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Mossbauer measurements of the hyperfine field, H,¢(T), for the random-exchange Ising system
Fey 9Zn, (F, are reported for the critical region. Concentration gradients were minimized by choos-
ing a single crystal with its growth axis perpendicular to the plane of the absorber. Inhomogeneous
broadening was treated by fitting with four magnetic sites, using a procedure that explicitly diago-
nalizes the Hamiltonian. This indicates that residual short-range order is negligible, demonstrates
that H, is aligned with a principal axis of the electric-field gradient, and gives excellent fits.
Rounding of the transition was determined via constant-velocity thermal scanning, and implies that
residual concentration variability was <0.03 at. %. After corrections to scaling, the data yield a
critical exponent B=0.350(9) in the reduced-temperature range of 3X 10~ * <t < 10~!. This result is
consistent with the most recent theoretical prediction, 8=0.3494(15).

1. INTRODUCTION

The role of randomness in critical behavior continues
to be of considerable interest. Particular foci are the
effect of random exchange (RE) and random fields (RF).
The RE interaction is described by

.?{RE———E 2(J0+AJU)S,'SJ—20,(S,) ’ (1)
i g i

where the first sum runs over the constituent atoms and
the second over nearest neighbors, J, is the average ex-
change interaction, S, is the m-component spin, AJj; is
the random exchange variable, and O;(S;) is a single ion
anisotropy term allowed by the symmetry of the crystal.
The RF interaction involves the addition of a Zeeman
term, 3, h,S;, where h; is a site random field.'

There was no convenient realization of a RF system
until Fishman and Aharony? showed that a RE Ising an-
tiferromagnet with a magnetic field, H,, applied along the
easy axis is equivalent to a Ising ferromagnet in which
each ion is subject to a random field, 4;. This system is
known as the random-field Ising model (RFIM). Com-
pared to the pure Ising model, the RFIM is predicted to
have drastically altered critical behavior.

Whereas considerable experimental progress has been
made on the d =3 RFIM,? there are still no reliable re-
sults for the magnetization below 7,. An excellent candi-
date for such a measurement is a MoOssbauer spectroscopy
(MS) study of Fe, _,ZnF,.

A first step in a MS investigation of the RFIM below
T, must be a study of the RE Ising model (REIM), i.e,, a
zero-field measurement. Such a measurement is itself of
intrinsic interest since the REIM is the only case for
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which RE exponents are expected to differ from the pure
system.*> In this paper we report on such a measure-
ment, using a single crystal absorber of Fey¢Zn, F, in
which the growth axis, ¢ axis, and y-ray direction are all
collinear and perpendicular to the plane of the disk.
Such a sample can reduce concentration gradients to a
practical minimum and, once characterized, can be
directly used to study RFIM behavior.

Mossbauer spectra were fitted to four magnetic sites,
using a procedure that explicitly diagonalizes the Hamil-
tonian. This provides excellent fits to spectral intensities
and line shapes, demonstrates that residual short-range
order is negligible, and validates the assumption made by
others that Hy, is collinear with a principal axis of the
electric-field gradient (EFG). A limit on concentration
variability was set by measuring 7, rounding via
constant-velocity thermal scans.

From the hyperfine field component corresponding to
no Zn next nearest neighbors we deduce a critical ex-
ponent, 8=0.350(9), which we believe to be the most re-
liable experimental value of B for the REIM. It differs
significantly from S=0.3250(15) expected for the pure
Ising model,® is in good agreement with the recent predic-
tion’ B=0.3494(15), and encourages us to continue with
RFIM studies.

Our agreement with theory is consistent with measure-
ments of other exponents on the REIM.%° Our measure-
ments may be directly compared to the single-crystal
NMR study of Mny 4;Zn, 3F, by Dunlap and Gottlieb'
and the powder-sample MS study of Fe,_,Zn F,,
0.01 <x <0.54, by Barrett.!! Whereas both yield B
values consistent with theory, neither provides an
analysis as complete as the present work (see Sec. V
below).
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II. INSTRUMENTATION

The instrumentation for our study consisted of an Air
Products Displex CS-202 closed-cycle He refrigerator
with a DMX-20 Mossbauer shroud, an ELSCINT Model
MDF-N-5 velocity drive, a 10 mCi 'CoPd single-line
source operated at room temperature, and a Reuter
Stokes Kr-CO, Model RSG-61-M2 proportional counter,
coupled to standard electronics.

