
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 7

Quantum statistical mechanics of an array of resistively shunted Josephson junctions
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%e have constructed a fully quantum-mechanical model of an ordered array of resistively shunt-
ed Josephson junctions, and have determined the nature of the phase diagram as a function of the
Josephson coupling, V, the capacitance, C (or, equivalently, the charging energy Eo ——4e /C), the
shunt resistance, 8, , and the temperature, T. In order to treat the dissipative element (R) in a quan-
tum system, me have modeled it by a heat bath with spectral weight chosen to reproduce Ohmic
resistance in the classical limit. Among other results, me find that in the extreme quantum limit,

Eo » V»k& T, the onset of global phase coherence (superconductivity) in the array occurs only if
R is less than a critical value 8, = Ah /e', where A is a number of order 1 which depends on the di-
mension and the lattice structure. The fact that the dissipation enters the thermodynamics at all is a
consequence of the quantum nature of the transition. This transition is reminiscent of the results of
recent experiments on thin Nms of granular superconductors.

I. INTRODUCTION

It is often useful to describe the collective behavior of
1arge numbers of particles in terms of the dynamics of a
much smaller number of collecti. ve coordinates or
coarse-grained fields such as the phase across a Josephson
junction or the macroscopic wave function of a supercon-
ductor. Because of the collective nature of these vari-
ables, their dynamics is typically well approximated by
classical, dissipative equations of motion, where the dissi-
pation represents the effect of the coupling to the remain-
ing microscopic degrees of freedom (the heat bath), e.g.,
the long-wavelength fluctuations of the superconducting
order parameter can be well represented by the time-
dependent Landau-Ginzburg equations. It is a charac-
teristic of a classical system that the dynamics and the
thermodynamics are completely separate, and thus the
dissipation does not afkct thc thermodynamic properties
of the system at all. Under some circumstances, it is pos-
sib1e to enter a regime of temperature and coupling con-
stants where quantum fluctuations of the collective coor-
dinates become important. Here, not only the effective
dynamical mass of the co11ective coordinate, but the mag-
nitude of the dissipation as well afFect the thermodynamic
properties of the system. For instance, it was recognized
several years ago that in problems that involve a single
collective coordinate P which is coupled to an Ohmic
heat bath with resistance 8, and which is otherwise free
to tunnel between classical ground states in a symmetric
double well' or a periodic potential, ' there is a zero
temperature "quantum-to-classical" phase transition as a
function of R. The amount of dissipation is proportional
to 1/R. For 8 greater than a critical value of order
h/(2e), P is free to tunnel between potential minima,
i.e., quantum fluctuations restore the symmetry between
the wells that are broken at the classical level. For 8 less

than the critical resistance P is localized in a single well
and the quantum ground state has the same degeneracy
as if (() were a strictly classical variable.

Experiments have been carried out in recent years
which confirm the validity of some aspects of this discus-
sion. In particular, measurements of the decay of meta-
stable persistent currents in Josephson junction devices
have been performed which are consistent with the
theoretical descriptions of the system in terms of a single
macroscopic coordinate with effective mass determined
by the capacitance C and linear coupling to an Ohmic
heat bath. However, no experiments have yet been per-
formed on single Josephson-junction devices which ob-
serve a phase transition as a function of the dissipation.
There have, however, been experiments performed on ul-
trathin films of granular superconductors which are high-
ly suggestive of a transition as a function of dissipation. '

These films are believed to be in the extreme quantum re-
gime, since the small grain sizes imply charging energies
Eo=4ei/C large compared to the Josephson coupling V

between nearby grains. It has been observed in a variety
of films that if the normal-state sheet resistance is in ex-
cess of R, =h/4e =6.45 kQ, the films remain in a
finite-resistance state down to T =0, while for sheet resis-
tance less than 8„the films have an unmeasurably small
resistance below a critical temperature. %'ithin experi-
mental uncertainties the critical value of the normal-state
resistance appears to be h/4e, independent of sample
geometry (implying insensitivity to the precise value of
the charging energy Eo ), or whether the granular materi-
al is polycrystalline Sn (Ref. 6) or amorphous Ga, or Pb. s

This observation led Jaegcr et al. to suggest that the
transition was similar to that predicted for single Joseph-
son junctions: a phase transition as a function of the dissi
@ation. This suggestion provided the original motivation
for Chakravarty, Ingold, Kivelson, and Luther (CIKL) to
study the thermodynamic properties of a phenomenolog-
ically motivated model of an array of resistively shunted
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Josephson junctions. From a somewhat diff'erent point of
view the role of the Ohmic heat bath in the present con-
text has also been discussed by Fisher. ' However„ it is

important to stress at the outset that it is by no means
definitively established that the dissipation, in the sense
of a coupling to a heat bath, is, in fact, the important
property of the system which is characterized by the
normal-state resistance. It is possible that similar results
could be obtained if one assumes that the resistance is a
measure of the disorder. Moreover, if we imagine that
the resistance is due to quasiparticle tunneling across a
tunnel junction between grains, then the resistance is
correlated with the Josephson coupling V between grains
according to the relation VR =h/Se b,o at T =0, where

ho is the superconducting gap of the grains. A theory
based on this observation" appears to be in agreement
with some aspects of the experiments. Thus, while there
are strong analogies between the behavior of the model
we have studied and the experiments on granular super-
conductors, the details of the relation between them is
currently unclear. Nonetheless, it is important to explore
in detail a we11-defined model which, in our opinion, leads
to many interesting results. Furthermore, it is not
difficult to envision that in the near future such resistively
shunted junction arrays can be artificially fabricated.

In our previous paper we discussed the motivation for
considering a simple model of a Josephson-junction array
and obtained an approximate phase diagram for the mod-
el by use of a variational calculation. %'e showed that at
low temperatures and for small capacitance, the system is
highly quantum mechanical and that, therefore, the resis-
tance has an important eff'ect on the location of the phase
boundary. In particular, at T =0 and V/Eo less than a
critical value, the onset of phase coherence in the ground
state is determined entirely by the value of the resistance.
This, in particular, is analogous to the experimental re-
sults in granular superconductors. (cf. Ref. 11.)

