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Structure, soft modes, and superconductivity in Cl-doped cadmium sulfide
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Previous measurements on pressure-quenched CdS have revealed anomalous magnetic suscepti-
bility indicative of high-temperature superconductivity, but only over a Ilarro%' critical range of
chlorine doping. X-ray-di8raction studies as a function of chlorine doping now show that at the
critical chlorine doping the material undergoes a phase transition, leaving it as wurzite. Pho-
toacoustic spectroscopy shows that a soft lattice mode appears just beyond critical doping, over the
same range as the anomalous magnetism. Lastly, we find by analysis that superparacurrent is in-

duced by a magnetic 6eld in wurzite, providing the lattice mode associated with the wurzite zinc-
blende phase transition is very soft.

Im'RODUCnOX

Para- and diamagnetism of a magnitude suggesting su-
perconductivity at around 200 K has been observed in
pressure-quenched CdS. The CdS must be doped with a
critical concentration of chlorine. ' In this paper we
report on progress in understanding these phenomena.

Experiments have been carried out on the unpressur-
ized but doped CdS. We have largely succeeded in eluci-
dating the complex structural transformations to which
the material is subject. The correlation we have found
between structural properties and the unusual magnetic
properties provide a basis for a model and a theoretical
calculation.

Doping by chlorine plays an important role in the oc-
currence of the high-temperature superconductivity. It
has been found that there exists a critical concentration,
hereafter designated O'. lt is well known that the dop-
ing of CdS with chlorine in unpressurized material in-
duces a gradual transition from the zinc-blende to the
wurzite structure, 100% wurzite being realized at about 3
wt. % chlorine. Furthermore, it is also well known
that chlorine stabilizes the cubic high-pressure phase, cu-
bic sodium chloride structure, when the pressure is
released to ambient. Again, about 3 wt. % chlorine
completely prevents the sodium chloride from reverting
to wurzite zinc blende; a greater fraction of material re-
verts as the chlorine content is reduced, and 100% rever-
sion occurs in undoped material. The sensitivity of the
appearance of our magnetic states on chlorine content
after pressure quenching suggests that other conventional
physical properties will also be sensitive to chlorine con-
tent in the same range. Conversely, these physical prop-
erty variations provide insights into the mechanism of the
superconductivity.

For simplicity, and as a first step in a long-range study,
here we have studied and characterized the unpressurized
starting material. In particular, we have measured the
photoaccoustic effect (PA effect) as a function of chlorine
content, and studied the structure of the wurzite by x-ray
diffraction.

The x-ray results show that the relative amount of
zinc-blende to wurzite phase is not as gradual a function

of chlorine content as has previously been assumed; rath-
er the transformation occurs most rapidly at chlorine
contents in the vicinity of C*. The wurzite itself shows
an abrupt change in the c lattice parameter (by -0.S%)
on crossing C*, suggesting the existence of two diferent
hexagonal phases. The PA results show that the zinc-
blende-wurzite phase transformation is soft-mode
driven, and most significantly, the soft modes abruptly
disappear at chlorine contents above C*. At the same
time the x-ray line broadening shows that the stacking
fault probability in the wurzite is increasing rapidly for
chlorine content above C*. The extensive stacking fault-
ing in the wurzite phase above C' is equivalent to having
a wurzite-zinc-blende mixed structure. In consequence,
we believe the soft modes in question are the transverse
shear modes close to that mode q which takes the wurzite
into the sodium chloride structure; namely modes with a
k vector parallel to the [0001] direction with transverse
polarization in the [1010]direction, the [111]and [112]
directions, respectively, in the resultant zinc-blende
structure. In the theory part, we show that the excitation
of these modes in wurzite by the application of a magnet-
ic 6eld gives rise to supercurrents.

EXPERIMENT

Experiments' methods

The material was prepared by precipitation from aque-
ous solution according to the reaction

CdC12+H2S~CdS+2HC1 .

The amount of chlorine incorporated into the precipitates
depends on the pH of the solution; the details have been
described by Cote et a1. Following this procedure a
series of samples with increasing chlorine content have
been prepared, the actual chlorine content being deter-
mined using neutron-activation analysis and ion chroma-
tography. The x-ray structural studies were carried out
on the powders using a conventiona1 Philips
difFractometer.