Temperature control. Absorbers were mounted in a
disk-shaped Cu sample holder that was regulated via a
two-stage temperature control system of our own design,
as illustrated in Fig. 1. The samples were placed in
strain-free Lucite pillboxes between two BeO disks and
attached with high-thermal-conductivity grease to the
sample holder. A 0.7%-Fe Au-Constantan thermocouple
between one of the BeO disks and the Lucite holder pro-

1 /
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and TC
Y ray
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FIG. 1. Cold-finger arrangement with temperature-control
system. The primary heater H1 and the diode D1 regulate and
measure the temperature of the cold finger connected to the
closed-cycle *He refrigerator. Exchange gas couples the cold
finger to the sample holder, which is controlled via a feedback
system consisting of the secondary heater H2 and the Si diode
D2. A thermocouple TC provides an independent determina-
tion of T.
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vided an independent temperature measurement. Stabili-
ty better than +3 mK/day was obtained for 10< T < 80
K. Temperature uniformity was determined to be less
than =10 mK over the 0.2 cm? area of the absorber by a
differential thermocouple.

Constant-acceleration spectra. 512-channel constant-
acceleration spectra were recorded with an Apple II com-
puter equipped with a multiscaling board designed by
Arends.'? Velocity calibration was accomplished via an
Fe absorber. Due to a vibration isolation bellows, residu-
al line broadening caused by the Displex compressor was
not detectable. Thus a single-crystal sample of
Fey 9Zny F, had a linewidth 0.315(4) mm/s at 295 K
with the compressor off, and 0.346(4) mm/s at 200 K
with the compressor on. Correcting the recoil-free frac-
tion,'® from f=0.588 at 295 K to f =0.688 at 200 K,'*
converts the 200 K result to a line width of 0.316(4), indi-
cating almost no vibration broadening.

Constant-velocity scans. To study transition rounding
we performed constant-velocity transmission (CVT)
thermal scans near T, with two scalers gated to measure
the transmissions, 7( —v,) and 7(+4v,) at two velocities,
tv,. These were chosen to provide a sharp break at T,
in the temperature dependence of the transmission ratio
T(+vg,T)/1(—vy, T).

III. SAMPLE CHARACTERIZATION

A. Magnetic structure

Pure FeF,, to which our samples are closely related, is
one of the best-characterized magnetic systems known.
It has a rutile structure with the principal components of
the EFG along the two-fold symmetry axes and orders as
a strongly anisotropic antiferromagnet below ~79 K. In
the ordered state the magnetization is along the ¢ axis,
which is also the smallest principal component of the
EFG."

As indicated in Table I, high-quality measurements of
the critical exponents a, 3, ¥, v, and z indicate that FeF,
is a model d =3 Ising system. The methods used include
specific heat,'® MS,!” NMR,'®!" and neutron scatter-
ing,’®2! and all but some early neutron work? yield ex-
ponents in excellent agreement with the most recent stat-
ic® and dynamical®? theory.

ZnF, has the same crystal structure as FeF, with simi-
lar lattice constants and so forms a solid solution with
FeF, at all concentrations. Based on MS work between
295 K and 4.2 K, Wertheim?} found that the quadrupole
interaction and isomer shift of FeF, are unchanged by Zn
dilution, but that Zn dilution decreases 7, and the aver-
age saturation hyperfine field: viz., dT,/dx=—0.78
K/at. % Zn and dH(0)/dx =—0.545 kG/at.% Zn.
Wertheim used the latter result to explain the degree of
inhomogeneous broadening at 4.2 K.

Using methods of analysis described in Sec. IV, we
have made a careful comparison of our measurements on
Fe, 9Zn, ;F, and the work of Wertheim.?> Our findings
for H((0), dT, /dx, dH(0)/dx, center shift, and quad-
rupole splitting are consistent with Wertheim’s findings
to within experimental error (see Sec. IV).
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TABLE I. Critical exponents for FeF,.