The present paper is a more complete and detailed
treatment of the same model. In Sec. II we define the
model. In Sec. III we discuss the variational solution to
the model, including details of the calculation that were
omitted in our previous paper. Sections IV and V con-
tain new results. In Sec. IV we analyze the asymptotic
behavior of the model in the limiting regions of the phase
diagram without making a variational or mean-field ap-
proximation. In Sec. IV A we consider the limit of small
dissipation a=h/4e E. ~~1, where, at 6nite tempera-
tures, the eff'ect of the heat bath is to produce small per-
turbative renormalization of the parameters; in Sec. IV 8
we discuss the ease o. ~~1, where the model becomes
completely classical. In Sec. IVC we discuss the semi-.

classical limit V/Eo ~~1, where single phase slips can be
treated as a dilute gas of instantons and in Sec. IV D we
discuss the extreme quantum limit V/Eo ~~ 1, where the
transition is driven by an infrared catastrophe charac-
teristic of the Ohmic heat bath and which we study using
a perturbative renormalization-group treatment. In Sec.
V we obtain some rigorous bounds on the critical value of
a. Finally, in Sec. VI we summarize our most important
results and discuss some unanswered questions which are
currently being investigated.

II. THE MODEL

%'e consider the model of an array of supercondueting
grains. Here we label each grain with an index j. %'e im-

agine that the largest Josephson coupling V is weak, i.e.,

V yak& T„where T, is the bulk superconducting transi-

tion temperature, and we focus on temperatures
T 5 V/k~. Since T &~ T, and the grains themselves are
macroscopic, we can ignore the Auctuations of the magni-
tude of the order parameter, h(T); but the phase 8, on
each grain j remains a dynamical variable. A rather gen-

eral Hamiltonian for such a system is (&8;J =8;—8J )

H = —,
' + 4e n;(C '); n + g VJ [1—cos(b8;, )]

i,j ( i,j )

where C, is the mutual capacitance matrix, and n is the
charge of the number of Cooper pairs on the grain j and
is thus the canonical momentum conjugate to 8 '
[n, , 8 ]= i 5,~. The —Josephson coupling energy between
the grains i and j is given by Vi. The sum (ij ) is over
nearest-neighbor pairs. The 6rst two terms constitute the
widely studied standard phase Hamiltonian. ' The third
term represents the eff'ect of dissipation in the junctions
by coupling the phase difFerence across the junction to a
heat bath. Following Caldeira and Leggett, ' we deter-
mine the nature of the heat bath phenomenologically by
requiring that it act like a shunt resistor (i.e., exhibits
linear damping) in the classical limit. Thus, X; is a col-
lective coordinate describing the coupling to the heat
bath associated with the shunt resistor across the junc-
tion (ij ), and h; (X; ) is the Hamiltonian of the (ij ) th
heat bath. Since we will treat the coupling to the heat
bath in linear-response theory, the efFect of the heat bath
is characterized by its zero-temperature spectral response
function

J,, (co) = I e' '(XJ(t)XJ(0)),
2A

which will reproduce Ohmic damping so long as

J;,(co)= a;, i
a)

i

fi

for ~ less than an upper cutoff' frequency co„where
o., =h /4e R;J and R;J is the shunting resistance between

grains i and j. For a disordered array, C;, V;, and o., -

are all random variables. This model is a slight generali-
zation of the model considered by CIKL in that we have
included the possibility of both mutual and single-grain
contributions to the capacitance matrix, whereas CIKL
assumed C; to be diagonal.

Since the effect of the heat bath is to introduce a time-
retarded interaction between Auctuations of the phase, it
is more convenient to treat this model in terms of a path-
integral formalism. %e are interested in the thermo-
dynamic properties of the system, therefore we consider
the efFective Euclidean action functional obtained after
the heat-bath degrees of freedom have been integrated
out:
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Ses Ps dr, fi

o fi ', 2e
0;C; 8-

V,. (1—cosh, 8, -}
(i,j)

III. VARIATIONAL CALCULATION

The model defined in Sec. II is still not exactly soluble,
despite the simpli6cstions we have made. Io this section,
as a erst approximation, we shall pursue a variational ap-
proach to argue that an important aspect of the dissipa-
tive transition is associated entirely with the infrared
property of the spectral density of the Ohmic heat bath
(J;J(oi)~

f
oi

f
as os~0) which leads to results similar to

those obtained earlier in the context of macroscopic
quantum efFects in Josephson systems. ' Moreover, as
we shall see, in the regime of the phase diagram where we
can make independent estimates which are highly plausi-
ble but not entirely rigorous, the variatiooal calculation
yields results that are semiquantitstively correct.

The simpli6cations discussed at the eod of Sec. II lead
us to study the following efFective action:

2S' Pd 1

Jo 2Eo,. Bu

+ V g [1—cosh8;, (u)]
&i,j)

+ g fbi„ f g f68;, (n) f'.
n &ij &

In the rest of the paper we shall focus our attention en-
tirely on s d-dimensional hypercubic lattice. The gen-
eralization to any lattice for which all bonds are geome-
tricall equivalent is straightforward and not particularly
illuminating. In carrying out the path integral with the
action defined by Eq. (4) one should keep in mind that
Ohmic dissipation implies that the charges csn be
transferred continuously. Thus the identification 8, (0)
=8, (2m. ) is in fact inconsistent with this assumption.

g fco„ f g a;, f68;, (n) f'.
n &ij&

The last term in S' represents the dissipative efFect of
the environment. For later convenience we have ex-
pressed it in the form of a series, where co„=2mn /P are
the Matsubara frequencies and b,8, (n) is "the Fourier
transform of 5,8,"( r).

To make progress on this problem, we shall simplify
the model in several ways. Most importantly, we consid-
er the problem of an ordered array with a,"=o, ,
C, =C5,", and V, = V. For now, we will simply imagine
that we are considering the properties of an artificial, or-
dered array. Secondly, we will assume that the capaci-
tance matrix is diagonal. The geoeralizstion to a more
general capacitance matrix is straightforward, though in-
volved. However, our results do oot depend sensitively
on the detailed form of C;, .