The photoacoustic spectroscopy was deterlnined using
a Princeton Applied Research photoacoustic cell and
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preamplifier. The specimens consisted of disks of pressed

powder 2.5 mm in diameter. The modulus of the acoustic
signal was obtained by adding the squares of the in-phase

and quadrature components.

KXPKRIMKNTAI. RESULTS

X-ray diffraction
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A series of diffractometer recordings are shown in Figs.
1(a)—1(d), each trace being From a specimen of difFerent

chlorine content. As can be seen, the intensities of the
diffraction peaks from the zinc-blende cubic phase de-
crease at the expense of the wurzite lines with increasing
chlorine content, indicating the well-known ' stabiliza-
tion of the wurzite. At the same time the wurzite lines
broaden, this being associated with stacking faults in the
structure. By convention, the fraction hexagonal stack-
ing m& is given by'

wl, ——4R /(3R +1.33),

where 8 is given by

R =I io.o~(100.2+1»i ) ~

lhk I and Ihk 1 being the intensity of the hexagonal and cu-
0

bic lines, respectively. The quantity mI, is shown plotted
in Fig. 2, which shows that the amount of cubic phase
present in the vicinity of C* is strongly dependent on
chlorine content. The chlorine content at which the
greatest sensitivity occurs is just below C =0.7 wt. %.

The angular positions of the peaks associated with the
hexagonal phase were determined by fitting the
diff'raction-peak maxima to a parabola using the method
of Koistinen and Marburger" and the lattice parameters
a and c determined as a function of chlorine content by a
least-squares fit to the peak positions in each case. The
results are shown in Fig. 3. As can be seen, the c parame-
ter is nearly constant as the chlorine content is increased,
followed by a precipitous drop in value at O'. The a lat-
tice parameter is insensitive to chlorine content. Last, we
have also assessed the stacking-fault probability by quan-
titatively measuring the linewidths and analyzing the
data following Warren' (note the increase in wurzite
linewidths with increasing doping in Fig. 1). We find that
the stacking-fault probability below 0.3 wt. % chlorine is
essentially zero, folio~ed by an increase to about 0.1 as
we go through C*.

The photoacoustic response is shown as a function of
chlorine content in Fig. 4. As can be seen, the pho-
toacoustic response increases gradually up to C*, at
which point the value drops precipitously to a lower
value and remains constant for higher chlorine contents.
Qualitatively, the important behavior is independent of
the energy of the exciting light, suggesting that the
response is of lattice origin rather than from effects of the
chlorine on the band structure. Indeed, the relatively
small step height of the PA signal when scanning the
light energy across the band gap implies that we are in

the so-called saturation regime.
Physically, saturation describes a condition where the

photoacoustic signal is no longer proportional to the ab-

sorption coe%cient k. In the saturation regime k is so
large compared to the specimen thickness that all the
light energy is absorbed within the specimen thickness.
The PA response is then determined by the variations in

the thermal properties rather than variations in the
optical-absorptive properties. This assertion is so much
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FIG. 1. X-ray-di8'raction intensity over a range of 20 where

the cubic and hexagonal lines overlap. As the chlorine doping
increases, the hexagonal phase (tL)) increases at the expense of
the cubic phase (ZB).
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FIG. 2. Fraction hexagonal stacking tt)I, as a function of
chlorine doping, deduced from x-ray-di6'raction data as in Fig.
1. Note the rapid change in lL)& in the vicinity of C*.
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correct order of magnitude in the limit Q~0 to cancel
the term —JA. This additionally substantiates our calcu-
lations using Wentzel's procedure, and shows dominance
by the leading terms.

The observation that terms such as 0 „are giving rise
to supercurrents in insulators, albeit compensated, sug-
gests that the addition of similar new potentials to the
Hamiltonian, i.e., terms with wave vectors +q+Q, will
lead to further supercurrents, which, however, will be un-
compensated. Such potentials can be generated by the
electron-phonon interaction„piezoelectric for CdS, pro-
viding phonon modes are occupied macroscopically. The
proposed scheme, reminiscent of a superconductor mech-
anism studied by Frohlich and others, ' ' differs in that
we are suggesting simultaneous excitation of many
different modes, rather than just one. The soft-mode q
which represents displacements leading from the cubic to
the hcp lattice structure is assumed present, and for every
standing-wave component A(Q) of the applied magnetic
field, components +q+Q are also present, but with small-
er amplitudes.