Theory Experiment
Exponent Value Method'?’ Reference Value Method'®’ Reference
a 0.109(5) RG (6) 0.111(7) SH (16)
0.115(4) LMB (16)
I3 0.3250(20) RG (6) 0.325(5) MS (17)
0.331(6) NMR (18)
y 1.2410(20) RG (6) 1.38(8) NS (20)
1.25(2) NS (21)
v 0.6300(15) RG (6) 0.67(4) NS (20)
0.64(1) NS 210
z 2.173(5) DS (22) 2.09(4) NMR (19)
2.1(2) NS (20)

‘2] Abbreviations for methods used are as follows: DS, dynamical scaling; LMB, linear magnetic birefringence; MS, Mdssbauer spec-
troscopy; NMR, nuclear magnetic resonance; NS, neutron scattering; RG, renormalization group; SH, specific heat.

B. Sample preparation

Single crystals of FeyqZn, F, were grown by Gug-
genheim from a stoichiometric mixture of FeF, and ZnF,
powders using a horizontal-zone method. The FeF, was
prepared by reacting a high-purity 99.999% Fe sponge
with dry HF at 900 C. ZnF, was made in a similar way.
The composition quoted was obtained by x-ray fluores-
cence and chemical analysis of a sample cut from the
same batch. The principal data were taken with a
4% 5%0.1-mm?* polished {001} platelet mounted in a
strain-free manner as described above.

C. Minimizing concentration gradients

An overriding consideration for good critical-
phenomena studies is eliminating the effects of macro-
scopic concentration gradients, which can cause T,
rounding. One approach is to choose a concentration for
which dT, /dx =0.2*?°* Another is to choose a sample
geometry which minimizes the effect of the gradient.
Since the first method is unavailable for Fe,_,Zn_ F,, we
were guided by the fact that the largest gradients are usu-
ally found along the growth axis.

To check for residual gradients we conducted CVT
thermal scans near T,, with results as shown in Fig. 2.
The constant velocity v, was chosen so that +v, coincid-
ed with the high-velocity line of the quadrupole doublet
above T, and —v, sampled the baseline of the spectrum
(see Fig. 3).

It is clear from Fig. 2 that for our sample AT, <0.025
K holds, and that this is equivalent to the rounding limit
observed for a powder sample of FeF,. In contrast, a
sample with the ¢ axis in the plane of the absorber has
much larger rounding. Using dT,./dx=-—0.75
K/at. % Zn as deduced from Fig. 2 (this is consistent
with Wertheim’s value), and assuming that the observed
rounding is primarily produced by the gradient in the
plane of the absorber, we estimate the gradient to be

dx /dl =(dT, /dl)/(dT,/dx)=0.1 at. % Zn/cm (2)

for the sample with the ¢ axis perpendicular to the plane,
and a factor of 5 larger for the sample with the ¢ axis

parallel to the plane. This is consistent with recent esti-
mates by King, Ferreira, Jaccarino, and Belanger,26 who
find gradients of 0.5-1.0 at. % Zn/cm along the growth
axis, and an order of magnitude less for other directions.

IV. ANALYSIS OF MOSSBAUER SPECTRA
BELOW T.

For our Fey ¢Zn, |F, sample with its ¢ axis perpendicu-
lar to the absorber plane we obtained 20 constant-
acceleration Mossbauer spectra in the reduced-
temperature range 3 X 10™* <t <0.86, with 19 points for
t<107'. Here t=1—T/T, is the reduced temperature.
Because the direction of the y rays is parallel to the ¢ axis
the Am =0 lines are suppressed, and the strongly asym-
metric spectra have four lines at low temperature. As the
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FIG. 2. Constant velocity thermal scans for (a) Fey ¢Zng F,
with the growth axis in the absorber plane, (b) Fe, ¢Zn, F, with
the growth axis perpendicular to absorber plane, and (c) FeF,
powder. Note that the powder and “perpendicular” sample are
equally sharp, whereas the “in-plane” scan is much more round-
ed.
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FIG. 3. Mossbauer spectra for a Fe¢Zng F, single crystal
with the ¢ axis, growth axis, and y rays perpendicular to the ab-
sorber plane. Spectra (a)-(d) are below T,, and are fit via a
four-site diagonalized Hamiltonian procedure, as described in
the text. Spectrum (e) is above T, and is fit via two independent
Lorentzian lines. The velocities tv, indicate the values used for
thermal scans.

magnetic splitting decreases, the inner lines cross at
t =0.1, until, as ¢ approaches zero, the inner and outer
lines merge and the magnetic interaction is reduced to
line broadening of the quadrupole doublet. This entire
sequence of spectral change is illustrated in Fig. 3.