Phase transitions implied by the efFective action can be
very complicated in detail. Ho~ever, it is plausible that
when (8; ) ' becomes of the order of unity the system
will be disordered. It is also plausible that if there are im-
portant topological excitations of the system, they would
become significant when (8; ) ' —1. Thus an important
aspect io locating the phase boundary is to understand
when (8, ) ' becomes of the order of unity. This can be
achieved by using a variational principle which has been
discussed extensively by Feynman. The more common
Rayleigh-Ritz procedure to 6nd an upper bound of the
ground-state energy is a special case of the present varia-
tionsl technique. ' A variational estimate I" of the true
free-energy F can be constructed by use of the Gibbs-
Helmholtz inequality

g fbi„ f g fb, 8;, (n)
f

n &i j )
(6)

where the vsriational parameter D is the spin-
wave-stifFness constant. The underlying physical picture
is that if the system has a global phase coherence, then
the spin-wave stifFness will be 6nite; but if it does not, D
will be zero. This is also in accordance with the discus-
sion in the preceding paragraph. Thus the variational
method gives a self-consistent criterion for the root-
mean-square fluctuations of the phase variables 6ff;. Of
course, in the present context, the global phase coherence
in the spin language is also the same as the global phase
coherence in the sense of superconductivity.

Given the trial action, it is easy to show that

hF =F'(D) F'(D =0)—
= —,

' J dp g (b8; (0))„——g (68; (0})„
(i,j ) &i,j)
—(~e,'. ~o) & D/2

e
&ij &

where ( )„ is the average compute'd with the action (6),
w'ith D replaced by the variable p. Requiring that
B(EF)/BD be zero leads to the equation

D —
& ae',,(0)&„0/2p —D 8

V

where we have made use of the fact that all bonds of the
chosen lattice are equivalent. However, Eq. (8) merely lo-
cates an extremum of the free energy, aod ooi necessarily
the minimum. In order to And out if the nontrivial solu-
tion of Eq. (8) represents the minimum, one has to explic-
itly check the free energy, which can be rewritten as

F=F,„+&H a„)„&F,
where H is the true Hamiltonian, and F«and ( )«are
the free energy and thermal average computed with the
trial Hamiltonian H„

We choose the trial Hamiltonian or equivalently the
effective trial action to be the following:S„P 1 88;=—,

' f du g +D g 68,"(u)
0 E(i; Bu (,.
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g) + dp Qg2 0
2% 0

y ( ~(),', (0))„ , ,
&',j )

where we have made use of Eq. (8). N is the number of
sites of the lattice, and the connectivity constant zo is

given by

number of bonds
number of sites

For the hypercubic lattice considered in the present pa-
per zo is the dimensionality d of the lattice. It is easy to
compute ( b, 8;J.(0})„,which is given by

(~(),', (0))„= y. g —,
o co„ /Eo+(@+ace„/2n )[z —6 (k)]

i k*R,.
Here z =2zo is the coordination number of the lattice which is 2d for a hypercubic lattice. b, (k)= g, e ' is the
nearest-neighbor structure factor. The k sum runs over the first Brillouin zone.

Although we shall never need it, we write down, for the sake of completeness, the exact expression for the free energy
Ftq(D =0). This 1s given by

C co„[z —h(k ) ]F„(D =0)=Fo+ f dA, Q2~P o ~ „~ co„/Eo+ (Aa/2n }co„[z—b (k)]

where the cutoff in the sum over Matsubara frequencies
arises from the cuto6'of the Ohmic heat bath. Fo is the
free energy of the model corresponding to the action

2
~o 1 IB

2Eo Jo ~ Bu
(13}

which can be calculated in any number of ways.
We will study the phase diagram obtained from Eq. (8)

for a d-dimensional hypercubic lattice with z =2d. We
characterize the transition to be continuous or discon-
tinuous depending on whether the nontrivial (D&0)
solution of Eq. (8) appears continuously or discontinuous-
ly. In fact, whenever the transition is discontinuous, the
solution of Eq. (8) does not correspond to the absolute
minimum of F', the point at which a nontrivial transition
first appears is analogous to a spinodal line and the true
transition where F'(D) =F'(D =0) occurs elsewhere. We
will ignore this complication for now, and will simply
study the solutions of Eq. (8). The actual examination of
the free energy will be made later in the present section.

The zero-temperature phase diagram is shown in Fig. 1

for d = 1, 2, and 3. The vertical boundary at a = 1/zo is a
line of continuous transition. It is clear from the figure
that for low dissipation, when V/Eo is sufficiently small,
quantum fluctuations destroy the long-range phase coher-
ence even at T =0. The interesting point to note here is
that for all values of V/Eo belo~ a threshold the con-
tinuous transition takes place at a = 1/zo regardless of
the value of V/Eo Since the o.nly place at which capaci-
tance enters the problem is Eo, the capacitance is an ir-
relevant variable in this regime and the transition is en-
tirely dictated by a. %'hen a is greater than 1/zo, the
dissipation suppresses the quantum fluctuations and per-
mits global superconductivity. Ai finite temperature, the
transition is always discontinuous in the sense described
above. The transition temperature T*(a, V/Eo) is an in-
creasing function of both of its arguments.

%'e now describe in more detail our calculations and

' 1/zoa
2n

&Eo

1 D
exp

zoa a (14)

where g(x) is the digamma function. In the limit P—+ oo

this equation leads to the solution

0.3

0.2

O
LaJ

0
0

I

0.2
I

0.8

FIG. 1. The zero-temperature phase diagram.

results in the novel regime of weak coupling and low tem-
peratures, Eo ))2n /P, 2nD/a, where quantum eff'ects
are most important. In this regime Eo serves only to
define a high-energy cutoff' for the sum in Eq. (7) at
no PEo/2m-, ——for smaller n, co„/Eo can be ignored (i.e.,
taken to be approximately equal to zero). Within this ap-
proximation, the k dependence of the numerator and
denominator of the expression for ( 68;J(0))„D [see Eq.
(11)] cancel, and hence the k sum is trivial. The self-
consistent equation determining D now becomes
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z,~/{z,a —i I0 (6ir )' e
1 — +0(a ) .

128o.' 2

5772

D =0, o, & 1/zo .

