summarized in Table I. The total energies for
8 &-Nbc were Arst calculated as a function of the volume,
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TABLE I. Elastic constants, lattice constant, and bulk modulus of 8&-NbC.

Cl2
(10" dyn/cm )

LAP%'
Expt.

6.4
6.2

1.8
2.0

4.45
4.47

3.32
3.40

and fitted to Murnaghan's equation of state. ' The bulk
modulus obtained from the fit is

8=—,'(C„+2C)~)=3.32 Mbar

and the equilibrium lattice constant is 4.45 A, with the
rms error of the fit being about 0.03 mRy. The total en-
ergies for NbC were then calculated for small strains
from the equilibrium 8, structure to orthorhombic and
tetragonal structures. A small distortion can be de-
scribed by the strain tensor, e, which is defined by the
transformation a'=(I+e)a, where I is the unit matrix, a'
and a are the new and old lattice vectors, respectively.
For the orthorhombic distortion, the strain tensor is

0 5 0
5 0 0

0 0 5

The change of energy density associated with the ortho-
rhombic distortion is

U-th =2C445'+o(5') .

For a tetragonal distortion, the strain tensor is

—5 0 0— =1«air=-tetr

0 0 25

Both strain tensors keep the volumes of the distorted unit
cells unchanged.

The calculated total energies for small orthorhombic
distortions are shown in Fig. 1; also shown in Fig. 1 is a
least-squares fit of the results to the formula (2). The fit
yields the elastic stiftness constant

C44 ——1.4 X 10' dyn/cm

with the rms error of the fit being less than 0.1 mRy.
The calculated total energies for small tetragonal dis-

tortions are shown in Fig. 2 together with their least-
squares fit to the formula (3). The ftt gives

C» —C,2 =4.6 X 10' dyn/cm

with the rms error of the fit being less than 0.1 mRy.
Combining the above equation with (1), we have

Ci t
——6.4 X 10' dyn/cm2,

C,2
—1.8 X 10' dyn/cm

The calculated constants for NbC are listed in Table I in
comparison with the measured elastic constants" and lat-
tice constant. ' The excellent agreement is a confirma-
tion of the calculational method.

B. MON

and the change of energy density is

U„„=—,'(C() —C)g)5'+0(5') . (3)

We have calculated the total energies of MoN for small
strains from the 8

&
structure to orthorhombic and trigo-

0
nal structures. The lattice constant used is 4.25 A (Ref.

10

2

0»

0.04 -0.04 -0.02 0 0.02 0.04

FIG. 1. The solid circles are calculated total energies for
small orthorhombic distortions of B,-N1C (symmetric with
respect to 5). The values are given relative to the energy of the
8, structure which is —7708.40097 Ry. The line is a least-
squares 6t of the results.

FIG. 2. The solid circles are calculated total energies for
small tetragonal distortions of 8&-NbC. The values are given
relative to the energy of the 8& structure which is —7708.40097
Ry. The line is a least-squares 6t of the results.
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TABLE II. Elastic constant, lat tice constant, and bulk
modulus of 8

&
-Mow.

&44
(10" dyn/cm')

LAP%' —0.53 (trig. ) —0.53 (orth. ) 4.285 3.6

-)6
w W I V I I
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FIG. 3. The solid circles are calculated total energies for
small trigonal distortions of B,-MoN, while the open circles are
for its orthorhombic distortions. The values are given relative
to the energy of the 8& structure which is —8199.46225 Ry,
and the relative energies for the orthorhombic distortions have
been multiplied by 3. The lines are the least-squares fit in small
regions around the 8, structure.

1), which is within 1% of that calculated in Ref. 13. A
trigonal distortion is represented by the following strain
tensor:

5' 5 5

, 5 5 5'

and the change of energy density is

U, „;s——6C445 +0(5 ) .

As for NbC, these strains for MoN keep the volumes of
the distorted unit cells unchanged.

The total energies of MoN for small orthorhornbic and
trigonal distortions are shown in Fig. 3; both distortions
indicate that MoN is not stable in 8, structure and that
the rninimurn energies are approximately at 5=0.08. A
least-squares 6t of the total energies for the orthorhombic
distortion to the formula (2) yields

C44 ———0.53 & 10' dyn/cm

with the rms error being less than 0.1 mly, and the cor-
responding fit for the trigonal distortion to (4) also yields
the same value within fitting error. The elastic constant
for MoN is listed in Table II together with its lattice con-
stant and bulk modulus. ' The bulk modulus is positive
because B,-MoN is stable against dilation; our primary

calculations for small tetragonal distortions also indicate
that it is'stable against such distortions. Thus, B,-MoN
1s at a saddle poInt.

The calculated elastic instability of pure B,-MoN is
not in contradiction with the experimental synthesis of
the defected B,-MoN crystals. Various defects such as
vacancies, which have not been included in the present
calculation, may stabilize the B~-MoN structure by in-
creasing the total entropy and possibly lowering the total
energy as in TiO and Tic (Ref. 14).

Nevertheless, the elastic instability of the 8
&

phase im-
plies that an experimental check of the initial high-T,
prediction for the 8 &-MoN could be impossible, since it
appears that the 8&-MoN crystal can only be made by
tolerating certain defects which might significantly
change its T, .

IV. CONCLUSIONS

The total energies of B,-NbC were calculated for small
strains, and the elastic constants derived from the calcu-
lated total energies for B,-NbC agree well with the exper-
imental results. The same methods for 8&-NbC are then
used to calculate the total energies of MoN for small dis-
tortion from the 8 j structure to the orthorhombic and
trigonal structures; the results indicate that pure
8&-MoN is not stable. Various defects such as vacancies
and disorders of the sublattices appear to play some role
in leading to the stability of the reported experimental
8&-MoN samples. It would be interesting to include cer-
tain defects in the calculation of the total energies of 8, -

MoN for small strains.
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