Just below T, in the region ¢ < 1073, a2 2% paramag-
netic component is visible as a fifth line. Similarly, just
above T,, in the region ¢ < 10~* the quadrupole lines ex-
hibit small deviations from Lorentizian shape which may
be interpreted as a ~5% admixture of the antiferromag-
netic phase. Neither minority phase is recognizable in
the CVT scans of Fig. 2. We believe, therefore, that the
presence of minority phases is justifiably neglected in the
analysis of critical behavior.

Extracting H,(T) from the data requires solving the
combined interaction Hamiltonian
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H=—guyHyl,
+e%q, Q32 —I(I+1)
+n(I2 —ID)1/[4IQ2I-1)], 3)

where the angular momentum operators I,. and I, are
defined with respect to two different coordinate systems,
suitable, respectively, for representing the magnetic and
quadrupole interaction in diagonal form. The coordi-
nates x,y,z represent the principal axes of the EFG ten-
sor, z' is the direction of the hyperfine field, guyH ¢ and
e%q,,Q /2 are the magnetic and quadrupole interaction
strength, and n=(q,, —q,,)/q,, is the asymmetry param-
eter.

To gain an appreciation of the problems of data
analysis, and to permit a direct comparison to the work
of Barrett,!! we present three increasingly realistic ways
of fitting the Mossbauer spectra and deriving H (7).

A. Line subtraction

If Hy, is aligned along one of the principal axes of the
EFG tensor the I =3 state of °’Fe has energy eigenvalues

E1,3 :ge:u‘Nth/Zi_%equzz { [ 1 +(4ge.u‘Nth/equzz )]2
+n?/3}17%, (4a)

E,4s=—8.unHpe /2% e 0q,. {[1— (4g.uyHye/e%Qg,,)
+92/34172%, (4b)

where g, 1y is the excited-state moment. In this case one
may write the energies of the four Am ==*1 Mossbauer
lines as

E,=Eo+E,—gouyHy /2, (5a)
Ey=Eo+E,+8uyHy/2 (5b)
E =Eo+E,—gguyHy/2 (5¢)
E;=Eo+E;+8opunHy/2 , (5d)

where E|, is the unperturbed energy difference between
the nuclear excited and ground state, and g,uy is the
ground-state moment. This leads directly to the closed
expression

Hy=[(E,—E,)+(E, —E,)]/2(g,—g )y » (6

which can be used to extract H; from fitted line posi-
tions.

As the simplest form of data analysis, and one that is
similar to Barrett’s,!! we fitted the spectra with four in-
dependent Lorentzians and employed Eq. (6) to extract
H,«(T). This requires that H,; be aligned along one of
the principal axes of the EFG, as assumed in Egs. (4).
For FeF, Wertheim!” proved this by explicit diagonaliza-
tion at 4.2 K, but there is no reason to assume it a priori
at other temperatures.

The use of Eq. (6) has other problems. As illustrated in
Fig. 4(a), the spectra for ¢ >2X 1073 are poorly fit be-
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FIG. 4. Results of fitting using four independent Lorentzian
lines: (a) spectrum for t=0.1; (b) temperature dependence of
linewidths below T,. The lines are numbered in the order of in-
creasing energy.

cause a single Lorentzian cannot capture the asymmetric
line shape or the variable linewidth produced by inhomo-
geneous broadening. One consequence of this, illustrated
in Fig. 4(b), is that there is no linewidth anomaly for
t <1072, as one would expect based on critical fluctua-
tion broadening for T > T, (see Sec. VI). We can explain
this qualitatively by the fortuitous cancellation of declin-
ing inhomogeneous broadening and increasing dynamical
broadening.

B. Diagonalized Hamiltonian fit for a single site

As a second approach we adapted a computer program
developed by Kiindig’s group?’ which numerically diago-
nalizes the Hamiltonian of Eq. (3). This constrains line
positions and intensities, and allows us to check whether
the relative orientation of Hy and the EFG are indepen-
dent of T, as assumed in Eq. (6).

The diagonalization program has six free parameters:
the baseline, center shift, linewidth, total absorption, to-
tal magnetic splitting, and the ratio of the magnetic to
the quadrupole energy. The parameter 7, the angles
defining the geometry of H ¢, the EFG, and the y ray are
fixed. The latter include the polar and azimuthal angles
6; and ¢; defining the orientation of I,. with respect to
I,, and the polar and azimuthal angles 6, and ¢, defining
the orientation of the y ray with respect to I,.