Thus the transition takes place at o. =1/zo in d dimen-
sions. As noted earlier, the capacitance enters through
Eo which merely sets the energy scale, but the critical pa-
rameter a depends only on the resistance. It is important
to realize that this result is critically dependent on the
fact that the heat bath we have considered is Ohmic [cf.
Eq. (3)]. At low temperatures it is not diScult to show
that the transition line between the normal and the super-
conducting phase in the a-T plane is given by

[V T(I)]
4e

(23)

[Vz(-,')] (24)

[ V '( —')] =(6ir /e) '/36ir (25)

For a=1/d —e(e~O), a finite Vz(a) is required for
superconductivity. For a= 1/d +e(e~O), the Joseph-
son coupling energy necessary to achieve superconduc-
tivity can be arbitrarily small. The minimal V z(a)'s are

1/zoakT* o'&o 1

Eo V/Eo 2m

Let D z(a=O) be the jump in D/Eo at the transition
points obtained from Eqs. (20)—(22) by setting a=O.
Then

1
XexP — l((xo )

ZOa

zou/{ l —zoa]

D;(a=O) =
16

(26)

where T* denotes the transition temperature and xo is

the solution of the equation D z(a=O)=
xone'(xo) =zoa (16a)

The solid lines in Fig. 1, where D jumps discontinuous-
ly to zero, were obtained numerically. The calculations
were simplified by approximating [z —b ( k ) ] by

D i(a=O)= (6a )'

32
(28)

z —b, (k) =(ka)', (17)

where a is the lattice constant of the hypercubic lattice.
Furthermore, the actual Brillouin zone was replaced by a
spherical one whose radius ko is such that in d dimen-
sions

Q~ (ako) =1.
(2~)'

The d-dimensional solid angle Qz is given by

d/2

I'(d /2+ 1 )
(19)

The exact locations of the discontinuous transition lines,
but not their existence, is quite model dependent; in par-
ticular, they depend on the precise form of the spin-wave
spectrum for all k and on the precise shape of the Bril-
louin zone.

At zero temperature, the phase boundaries for small cx

can be obtained analytically. Let Vz(a) be the minimal
value of V/Eo, in dimension d, necessary for the ex-
istence of global phase coherence. Then it is not difticult
to obtain the following results:

2

V i (a)=

Some analytical results can also be obtained for finite
temperatures. Going back to Eq. (16a) let us look at the
behavior of xo near a= 1/zo. Using the asymptotic ex-
pansion of g'(x ) we immediately get

1
XO A—

2(zoa —1) '
ZO

(29)

2zo V
(zoa —1)exp

&O e2FO

In(2ird V/Eo )

zoe —1

For large a it is easy to show from Eqs. (14) and (16) that

ZOT ZO

Eo e Eo

This leads using Eq. (14) to a finite jump Do(a) of D on
the transition line:

Do(a) =axo/P",

where P* is the inverse critical temperature given by Eq.
(16). Therefore, it is only in the case of zero temperature
that one has a smooth transition for D between the two
phases. While discussing Eq. (16) one always has to keep
in mind that Eo is the largest energy scale, assuring us
that T'~0 as a~1/zo. In the vicimty of a= 1/zo we

find that

'2
&7re

12
1 — +O(a ),18m

3%2

As promised earlier we now return to a discussion of
the free energy. Equation (9) can be written more explic-
itly as
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AF D z —h(k)= —zoD + dP
&I3 g „oo3'„/Eo+[z —b(k)](p+aco„/2n)

D ~ ~ z —h(k)
i, „oo~„/Eo+[z —b,(k)](D +ace„/2m. )

In this expression the cutoF on the Matsubara frequencies can be set to infinity with impunity. We shall examine this
expression 1n the T =0 limit. As before, to simplify our calculations, we assume a -spherical- Brillouln zone We can
now write

AF DQd l «, „, „' D 2

= —zOD+ 4+1
— y"-'dy dN ln 1+ 2 2(2ir)~+' D o o o3 /Eo+aoiy /2m

k
d ~ I

ako oo 1
dy de

o3 /Eo+y (D+ ace/2m)
(34)

where ko is the radius of the spherical Brillouin zone and a the lattice constant. On making use of the self-consistent
equation, we can also write it as

hF Qd «0
d —I Dy

oD +zoD 1 + d+ i dy y de ln 1+
2(2~)'+' 0 o3 /Eo+ (ace/2m. )y

(35)

In the limit V/Eo ~~1, i.e., for the vertical parts of the
phase boundaries shown in Fig. 1, b,F/N simplifies and
we find

AF D D= ——(«o —1)+0
N a (36)

'2

Thus, in this case the nontrivial solution of the self-
consistent equation also corresponds to lower free energy.
Recall that the nontrivial solution appears for a & 1/zo.

Using numerical methods, one can see from Eqs. (35)
and (8) that along the solid lines in Fig. 1, the nontrivial
solution of Eq. (8) does not correspond to a lower free en-
ergy. The nontrivial solution corresponds to a lower free
energy for somewhat higher value of V/Eo. Thus, the
emergence of a nontrivial solution corresponds to a spi-
nodal line in F'. For a=0, this can be checked analyti-
cally. Let ( V/Eo ), be the actual transition point, i.e., the
value of V/Eo for which the nontrivial solution of the
self-consistent equation assumes a lower free energy.
Then we find that

want to stress that a discontinuous jump in D does not
necessarily signify a first-order transition. In d &2 it is
likely that this jump is an artifact of our variational treat-
ment of the problem. For d =2 and at finite temperature
we expect the transition to be of the classical XY variety.
Thus, a discontinuous jump in the spin-wave stiffness
constant is likely to occur, as in the Kosterlitz-Thouless'
theory. At T =0 we see that there is a tricritical point
which separates the line of discontinuous transitions from
the line of continuous transitions. This tricritical point
occurs as a kink in the phase boundary. We shall argue
below that there is another phase boundary which ter-
minates at this point which is missed by our variational
approach since it separates two phases in both of which
D&0 (superconducting). One final remark concerns the
position of the critical value of a, . a, is analogous to a
critical temperature, and hence we do not expect it to be
universal. As shown in Fig. 1, a, = 1/d for a square lat-
tice.

IV. LIMITING REGIONS OF THE PHASE DIAGRAM

(V/Eo), = .

e, one dimension

e, two dimensions

(37)
In this section we examine various limiting regions of

the phase diagram where we can perform systematic cal-
culations making use of one or another small parameter.