The Frohlich mechanism has been criticized on the
basis that the perturbation calculation on which it relies
breaks down (no longer converges) at precisely the
strength in the electron-phonon coupling where the super
conductivity is first to be expected. ' In our approach,
perturbation theory plays a difFerent role. The gap is
created by the macroscopic excitation of the mode. As
already indicated this mode introduces one of the Fourier
components of the potential characterizing the wurzite
phase. Its existence will be assumed as part of the unper-
turbed Hamiltonian, as we shall see. (The calculations of
relative stabilities of different crystal structures from
component ions and electrons are very diScult and need
not be viewed as an explicit aspect of a supercurrent
analysis. } The parts of our Hamiltonian which are treat-
ed as a perturbation come from the other modes, kq+Q.
The interaction of the electron with these modes turns
out to be proportional to the applied vector potential A,
and, in our linear analysis, is arbitrarily small.

%e are suggesting that, in the material under con-
sideration, the lattice is marginally stable, the mode q
arising spontaneously. Excitation of additional modes
such as hq+Q, Q~0 will, therefore, likewise entail only
marginal expenditures of free energy. %e shall carry
through a semiquantitative variational calculation, which
will show that the amplitudes of the modes +qkQ are
proportional to the applied field A(Q). This latter field
may, therefore, be thought of as applying a magnetic
pressure on the lattice. Collecting all energy terms, we
shall find that the usual electrodynamic term
—f A &(r) J&(r)du, with J&(r) the Q component of
the induced momentum current, is to be balanced against
the marginal increase in lattice energy arising from the
excitation of modes +q —Q.

For the insulator in a field the wave function will con-
tain asymmetry. It can be found by applying the inverse

runitary operator e to the lowest eigenstate of Eq. (3),
resulting in a complicated combination of insulator eigen-
states. The energy spectrum can be obtained in the
(Larmor-) transformed system, and will be that of an or-

precisely the region where superconductivity has been ob-
served. The soft modes linking these two structures play
the critical role in the theoretical interpretation of super-
conductivity which now follows.

THEORY

Motivation

Our hypothesis for the origin of supercurrents in a
marginally stable lattice follows from an analysis of an
ordinary insulator. As a model for the insulator we
choose a Hamiltonian

HI ——T+8 +HA+HAA .

[T,K„]=—H„,
[T,K „]= H„where —H „=[Hr,K„],
[T K q]= H~ where —H ~ =[Hq Kqq]

+I +A ++qA ++qqA +' ' '

which yields

(2a)

(2b)

(2c)

(2d)

Hr ——T+H +HA„+ other higher-order terms in A .

(3)

The electronic current operator is made up of the usual
momentum current J(Q), along with —J„

en A/mV, —where n/V is the density of electrons.
The transformed current operator J(Q} is given to first
order in A by

J(Q)=J(Q)+ [J{Q),K„]+[J(Q),K „]+
In an insulator, in contrast to a superconductor, the ex-
pectation value of J(Q) must be exactly canceled by

en A/m V —in the limit as Q ~0. For the free-electron
gas, %entzel shows directly that this cancellation actual-
ly takes place. ' Using a simple model of an insulator de-
scribed below we have verified by direct calculation that
the first few terms of the series in Eq. {4) are of the

Here T is the kinetic-energy operator for a free-electron
gas, H is the interaction of the electrons with the stand-

ing lattice modes of wave vector q above, and HA and

H„A are the usual linear and quadratic interaction terms
with an applied field A. H creates the gap which
separates the 611ed valence band from the empty conduc-
tion band . Otherwise the electrons are taken as free, i.e.,
a metallic situation prevails. We shall take A(r) to be in
the x direction. It will suSce to take only one standing-
wave component, 2A(Q}cosQz, propagating in the z
direction.