The best fits were obtained for 6,=90°, ¢,=0"
6,=90", ¢, =0°, and n=0.4, independent of temperature.
Since these values are the same as presupposed in the
derivation of Egs. (4)—(6), and determined previously'” at
4.2 K, they justify the method of the previous section.
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FIG. 5. Results of fitting using a single-site diagonalized
Hamiltonian: (a) spectrum for ¢ =0.1; (b) temperature depen-
dence of linewidth below T,; (c) quadrupole splitting,
AE,=(e’q,,Q/2)(1+7%/3)""% and (d) center shift below T,
indicating our data via open symbols, and those of previous
workers (see Refs. 14, 17, 23, and 28) via closed symbols. The
large errors in the quadrupole splitting near t =0.1 arise from
line crossing. The misfit of the spectrum and the variation of
the center shift are attributed to the inadequacy of the spectral
fitting procedures.

These results are summarized in Fig. 5 and indicate there
is now a weak linewidth anomaly as T— T, and the
fitted quadrupole interaction agrees with previous results
at T=4.2 and 80 K.!*!7:28

The principal problem with single-site diagonalization
is that the line shape and line intensity both fit poorly,
and the center shift exhibits an unreasonably strong tem-
perature dependence, far in excess of theoretical expecta-
tions for the isomer and second-order Doppler shifts. We
attribute these problems to the fact that inhomogeneous
broadening and line saturation were not considered.

C. Diagonalized Hamiltonian fit for four magnetic sites

Neutron spin-wave studies® indicate that in FeF, the
strongest magnetic coupling is between next-nearest-
neighbor Fe atoms. We therefore model the local envi-
ronment reflected in our Mdssbauer spectra by consider-
ing only the eight next nearest Zn or Fe neighbors as
determinants of H,; in Fey ¢Zn, |F,. Assuming that this
produces hyperfine field shifts that are linear with respect
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to the number of Zn neighbors, n, we decompose H ¢ into
four components:

H,=Hy(1+nAh), n=0,1,2,3, (7

where H, is the hyperfine field for zero Zn neighbors, and
Ah is a dimensionless shift parameter.

To incorporate this model into our fitting procedure,
we extended the numerical diagonalization program to
four magnetic sites. The quadrupole splitting and center
shift were assumed to be independent of the local Zn
configuration.”® The line intensities and positions were
again constrained by the ratio of magnetic to quadrupole
splitting and by the relative orientation of the magnetic
easy axis, the EFG, and the y rays. By fitting the spec-
trum with the best-resolved local environment structure
(this occurs at T =64 K), the intensity distribution of as-
sumed site configurations was found to be close to ran-
dom, although there is evidence for small residual short-
range order as shown in Fig. 6.

The results of fitting are summarized in Fig. 7. Figure
7(a) shows we now obtain good fits for ¢ > 1072, where
neither of the other methods was successful. In Figs. 7(b)
and 7(c) the quadrupole interaction is consistent with pre-
vious work'#172® and the center shift is constant to
within 0.01 mm/s (the long-term stability of the drive).
Figure 7(d) indicates that 1+ Ah ranges from 0.98 at
t=0.86 to 0.85 at t=10"2. The result at 12 K is con-
sistent with Wertheim’s observation.?* The temperature
dependence of 1+ Ah is noted here for the first time in Zn
diluted FeF,, and is comparable to effects observed in
Fe alloys.*® Figure 7(e) shows that site-component
linewidths have complex behavior which can be ex-
plained in the following three parts.

(i) For t > 107! the outer linewidths decrease and the
inner linewidths increase. Both are due to saturation
effects. For the outer lines the increase in Ah decreases
the overlap of the site components, and hence decreases
line saturation broadening. For the inner lines the com-
bined interaction moves them toward each other (they
eventually cross), and this increases line overlap, and
hence line saturation broadening.

(i) For 107! <t <5x 1073 the outer linewidths in-
crease rapidly and the inner linewidths increase slowly.

0.5 T T T T T

04r

P(n)

0.2

01

0.0k

FIG. 6. Distribution function for the number n of Zn nearest
neighbors, with experimental data indicated via closed symbols
and the binomial distribution via open symbols.
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This is explained by the rapid decline of Hy;, which
overwhelms the increase in Ah and increases overlap, and
hence the degree of saturation broadening.