A. a &~ 1: Weak-dissipation limit

2

(6 2) i /3

e, three dimensions .

Compare these results with those obtained from Eqs.
(20)—(22) with a set equal to 0. In all cases, ( V/Eo), is
larger by a factor of 4/e. In contrast, it is not difficult to
see that as a approaches I/d the difFerence between
V'(a) and ( V/Eo), vanishes.

We conclude with a few remarks concerning the varia-
tional phase diagram we have just discussed. Firstly, we

For a =0, the system can be mapped onto a d-
dimensional quantum XY model. ' Thus the T =0 tran-
sition belongs to the same universality class as the
(d +1)-dimensional classical XF model, while the finite-
temperature transition is characteristic of the d-
dimensional classical XY model. This is because the sys-
tem has a finite extent in the timelike dimension and
therefore suSciently close to the transition the quantum
Auctuations may renormalize the parameters but will not
modify the universality class of the corresponding classi-
cal system. For a~0 the dissipation is an additional
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source of quantum Auctuations, however at finite temper-
atures the universality class remains that of the d-
dimensional XÃ model and the dissipation merely
changes the quantum renormalization of the parameters.
Thus we expect the a ««1 system to behave similarly to
the a =0 model at finite temperatures. %e would like to
demonstrate that the additional renormalization of the
parameters due to the dissipative quantum Auctuations
can be computed to low order in a.

To begin with, we consider expanding the partition
function Z ( V, Eo,P, a ) as a function of a. Ultimately we

would like to determine, when, if ever, such an expansion
is convergent. %'e speculate that it is convergent in the
disordered phase of the XF model but we have not suc-
ceeded in establishing this. Thus we will content our-
selves with the observation that except at the critical
points of the a=O model there exists an asymptotic ex-
pansion in a. %hile this does not prove that the a=O
phases continue to finite a (as they do in the variational
treatment), it gives evidence in support of this hypo-
thesis. To see this, imagine computing the ratio
Z( V, Eo,P,&)/Z( V, Eo,P, 0) as a power series in a (actu-

ally, we expect the logarithm of this quantity, i.e., the
free energy to be better behaved so we exponentiate the
series in a sort of linked cluster expansion):

Z(V Eo,P, a)/Z(V Eo,P, O)=exp PX g a—"C„
n=1

(40)

Here C„ is a 2n phase correlation function of the a=0
model. For example, di8'erentiating Z once with respect
to a we obtain

1 1 P P drdr'
2~ PN (, ) o o (r—r')2

Given that the nature of the phase transition at small a
is the same as that for a =0, one is tempted to try to com-
pute the renormalized values of the parameters Eo(a)
and V(a } such that the behavior of the a&0 model with
the original values of the parameters is the same as those
of the a=O model with renormalized values of the cou-
pling constants. Away from the critical point this cannot
be done in principle, since the form of the action is
different in the two models. Near the critical point this
procedure should work since both models are governed
by the same 5xed point Hamiltonian. Unfortunately, the
model is too complicated for us to carry out this pro-
cedure. Nonetheless it follows from the nature of the
small-a expansion that the renormalized coupling con-
stants can be expanded in powers of a at finite tempera-
tures. Thus T, =T, (Eo, V, n} should vary linearly with a
for small a, as it does in the variational treatment as well.

At zero temperature the situation is more complex.
Even the smallest amount of dissipation introduces a
long-range interaction, proportional to (r r'} —along
the temporal direction. According to a general result, '

the correlation function of a system cannot fall off faster
than the interaction itself. In particular, the spin-spin
correlation function (e'~"e'~'') cannot, in this case,
decay faster than (r —r') . It is therefore plausible to
conclude that even for an arbitrarily small amount of dis-
sipation the universality class of the transition is changed
at zero temperature, i.e, , it cannot belong to the same
universality class as the (d + 1)-dimensional XFmodel.

B. a g~1: The classical XFmodel

For a&&1 the system behaves as if it were classical.
This is a consequence of the fact that for large enough a,
any time dependence of the phase produces a large ac-
tion. To formalize this, we express

X ( [dk8;J ( ) —&8;, ( ') ]')

(41)

8,(r)=8 +P (r),
where the 8 is the average value of 8, (r), and P is the
(Iuctuating piece. We now express the action [see Eq. (4)]
as the sum of a P-independent piece,

where the average should be taken with respect to the
a=O Hamiltonian. At 6nite temperatures C& is finite,
yielding the leading perturbative term for small a.

So=PV g [1—cos(8; —8 )],
(i,j )

and a fluctuating piece 5S,

5S[IPJ]]=J dr —,
' gP~/Eo+ V g (cos(8; —8, )I1—cos[P;(r) —PJ(r)]I+sin(8; —8 )sin[/;(r) —Pj(r)])

J (I,j)

+4
co~0

To make progress, integrate out P to obtain a renor-
malized effective action S' in terms of I8J I alone. This
can be done as a systematic expansion in the magnitude
of the fluctuations by expanding 5S in powers of P. This
in turn produces an asymptotic expansion for S' in
powers of a '. By carrying out this procedure to second
order, we obtain an expression for the efkctive action
which is of the same form as So but with V replaced by

V =V1——
2

(45)

~ =([y,(.)-y, (.)]')
is given by the same expression as in Eq. (11},and b.(k) is



3290 CHAKRAVARTY, INGOI. D, KIVELSON, AND ZIMANYI

the structure factor defined in Sec. III. X is the same
mean-squared phase fluctuation which was computed in
Sec. III. For large a, and b,(k) appropriate to a d-
dimensional square lattice

8, = V g"' sin(8, —8, )

b, 8;~ (r) . b8—
;~

(r')
(48)

X= ln 1+1 a
subject to the boundary condition such that for r »ro

Terms which come from expanding 6S to higher order in

P give rise to terms in S' which are higher order in a
These terms are not all of the same form as the terms in

So. For instance, to second order in a ', terms are gen-
erated coupling the spins on second-neighbor grains, as
well as four spin couplings. For large enough a, these
terms can be ignored.