Following a paper on the Meissner effect by Wentzel'
we eliminate at the outset the linear term in A in the
Hamiltonian with a unitary transformation, and subse-
quently solve the secular equations which yield Bloch
waves. Physically the elimination of HA may be regard-
ed as a generalized Larmor transformation.—Kr J(1

For the insulator, if H, —:e Hre (K~'=— KI) is-
the transformed Hamiltonian, one chooses
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dinary insulator. [To second order in A, we treat
H„„+ . in Eq. (3) as numbers rather than operators].
In the insulator Hz, H z, . . . induce electron distribu-
tions are unsymmetric in k space, the center of symmetry
being shifted to e A/h, but the currents are compensated.
Here the additional induced lattice potentials enhance
the asymmetry. As a result of the additional asymmetry
we shall find that there is net current while, as we shall
see from the new Hamiltonian, the energy gap remains.

mode kq —Q. In a real lattice (unlike in jellium) these
coupling coeScients depend on k, the location in recipro-
cal space where the electron scattering occurs. %e are
only concerned with their dependence on k . In the
free-electron representation we consider only the states
with —3q /2 & k, & 3q /2, thereby limiting orbitals to
combinations of states in the "vicinity of the gap,

'* but
obviously within generous limits.

Kq, ( —Q) defined by Eq. (5a) will be given by

Supereurrents

%e, accordingly, generalize the unitary transformation
of Eqs. (2), replacing KI by KI +K„where

[T,K„]= Hq, —,

T&Kqqs ]= Hqqs

where

A'(k„)ak ak+qK, ( — )= Y
0 E(k+q —Q) —E(k)

A«}akak q g--
0 E(k —q —Q) —E(k)

g Kk „+, ga„'a„+q g
k &0

(8a)

Hqqs
= [Hq Kq. ]-

It's =+qs++qqs++qqqs+

(5c)

Here H, is the extra potential, and is linear in A. The
new Hamiltonian (H =HI+H, }, transformed, becomes,
to second order in A,

H = T+Hq+H„„+ —2[H„+Hq„KI+K, ] .

The terITls Kqqz p Kqqqqz s are found to have vanishing
denominators as Q ~0, and as Wentzel has pointed out'
such terms give rise to signi6cant momentum currents.

Explicitly, A(Q)e 'g' gives rise to a potential

Hq~ = g A (k„)ak ak+q g+ g A(k )ak ak q g
k2 &.-0 kg&0

+ P k, k q —gak a-k q —g-
k &0

(8b)

The current ( [J(Q), Kq,. ( —Q) ] ) is odd in q, and gives no
net current, since we have both positive and negative q.
The leading term in the induced supercurrent will be
given by ( [J(Q ),Kqq, ( —Q) ] ) . We, accordingly, proceed
to Eqs. (5b) and (Sc}.

%'e have, 6rst,

where the Kk k~ g in Eq. (8b} are introduced for con-
venience.

The current density is given by

J(Q)= g (2k+Q)ak'ak+g .8fl
2mcV

g 6'(k„}ak'ak+q+ g h(k, )akak
k &. 0 k &0

(10}

Here the a *,a, are free-electron creation and destruction
operators. A', A, which are to be determined variation-
ally, depend on the electron-phonon coupling constant
and on the square root of the number of phonons in the

where the 8's determine the crystal potential of the de-
formation q. From Eqs. (5c), (8), and (10), we again find
with the restriction of k, —3q /2 & k, & 3q /2, that

Hqq, ( —Q)= g b (k„)Kkk q g(ak qak g akak —g)+ g b(k„)Kkk+ g(ak+ ak+ g akak g)—
k )0 k &0

and K, ( —Q) follows immediately from Eq. (5b). Equations (9) and (11)yield

[J(Q) Kqq ( —Q)]= g & (k )Kk k g[L(k, q Q)(ak ak ——a—k gak g)2mcV

—L(l q.Q)(a:ak ak —gak —g)l

b(kn)Kk k+ g(q~ —q) ',
k &0

L(k, q, —Q) =(2k+2q —Q)/(Ek+ Ek+ g ) . — (12b)
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We now wish to take expectation values with respect to the ground state of T+H . To obtain Eq. (7} we have

represented the orbitals in the eigenstates in a nearly-free-electron approximation as xk ak +ykak'+ for the lower band
and yz'ak —xkak ~~ for the upper band. In evaluating Eq. (7) we shall adhere to this representation in the vicinity of
the band edges where we find the current originates. The E(k) are one-electron energies in a band assumed parabolic.
Taking into account that the lower band is 611ed, and the upper empty in the ground state, we find, with

that

X'(k q —Q) —=
I xk+, I

' —
I xk+, g I

'