(iii) For t <5X 1073 the linewidth increases rapidly;
this is explained by the addition of dynamical broadening
to the effects of increasing site-component overlap.

Whereas multisite diagonalization obviously provides a
much more satisfactory analysis of the Mossbauer spectra
than either line subtraction or single-site diagonalization,
a problem remains. For t <2X 1073 it is difficult to fit a
unique value of Ah. This is because it is impossible to
distinguish between inhomogeneous broadening, which
produces asymmetrical line shapes, and dynamical effects
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FIG. 7. Results of fitting using multiple-site diagonalized
Hamiltonian: (a) spectrum for ¢ =0.1 with lines numbered in
order of increasing energy; (b) quadrupole splitting,
AE,=(e%q,,Q /2)(1+n?/3)"/% and (c) center shift below T, in-
dicating our data via open symbols, and those of previous work-
ers (see Refs. 14, 17, 23, and 28) via closed symbols; (d) tempera-
ture dependence of 1+ Ah, with the dashed line indicating the
region in which 1+ Ah was fixed, and the heavy line the calcula-
tion of Bergstresser and Gould (Ref. 31); (e) linewidths below
T.. Note that the spectrum, the quadrupole interaction, the
center shift, and 1+ Ak are all well fit. The behavior of the
linewidths is discussed in the text.



which lead to symmetrical line broadening. To solve this
problem, we note that the temperature variation of Ak
must be a phenomenon that only occurs outside the
asymptotic critical region, where magnetic correlations
are of the order of interatomic distances. Close to T, the
existence of long-range correlations demand that all site
components have the same relative temperature depen-
dence.

In support of this assumption, we compare our data to
theoretical work by Bergstresser and Gould,*' who con-
sidered a magnetic atom with a single diamagnetic neigh-
bor in the d =3 Ising model. They obtained o (t), the
moment on the disturbed magnetic atom, and compared
it to oy(t), the moment on an undisturbed magnetic
atom. As indicated by the solid curve in Figure 7(d), the
calculated moment disturbance has a temperature depen-
dence similar to our data for 1+ Ah: it is strongly tem-
perature dependent for ¢ > 1072, and becomes essentially
temperature independent for ¢t < 1072,

Guided by this, we treated Ah as free for 1 > 3x 107,
fixed it at —0.15 for r < 3 1077, and used this to obtain
the “‘best” multisite diagonalized Hamiltonian fits of our
spectra.

V. THE CRITICAL EXPONENT 8

Table II shows the results of the three methods of spec-
tral analysis we have described. To extract 3 we made a
nonlinear least squares fit of the reduced hyperfine fields
to the expression

h(t)=Bt3(1+at®), (8)

where Bt? is the usual asymptotic singular term, ar® de-
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scribes corrections to scaling with A=0.50 fixed at its
theoretical value,® and T, B, a, and J3 are free.

Since site components exhibit the most significant
differences in the range ¢ > 1072, the largest differences
between methods of spectral analysis occur in the fitted
correction-to-scaling amplitude a as illustrated in Table
III. In addition, the three methods of spectral analysis
show substantially different values 8 and B.

Since multisite diagonalization has been demonstrated
to be the most reliable spectral fitting procedure, we re-
gard critical parameters deduced from the hyperfine fields
obtained by this method (Table III, line 3) as the most re-
liable. The quality of fit obtained with these values is il-
lustrated in Fig. 8 via a logarithmic plot of A (¢). The re-
sult $=0.350(9) is in good agreement with the most re-
cent theoretical predictions,” according to which
B=0.3494(15) for d =3 random Ising model.

As a check on the critical-parameter fitting procedure
we made a ‘“‘range-of-fit analysis,” as described in earlier
work by our group.’>3* In this method, data with a re-
duced temperature ¢ <t_,, are fitted by the simple power
law h =Bt?, with B, T,, and B free. As shown in Fig. 9,
by plotting these parameters against ¢ ,,, one may direct-
ly observe the approach to asymptotic values, albeit with
increasing error as the range of fit is reduced. Evidently,
the results of this procedure are consistent with the least
squares fit to Eq. (8).