%e conclude that for sufBciently large a, the model
behaves as if it were a classical XF model at the physical
temperature, with an effective coupling constant V'
which is somewhat reduced from its bare value by quan-
tum fluctuations. Among the consequences of this are
the fact that there are no phase transitions as a function
of V/Eo so long as a and P are sufliciently large. Thus,
this aspect of the variational analysis is recon6rmed.

C. V /Eo » 1: Dilute gas of phase slips

For V/Eo »1 and kBT && V, the zero-point fluctua-
tions of the relative phase across a given junction are
large compared to 2n.. Because V/Eo is large, the quan-
tum zero-point fluctuations of the phase are large, and
because kz T is small compared to V, the concentration of
vortices is low, and such vortices exist only as tightly
bound vortex-antivortex pairs. Thus, the paths which
make the largest contributions to the partition function
have the property that most of the time and in most of
the sample 58; =8;—8 is nearly equal to 2n,"m where

n,~
is an integer and i and j are nearest-neighbor grains.

Thus, in this limit two sorts of fluctuations about the
classical ground state are important: small-amplitude
spin waves and a dilute gas of phase-slip events in which
the phase on a single grain changes by 2m. The spin
waves are innocuous in that they cannot drive a phase
transition. %e are left with the problem of computing
the statistical mechanics of the gas of phase-slip events.
A phase-slip event is specified by a grain number k,
which labels the grain whose phase changes by 2~ (all
other grains have their phase long before and long after
the event unchanged) and an (imaginary) time T at which
the event occurs. The phase-slip requires a characteristic
tunneling time ~0; however, as we shall see, the action as-
sociated with an isolated phase-slip diverges logarithmic-
ally at low temperature S'"~-4a' in(PA'/ro). Thus, even
though the gas of phase slips is dilute, it does not form a
noninteracting gas.

The action associated with a phase slip, and the in-
teraction between phase-slip events can be readily es-
timated using the semiclassical approximation. To do
this, we compute the solution to the classical equation of
motion 5S =0, or

68J(7 ) =f ) (r —T) )+f2(r T2 ), — (50)

where fJ is the contribution to 58,~
from event j. Thus,

f~(r) is zero except in a time interval of width of order ro
about r=0. For

~
T, —T2 ~—:T&&ro, it is easy to see

that the interaction is independent of the detailed form of
f . If neither grain i nor j is the grain on which the
phase slip occurs in either event, then f (r)~0 as

I
r

I
/ro- ~ and

S'"'( T)= — f,f2
— +O (ro/T)',

2~2 12 T
(51)

where

(52)

If one of the events, which we choose arbitrarily to be
event 1, involves grain i or j, then f~(r)~F&~0 as
&/&0~+ Oo, and hence

S'"'( T)=— (53)

Finally, if both phase slips occur on one of the two
relevant grains,

S'"'(T)= — F,F2 ln(T/ro}+O(ro/T) .2~'

8;(T+r}=8;(T—r) for i&k,
=8, (T r)+—2m for i =k,

and where the g'~' is over the nearest-neighbor grains to
grain j. Far from the event in space (

~
R; —R~ ~

&&a,
where a is the lattice constant) or in time (

~

r —T
~

&&ro)
the phase di6'erences across each junction are small
(modulo 2n) and so the equations of motion can be
linearized and the resulting equations can be solved for
the asymptotic behavior of the classical path. From this
solution, it is possible to determine the nature of the in-
teractions between remote phase slips. The actual in-

tegrals involved are somewhat complicated. However,
the interactions between phase slips on further than
nearest-neighbor grains turn out to be short ranged in
time and rather weak and so can safely be ignored. To
see this consider the contribution to the interaction be-
tween two events at times T, and T2 which comes from
the fluctuations across a given junction (ij ). We consid-
er only the piece of the interaction which arises from the
dissipative term in the action, since the interactions aris-
ing from the other terms are manifestly short ranged in
time. Thus we suppose that
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Thus there are long-ranged (logarithmic) —in time—
interactions between phase slips on the same or nearest-
neighbor grains, and short-ranged interactions between
phase slips on further grains. Moreover, for large V, we
expect that the disturbances in the phase on remote
grains will be small (fJ &~2nfo.r

~ R~ —Rk
~

&&a) so the
magnitude of the interaction between spatially well
separated phase slips will also be small.

In light of the long-ranged nature of the interaction in
the time direction, snd its short-ranged character in the
spatial direction, it is likely that any phase transition
which occurs as a function of a in this regime of parame-
ters will be essentially one dimensional in character.
Thus, we consider a simplified model in which we consid-
er only phase slips on a single grain. We expect the in-
teraction with phase slips on other grains will noi have a
large efFect on the nature of the transition. Moreover, the
resulting analysis is similar to that which goes into estab-
lishing bounds on the critical value of a in Sec. V.

Since the simplified model is now truly one dimension-
al, we can immediately conclude that no transition can
occur except at zero temperature (at finite temperature
the "size" of the one-dimensional system, Pfi, is finite}.
The zero-temperature transition is exactly analogous to
the transition in a single Josephson junction that was
studied by Schmid and others. The only difference is
that the effective coupling to the heat bath is a' =za as
opposed to a in the sin le-junction case, and the effective
Iosephson coupling V' and the effective charging energy
ED are similarly renormafized due to the presence of the
neighboring grains. (The exact nature of the renormal-
ization depends on the solution of the classical equations
of motion, but for lar e V we expect V' &zV and
Eo ~ED. ) For large V' /Eo, Schmidt showed that the
phase transition occurs ss a function of a' alone. For
a' g 1, the phase fluctuations are unbounded, while for
a' y 1, phase slips occur only in Rip-anti6ip pairs and
hence the phase is "localized. " Thus, the critical value of
a is 1/z.

The presence of a zero-temperature phase transition at
large V/Eo is inconsistent with the variational phase dia-
gram as we mentioned in Sec. III. As we suggested there,
we suspect that this is due to the fact that both the free
phase slip snd the localized phase-slip phases have a
nonzero spin-wave —st1ffness constant in this regime since
there is zero density of free vortices. However, we have
not yet proven that this is the case.