I'(k q —Q}—= 13k+, I'—1~k+, g I'
(13a)

(13b)

(14a)

J, = g 5"(k„)K„P g[L(k —q, —Q)X (k, —q, —Q) —L(k, O, —Q)I' (k, —q —Q],
k, /2

J = g b(k„)K„P~ &[L(k+q, —Q)X (k, q, —Q) —L(k, O, —Q)I' (k, +q —Q],
k, ( —q/2

(14c)

J3= g b'(k„)Kk p g[L(k, —q, —Q)I' (k, O, —Q) —L(k, O, —Q)X (k, O —Q),
q/2pk, )0

(14d)

b(k„)Kk P+q g[L(k, +q —Q) Y (k, O, —Q) —L(k, O, —Q)X (k, O —Q)] .
Pl —q/2 (k go

(14e)

Assuming symmetry in the k direction in the reciprocal lat tice, and substituting free-electron values

Ei, ——A' k /2m, etc. , we find for J, a current only in the x direction, given by

b, "(k„)A(k„)k„X2(k,—q, —Q)(2m/fi Q)( m2/ i')[qk, (q —k, )]
2m V

From Eq. (13b),

X'(k —q —Q}=Q I xK
I tc=iBE,

(16)

vector potential A, A =
~

A(Q) ~. Combining the last
four equations and similarly reducing J2 we find

J, +Jz-sA(A'e/m) (1/Es)(1/V)Xk„q
~

x&
~ ~y& ~

Using the nearly-free-electron approximation, we find, in
terms of Ek, the eigevalues, that

BE, lxK I'= —2lxx I'l&sc I'

x [B(E E)
~
BQ]/(E —E)—

(17)

(19)

again in the vicinity of the gap. The sum in Eq. (19) is
roughly restricted to values of k, :

2b,
0

26
2 Fg

One also finds that J3+J4 =J]+Jz, so that, finally, J is
in the x direction and

the latter approximation holds in the vicinity of the gap,
i.e., where Ez —F& -A.

We recall that A(k, ) is to be found by a variational
calculation. Comparing Eq. (7) for H, with the form of
0„,we make the convenient replacement

J -sJ„(b,/es ), (20a}

where b /c& is the ratio of half the gap to the band width,
l.e.,

A(k„)=s3 (k„/ i k„ i
)(q/2)

(2m)
($g) and

s will be the parameter of variation. It is dimensionless.
A(k„) is taken here as odd in A:„. Actually, we shall sin-
gle out the old components in b,(k„)A(k„), taking the
product of one even and one odd component, and the re-
verse. At the same time Eq. (18) shows exphcitly that
H~, is to be thought of (it will be) as linear in the applied

J„=e nA/m V .

The logarithmic singularily resulting from the pole at
the center of the Brillouin zone in Eq. (15) is removed
when we work to higher order in Q. It is expected to
disappear altogether if a model involving a more sym-
metric mixture than just two waves, k, k+q for k, g0
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and k, k —q for k, &0, is used. Actually, as we go from

the gap at k, =+q/2 towards the center of the zone,
X (k, —q, —Q) diminishes rapidly. The source of the su-

percurrent, not surprisingly, is near the edge of the Bril-
louin zone. Here the usual nearly-free-electron model we

are using is appropriate.

to discover some possible mechanism to fit in with the ob-
servations. In this endeavor we regard temperature as a
second-order efFect. %'e again note that we are dealing
with a gap of at least 25 MeV, very large in the context of
metallic superconductivity.

VARIATIONAL CALCULATION
DISCUSSION

Turning to Eq. (6) we have that (H„„+-,'[H„,Ei])
gives the usual diamagnetism of an insulator. Some ma-
trix manipulation along with Eq. (5) easily shows that for
the crossterms in Eq. (6) one gets

( ,'[H„,K—,]+ ,'[H+,—Er])= —f A(r) J, (r)dU . (21)

Last, again from Eq. (5), one finds that —,'([H~„E,
~

) is

the second-order perturbation term

—g / {0[Hq, f
n )

/
/(E„—Eo) .

It represents the interaction of the conduction band and
the modes kq —Q in the absence of any vector potential
A. This term is part of the energy of lattice deformation
in these modes, which we now balance against the elec-
tromagnetic term in Eq. (21), yielding the desired value of
S.