Our results may be compared to the MS work of Bar-
rett,!! who in a study of powder samples of Fe, _,Zn F,,
for 0.01 <x <0.54, derived average values of H(T) via
line subtraction, and for x <0.07 found a concentration-
dependent crossover from [B=0.33 to SB=0.36 as
T—T,. We can draw no direct conclusions about cross-

TABLE II. Hyperfine fields deduced by three methods of analysis.

T (H.(T)) (H(T)) Hy(t)
(K) kG) kG) kG) AR
line single-site
subtraction diagonalization multisite diagonalization
12.5 320.76(9) 321.84) 328.02) —0.021(1)
64.070 210.34(15) 209.2(25) 222.6(6) —0.078(1)
65.841 190.23(57) 197.44(55) 206.3(2) —0.090(1)
67.389 171.58(20) 175.01(65) 187.8(2) —0.103(1)
68.554 153.24(17) 154.38(52) 169.6(2) —0.111(1)
69.402 136.54(17) 136.78(49) 152.5(2) —0.118(1)
70.009 121.41(17) 121.52(46) 136.7(2) —0.124(D
70.425 107.11(16) 107.11(42) 121.5(2) —0.129(1)
70.713 94.36(11) 94.17(37) 107.5(2) —0.134(1)
70.893 86.64(16) 86.76(35) 99.6(2) —0.139(D)
71.079 78.04(11) 77.86(31) 89.4(2) —0.138(2)
71.220 67.95(11) 67.74(28) 78.5(2) —0.145(2)
71.266 62.94(11) 62.79(27) 72.9(2) —0.146(2)
71.313 57.72(11) 57.61(24) 67.2(2) —0.149(2)
71.360 52.42(11D 52.30(23) 61.2(2) [—0.149]
71.386 50.11(15) 49.61(22) 58.0(2) [—0.149]
71.407 45.54(20) 44.59(21) 52.2(2) [—0.149]
71.435 42.06(22) 40.01(22) 47.0(2) [—0.149]
71.453 39.32(32) 35.65(23) 42.1(2) [—0.149]
71.479 35.10(65) 25.59(28) 30.1(2) [—0.149]

‘#)Square brackets [ ] indicate the parameter Ak has been fixed as described in the text.



3272

N. ROSOV et al. 37

TABLE III. Fitted critical parameters. Our most reliable values for the critical parameters are determined from hyperfine fields
calculated via the four-site diagonalization procedure (as described in the text).

Method of analysis T. B B a
line subtraction 71.515(10) 1.55(12) 0.369(14) —0.17(15)
one-site diagonalization 71.496(3) 1.27(8) 0.334(10) 0.36(15)
four-site diagonalization 71.498(3) 1.68(8) 0.350(9) —0.32(8)

over in the exponent 8 as observed by Barrett, since we
have no data in the region x <0.07. However, from our
analysis we can make the following three comments
about Barrett’s work.

(1) We have shown that a four-site analysis of inhomo-
geneous broadening gives the best fit to our line shape,
and yields significantly different critical behavior than
less sophisticated forms of analysis. This means that ex-
plicit consideration of inhomogeneous broadening is
needed at x =0. 10, as well as over some part of the range
x <0.10. Hence Barrett’s conclusion for the range
x <0.07 probably should be reexamined.

(2) In the region x =0.5 we know that inhomogeneous
broadening is a major factor, but our method of multisite
analysis would be hopelessly complex. It is, therefore,
unclear to us how to deal with inhomogeneous broaden-
ing near x =0.5 and how to evaluate Barrett’s dynamic
or static data in this region.

(3) Independent of spectral analysis, we note that
Barrett’s power-law fitting makes no corrections to scal-
ing and is sensitive to the stated error in T,. It is there-
fore possible that crossover in B is related to corrections
to scaling or the particular choice of T,. (See Fig. 10).

Our work may also be compared to the NMR study of
Mny ¢;Zn, 3F, by Dunlap and Gottlieb.!® Whereas this
yielded B=0.349(8), in agreement with theory and the
present work, it employed an irregularly shaped 0.4-g sin-
gle crystal which was analyzed for neither concentration
gradients nor hyperfine field inhomogeneity.
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log,, h
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1

10
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10° 102 10"
log,,t

-
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FIG. 8. Log-log plot of reduced hyperfine field vs reduced
temperature. The line is a fit to the data of the form
BtP(1+at®) with B=1.68(8), 3=0.350(9), a = —0.32(10), and
A=0.5.