D. V/Eo ~~ I: Infrared catastrophe
and the quantum-to-classical transition

Finally, we consider what is probably the most novel
segment of the phase diagram, where V/Eo &~ 1 and kz T
is very small. (We will make this second criterion precise
below. ) In this regime, we can treat the problem using a
perturbative renormslization group scheme, where we
compute the renormalization-group Bows in powers of

the nonlinear coupling constant V. Our treatment is
analogous to the scaling analysis of the sine-Gordon mod-
el' snd is very similar to the treatment of the single-
junction problem of Schmid and others. The
renormalization-group transformation involves a sys-
tematic coarse graining in the time direction. %e begin
by reviewing the philosophy of the perturbative
renormalization-group treatment as it applies to this
problem.

The 6rst step is to separate the fluctuating phases into
a fast (&, ) and slow (8,') piece:

8J(r) = 8 (co„)e (55a)

I„ I &~,

8, (r)= g 8 (co„)e (55b)

Ice
I

&co

where 8& is the Fourier transform of 0 and cu, is the
cutofF frequency which separates the slow from the fast
components of 8 . (There are some pathologies associat-
ed with the sharp cutofF' employed above. These can be
avoided by use of a smooth cutofF function, but this is
merely a technical complication, and easily handled. }
Next we integrate out the fast components to obtain an
expression for an efFective action which depends on the
slow components alone. Since we cannot do this exactly,
we do it perturbatively to low order in V/Eo. Finally, we
bring this efFective action into the original form, by ex-
pressing the time integral in terms of a rescaled unit of
time chosen so that ~, =1. %'e then. repeat this pro-
cedure by defining a new cutofF frequency co,

' &co„ in-
tegrating out the modes with frequency between co,

' snd
co„and finally rescsling our unit of time so that co,'=1.
If we make the difFerence ru, —co,

' g~~„we generate in
this way a diff'erential equation for the coupling constants
in the efFective action as a function of m, . So long as the
nonlinear coupling constant V does not Aow to large
values, the approach is reliable. However, when V/Eo
gets to be of order one, the perturbative expressions for
the renormalization-group Bows cease to be valid.

Here, we carry out this procedure only to first order in
V/Eo. This turns out to be particularly simple, since no
new couplings are generated to this order in perturbation
theory; in other words the efFective action is of the same
form as the bare action.

The kinetic energy and the dissipative terms in the ac-
tion are quadratic in 8- and so separate exactly into a
sum of terms that depend only on the fast components
and a term which depends only on the slow components.
Thus, we can def][ne an unperturbed action So obtained
by setting V =0, and can formally integrate out the fast
modes to obtain an expression for the partition function
in terms of the slow modes alone

Z =JV' I 2)8'exp[ So(8')/ft] exp —g—I drcos[b8; (~)+68;(r)]..
pe

&ij &
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where the angular brackets represent the thermal average over the fast modes with respect to the unperturbed action
S0[& ]. This average cannot, in general, be evaluated exactly. However, we can expand the exponential in a cumulant

expansion in powers of V and evaluate the resulting expressions term by term. Since the averages are taken with respect
to a quadratic action, there is no reason, other than the (quite severe) limits on our algebraic fortitude, that this cannot
be done to arbitrary order in V. Here, we will carry out the procedure only to 6rst order in V. The result is

V V —X,"/2
exp —g J dr cos[b O',J.(~}+b 8~~(r)] =exp —g J 1~ cos[8';(~) 8~—(~)]e (57)

0
&i j &

where

(58)

b(k}
co'„/EQ+(a/2m)

~
co„~ b,(k)

(59)

is the mean-squared fast variation in the phase difference
across a Josephson junction. The calculation of X is
made simpler by the following observation: As we saw
previously in the quantum regime which we are studying
here, where ED is large, the kinetic-energy term solely
serves to produce a high-frequency cutoff into the sum
over frequencies ~„. Since we are varying an explicit
high-frequency cutoff in our renormalization procedure,
we can drop the kinetic-energy term entirely. Thus, we
can ignore the co„ term in the denominator of Eq. (5).
The k sum can then be done trivially. For co, —co,

'

=—dao, «co„ it follows that X;, =(I/a)dec, /co, . Finally,
we rescale time, and the potential so that the resulting ac-
tion is of the same form as it was before we integrated out
the fast modes. Thus, we require that

V'dr'= V dr, (60)

where d~'~,' =de. ~, . The result is a differential equation
for V as function of the cutoff:

d ln V/d inn, = 1— 1 +O(V ) . (61)

(62)

where Vo is the bare value of V and e0 is a microscopic
cutoff frequency, typically coo-aE0. We conclude that
for a & 1/za, the phases are disordered. For a ~ 1/z0 and
T =0, V scales to large values as co, ~0, and hence scales
out of the regime in which our perturbative treatment is
valid. We imagine that the system approaches a strong-
coupling fixed point, in which there is long-ranged phase
coherence. At flite temperature, we can estimate the
temperature dependence of the phase boundary by the
following simple argument: %e expect that where V is of
order one, the system will order. %'e imagine that up to
V of order one„ the renormalization-group Qows do not
differ dramatically from those deduced from lowest-order
perturbation theory. Thus, we can follow Eq. (61) out to

None of the other parameters renormalize to this order.
It is immediately clear from this that for a &1/z0, V

scales to zero as we systematically reduce the cutoff fre-
quency as

V=1. Since the lowest frequency in the problem is
ro, =k&T/fi, we can obtain an estimate of the critical
temperature T, by inverting Eq. (62) with co, =ksT, /R,
and setting V =1. The result is

—
zoa /( zoa —1)

ka T, =mo(h~o/Vo)

Since in the extreme quantum regime considered here,
Loa~& V0, it follows that T, is a rapidly increasing func-
tion of a for a ~ 1/z0. This analysis clearly breaks down
when k~T-fuoa when the size of the system in the time
direction is comparable to the microscopic frequency.

In summary, we have confirmed the existence of a
low-temperature phase transition as a function of cx for
low temperatures and in the extreme quantum regime.
The transition is caused by an overlap catastrophe due to
the high density of low-frequency modes in the heat bath.
The transition is formally similar to that which occurs in
the Kondo problem, or in the single-junction problem.
The dependence of the transition on dimensionality is
rather trivial, in that it only affects the critical value of u.
For a non-Ohmic heat bath, with a lower density of low-
frequency modes, the nature of the transition, if any,
would be entirely different.