To find the energy stored in the lattice
U-4fuu +&n +&, with n + the number of phonons in
the mode, we first note that in view of Eq. (8),
A=g(n +&/V)'~, with g the usual electron-phonon cou-
pling constant and V the volume of the sample. We wish
to minimize with respect to s the energy

U —f A(r) J,(r)d r

=4s fun +&ese A (g V 'rn) ' —sAJ„(b/equi)V,

where we have used Eq. (9). We find

s = —,'(n/V)g'(Aa)~+gas ) '(&/&a )

If we take n =10 electrons/cm, g =10
and cz =4 eV„ then we find that for s =5/cz we need a
mode softening to about co +& =10 rad/s. This gives a
supercurrent —J„(h/ea ) . From the lattice stability of
the phase until at least 180 K, we infer that 6 is at least
kT with T -200 K. A similar gap, i.e., 25-50 MeV, was
deduced from quite independent experiments in applied
electric fields by Doding and Labusch. Thus, we have
current densities of the same order of magnitude as
are found in superconducting metals, where
J=J„(kT, /EF ). Given the extreme observed instability
of the material, softness with co~+& =10" rad/s may be
well forthcoming. For electron-phonon coupling we have
used typical deformation potential constants. Less con-
servatively, if piezoelectric coupling values are used, even
larger values of current will be obtained; alternatively less
softening mill suNce.

%e have so far ignored temperature. Our aim has been

%e are left with several questions. One is how does the
Cl doping have such a strong inhuence on the lattice
structure? It is to be supposed that the Cl ions go in sub-
stitutionally, and become donors. From the careful
chemical analysis provided us by the Koch and Stoltz,
we are able to verify that these are compensated by S va-
cancies, leading to F-center aceeptors. %e suppose fur-
ther that strain associated with the modes that take us
from zinc-blende structure to wurzite raises the energy of
these centers. In fact, conductivity measurements show
that the activation energy associated with conductivity
increases from about 0.35 to 0.7 eV as we go through the
phase change at O'. Therefore, the energy of formation
of centers also changes, and the free-energy change must
be presumed suacient to drive the phase change.

Of interest also is the cubic-to-wurzite change after
pressure quenching. In this case the resulting wurzite is
observed to have a much lower resistivity. We presume
that here the phase change induces an overlap between
the top of a valence subband and the F-center energy lev-

els, causing some electrons to be transferred out of the
subband as the phase change proceeds. Labbe and
Friedel suggested a somewhat similar mechanism of elec-
tron transfer between d bands to account for martensitic
phase changes occurring in A 15 compounds, and
Kragler and Thomas made such an electron transfer an
integral part of the mechanism for explaining the soften-
ing of shear modes in these compounds.

Also of concern is the observation that immediately
upon pressure quenching the material tends to be di-
amagnetic with, however, the paramagnetic phase always
emerging as the stable situation after some days. The de-
velopment here has been for the simplest situation possi-
ble. In fact, many other forces may be driving the lattice
deformation than the How of current in the applied mag-
netic field. There comes to mind the new high-T, ceram-
ic superconductors that are just witnessing a most rapid
development. Here there is direct coupling between ap-
plied magnetic fields and ionic spins. It seems plausible
that exchange forces or direct electrostatic 6elds then re-
sult in lattice deformations. The gist of our development
is that induced lattice deformations lead to supercurrents.
Returning to the initial unstable phase of CdS, the
heterogeneous and soft state of the specimens upon
quenching is apt to be complicated, possessing a domain
structure. %e can speculate that the structural deforma-
tions induced by the magnetic Geld would be in the direc-
tion of a stable lattice. They would not necessarily corre-
spond to the energy states sought out by our idealized
variational calculation.

Last, we point out that alternative explanations of the
data are a possibility. %e have been informed that recent
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experiments by the Zurich group with La2 „Ba,Cu04
point to electron pairing. The situation may or may not
be the same in CdS. In any case we note that our treat-
ment, a perturbation calculation for small vector poten-
tial A, only allows the phenomena to be understood
inasmuch as they are a continuous function of A. %e
plan as a next step to study the implications of our model
as regards Aux quantization before considering possible
modifications.
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