VI. CRITICAL DYNAMICS

In contrast to pure FeF,, where no effect was found,!”
line broadening for FeyoZn,,F, in the region 107*
<t < 107! above T, is clearly visible. We attribute the
observed broadening to critical fluctuations. As indicat-
ed in Fig. 11, broadening is larger for the I, =11 to
I, =% quadrupole line than the I, =+3 to I, =+ line.
According to Blume and Tjon,** this is to be expected for
the case in which magnetic fluctuations are transverse to
the principal component of the EFG, as is the case in the
FeF, system. At the same time, the observed effect is in-
consistent with isotropic fluctuations as discussed by
Bradford and Marshall.*

Because the observed line broadening is less than the
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FIG. 9. Range of fit analysis for reduced hyperfine field. The
temperature ¢, indicates the maximum value of ¢ included in
the fit to h (¢)=Bth.
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FIG. 10. Plots of log,o(ht ~%%%) vs ¢ for three values of T, us-
ing the data given in Table III. The values of T, span one half
of the error quoted in Ref. 11. This indicates the great sensitivi-
ty of *‘crossover” to the choice of T..

natural linewidth at all temperatures, we believe we are
sampling the extreme “motional narrowing” regime. In
this case much of the spectral complexity described by
Blume and Tjon** disappears. Nevertheless, the observed
line width anomaly is subject to at least two interpreta-
tional difficulties.

(1) The presence of four major components in the mag-
netically ordered spectra means the line broadening
above T, will have four components, each with a different
amplitude of the fluctuating hyperfine field.

(2) Because the recoilless fraction changes noticeably in
the range t <10~ ! above T, critical line broadening will
be confounded by changes in line saturation, particularly
for relatively thick absorbers such as ours, with 40% ab-
sorption dips above T,.

For these reasons we have not interpreted our present
data (Fig. 11) in terms of a dynamical critical exponent,
but are planning further experiments and analysis to be
reported elsewhere.

VII. SUMMARY AND CONCLUSION

Using a single-crystal sample of Fey ¢Zn, F, for which
a study of T, rounding demonstrates that the effect of
concentration gradients is negligible, we have shown via
Mossbauer spectroscopy that the order parameter is de-
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FIG. 11. Critical line broadening above T,. Open circles in-
dicate the I, =i%—+lg=i—;— transition; closed circles indicate
the I, =+3 I, =+1 transition.

scribed by the critical exponent B=0.350(9). This value
for B is consistent with the most recent theoretical pre-
dictions for the d =3 REIM. Our result applies in the
range 3X 107 %<1 < 107! with substantial corrections to
scaling for r>1072 Our analysis of spectra below T,
makes clear that for a sample with as little as 10% Zn di-
lution a multisite diagonalization procedure is necessary
to account adequately for the line shapes produced by
different local environments.

It is interesting that none of the experiments on the ex-
ponent 3 in the REIM show evidence of the slow cross-
over predicted by Newman and Riedel,’® who obtain a
crossover exponent of 1/a and a RE asymptotic region of
t <107°. In fact, except for the rapid crossover for
x <0.07 reported by Barrett,'! only the predicted REIM
f3 values are observed, without crossover of any kind.
This is clearly an unresolved discrepancy between theory
and experiment which requires further work.

Above T, we observed substantial line broadening,
which we attribute to critical fluctuations. However, the
presence of both hyperfine field inhomogeneity and line
saturation effects argues against deduction of an ex-
ponent. We have therefore deferred this issue.

Note added in proof. Recently, Thurston et al.’’ have
performed magnetic x-ray measurements on another
REIM system, Mng sZn, sF,, which yield B=0.33(2)
over the reduced temperature range 0.001 <t <0.06.
They correctly point out that thier result for B if con-
sistent with ours. They also wonder whether choosing a
correction to scaling exponent of A=a=0.11 would
change our value of 8. Reanalysis of our data shows this
choice does not alter 3; correction to scaling analysis
with A=0.11 yields 8=0.35(1) as before.
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FIG. 1. Cold-finger arrangement with temperature-control
system. The primary heater H1 and the diode D1 regulate and
measure the temperature of the cold finger connected to the
closed-cycle *He refrigerator. Exchange gas couples the cold
finger to the sample holder, which is controlled via a feedback
system consisting of the secondary heater H2 and the Si diode

D2. A thermocouple TC provides an independent determina-
tion of T.