V. BOUNDS ON THE ZERO-TEMPERATURE
CLASSICAL- TO-QUANTUM PHASE BOUNDARY

By arguments similar to those used in Sec. IV 0, it is
possible to prove that at zero temperature and for any
value of V/Eo there exists a critical value of a at which
the system undergoes a phase transition which we have
characterized as a quantum-to-classical transition. %e
consider Auctuations in the phase difference across a
given junction. Since the voltage drop across the junc-
tion is proportional to the time derivative of the phase
difference across the junction, and hence, by Ohm's law,
the current through the shunt resistor is as well, this
quantity is related to the net dissipation in the junction.
Thus it is a natural question to ask whether the phase
Auctuations are bounded or unbounded. For the pur-
poses of this discussion, it makes very little difference
that the phase is only defined as modulo 2~, and so, for
convenience, we will treat it as an extended variable
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which is also consistent with the Ohmic nature of the dis-

sipative heat bath. Thus, we will characterize the quan-
tum state as one in which the phase fluctuations are un-

bounded, that is a state which can be considered to be a
gas of free phase slips. The classical state is one in which
the phase fluctuations are bounded, that is one in which
the phase slips are confined.

To obtain a lower bound on the critical value of a, we
consider a model in which we completely suppress the
fluctuations on all grains other than grain 1. By doing
this, we have systematically reduced the magnitude of all
Auctuations, %'e are left with a model with a single Auc-

tuating phase 8&. Tlte resulting model is formally exactly
equivalent to the problem of a single resistively shunted
Josephson junction with Josephson coupling V' =z V, ca-
pacitance C, and efFective coupling to the heat bath
a' =za. As mentioned previously, this model has been
studied extensively by Schmid and others. It is known
that for large and small V/Eo it has a localization transi-
tion at a = 1, and it has been argued that this is the criti-
cal value of a for a11 V/F. o. Thus, we can conclude that
for a g 1/z the fluctuations of the phase are certainly un-
bounded, since they are unbounded even if all other Auc-

tuatlons al e suppressed.
To obtain an upper bound on the critical value of a, we

consider another simpli6ed model in which we set the
coupling between grains 1 and 2 and all other grains
equal to zero. Since the coupling to other grains tends to
restrain the fluctuations on grains 1 and 2, we thus sys-
tematically overestimate the magnitude of the Auctua-
tions. The resulting model can be expressed in terms of
two decoupled degrees of freedom, the average phase
8=-,'(8&+8&), and the relative phase 68=8~ —82. The
average phase obeys a free Schrodinger equation, but the
relative phase is, again, equivalent to the phase across a
single Josephson junction (which, indeed, it is} with the
efFective mutual capacitance O' =—,

' C, the effective

Josephson coupling, and coupling to the heat bath equal
to the bare values. Since this model implies that the
phase is localized (bounded fluctuations} for a ~ 1, it fol-
lows that this must be an upper bound on the true critical
value of a.

We conclude that for any value of V/Eo, and at T =0,
there exists a critical value of a, a, ( V/Eo), such that for
a ga, the phase fluctuations are unbounded, while for
aya, the phases across the junctions are bounded.
Bounds on the a, (V/Eo) can be established from an

analysis of the single-junction problem. If we take as true
the assertion that in the single-junction problem
a, (V/Eo)=1 for all V/Eo, it follows that in the array
1/z (a, (V/Eo) &1 for all V/Eo.

VI. CGNCI. USB3NS

%'e have studied the quantum statistical mechanics of
an array of resistively shunted Josephson junctions. %'e
have uncovered a rich phase diagram, and shown that,
because of the quantum nature of the system, the dissipa-
tion plays a central role in the thermodynamics. %hile
our results are quite similar to those observed experimen-

tally in ultrathin Alms of granular superconductors, it is
important to stress that it is not definitively established
that the dissipation in these materials is well represented
by an Ohmic heat bath, as it mould if the junctions were
shunted with a macroscopic resistor as briefly mentioned
in the Introduction. Thus, we do not expect that the
theory we have developed above will account for the be-
havior of these granular films in any rigorous sense.
Nonetheless, it seems likely that in these materials the su-

perconducting transition shares many important features
with the model we have studied. (1) The transition tem-
perature is below the bulk transition temperature and
hence the superconducting order parameter has a well-

developed magnitude on each grain; the superconducting
state results when global coherence is established between
the phases of the order parameter on different grains. (2)
This ordering is strongly renormalized by quantum fluc-
tuations of the phase. (3) Dissipation plays an important
role in suppressing quantum fluctuations and hence sta-
bilizing the superconducting state. Thus, it is not com-
pletely accidental that the observed properties of the
transition resemble those that we have derived here.
Given that the granular Qms can be made which are tru-

ly in the quantum regime, it is to be hoped that in the
near future, artifical arrays can be fabricated with built in

shunt resistors, so that the predictions of the theory can
be compared directly to experiment.

There remain a number of interesting open questions
which warrant further study. Since in a quantum system,
the dynamics and the thermodynamics are not separate it
seems like1y that the present model will exhibit interest-
ing critical dynamics. For instance, it would be interest-
ing to determine the conductivity of the system from the
same Hamiltonian as the phase diagram was derived.
One of the features that emerges from our model is the
occurrence of a zero-temperature transition from a super-
conducting state which contains a finite concentration of
phase slips, to one in which they are bound in slip-
antislip pairs due to the dissipation. It is not clear what
experimental signature of this transition would be acces-
sible. Finally, there is a suggestion due to Jaeger et QI.

for which there is increasingly good experimental evi-
dence, ' namely that the transition to a superconducting
state in granular superconductors actually occurs at a
universal value of the normal-state resistance correspond-
ing to a=1, independent of material or sample history.
Such a universal value cannot be explained in any
straightforward way by any of the models considered to
date; in all the models considered to date the critical
value of a plays a role analogous to the critical tempera-
ture in a classical statistIcal-mechanics model, and is
hence not universal (although it may be relatively insensi-
tive to microscopic details). If this observation is
confirmed, it will require a deeper theoretical analysis
than any that have been carried out to date.
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