
PHYSICAL REVIE%' 8 VOLUME 37, NUMBER 1 l JANUARY 1988
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A one-dimensional interacting electron gas in a random potential exhibits a localized-

delocalized transition for increasingly attractive interactions. %e develop here a renormalization-

group approach to study this transition. Our treatment allows us to obtain the phase diagram and

the exponents of the correlation functions in the delocalized regime. The boundary between the
two regimes is found to depend both on disorder and the strength of the interactions. For (nearly)

spin-isotropic interactions the delocalized phase is dominated by superconducting fluctuations of
either singlet or triplet type. The temperature dependence of the conductivity in the delocalized

phase is also obtained and a nonuniversal power-law behavior is found. A description of the
crossover towards the localized phase is given and the localization length is computed. An analo-

gous description is developed for the localized-superAuid transition of a one-dimensional boson

gas. In this case the transition to the localized regime occurs for increasingly repulsive interac-
tions. %e suggest a phase diagram with two diFerent localized phases. Finally, we discuss some

possible implications of our model for real quasi-one-dimensional metals.

I. INTRODUCTION

In one- or two-dimensional metals the presence of dis-
order entails a localization of all electronic states and,
therefore, a vanishing static conductivity at zero temper-
ature. ' For one-dimensional systems this fact can be
shown by exact calculations. The existence of in-
teractions among electrons changes this behavior qualita-
tively: For suSciently attractive interactions, there is
a competition between superconducting fluctuations and
disorder which can lead to delocalization. Previous
methods ' ' developed to study the localized-delocalized
transition in one-dimensional systems are valid only in
the limit of vanishing disorder, and generally do not take
into account the renormalization of interactions by the
disorder.

%e mill consider in this paper the inhuence of interac-
tions on an impure one-dimensional system. Such a
study can be useful to gain insight into the inhuence of
disorder on real quasi-one-dimensional metals. For ex-
ample, alloying experiments on compounds with
tetramethyltetraselenafulvalene (TMTSF) or tetramethy-
tetrathiafulvalene (TMTTF) chains, e.g. , (TMTTF)zX
and (TMTSF)2X, have revealed interesting phenomena at
low temperatures. ' *" In intrinsically disordered com-
pounds hke quinoline-di(tetracyanoquinodimethane)
[Qn(TCNQ)z] localization has been claimed to be impor-
tant up to temperatures of the order of 200 K.' All
these organic compounds are narrow-band systems (typi-
cal bandwidth =1 eV}, and electron-electron interac-
tions therefore are certainly important.

However, the present study has also a purely theoreti-
cal interest: As one-dimensional electron-electron in-
teractions can be treated exactly, here we have a model
system to study the not yet fully understood question of
the competition between superconductivity and Ander-

son localization, and more generally of the interplay be-
tween localization and electron-electron interactions.
Moreover, our treatment straightforwardly extends to
the localized-super6uid transition in a one-dimensional
interacting boson system. These questions are at present
of considerable interest in two and three dimensions, ' '
and a detailed investigation of the one-dimensional situa-
tion may therefore be helpful in understanding the
higher-dimensional cases.

%e have developed a renormalization-group method
to treat both the disorder and the interactions and to al-
low for their mutual renormalization effects. A similar
method was previously used only for the considerably
simpler case of spinless fermions. Our renormalization
scheme fits perfectly into the previously developed
frameworks of the interacting one-dimensional electron
gas without disorder. ' It allows a consistent description
of the delocalized regime, as well as the zero-
temperature transition to the localized phase and 6nite-
temperature crossover effects.

The plan of the paper is as follows. In Sec. II the
model of the one-dimensional electron gas with disorder
is introduced. The effect of forward scattering by impur-
ities is discussed and shown not to lead to localization.
Section III is concerned with impurity backward scatter-
ing, which can lead to localization. Renormalization
equations are derived and the zero-temperature phase di-
agram is obtained and discussed. In Sec. IV the renor-
malization equations are used to study the localization
length, the inhuence of nonzero temperature on the con-
ductivity in the delocalized phase, and the crossover to
the localized phase. In Sec. V we discuss the analogy
with a system of one-dimensional bosons undergoing a
localized-super6uid transition. A comparison with some
experimental results and a discussion of the limits of our
treatment are in Sec. VI. Some mathematical details are
to be found in the Appendices.
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II. DEFINITION OF THE MOBKI. AND EFFECTS OF IMPURITY FORWARD SCATTERING

%e use the standard "g-ology"' description of the one&imensional interacting electron system: As the only impor-
tant processes are those near the Fermi surface, the energy spectrum is linearized around kF and the interactions are
parametrized by the constants g», gii giJ g 2i for processes with momentum transfer close to zero (g2i, g2~~ ) and 2k~
(g, i,g,

~~

). The complete Hamiltonian of the pure system is

H = g UF(rk —kF}a,k a,k +L
k, o, r k I, k 2,P,o', ~'

(gli5, '+gll. 5,— ')++,k ~ —k&, '~+, k +p, '~ —k —p,

+I. ' g (g215 +g»5 )p+ (p)p ( —p), (2.1}

where

pr+(p)= gur, k+p, n&r, k, a ~

k

P„(x)=I. ' ' g a„k e'"",
k

(2.2)

r =+ denotes right- and left-going fermions, 0 =2 indi-
cates spin up and down, and a,k (a„k~) is the annihila-
tion (creation) operator for a fermion in state (r, cr ) with
momentum k.

We now use the boson representation' ' of fermion
operators, introduce charge- (p) and spin- (a ) density
operators in the standard way, and de6ne the phase
6elds,

(2na)

where H and H are de6ned by

(2.4)

H= x uE +II +
2m EC„

(g„)'

1/2
2&Up +g~
2&UF —g~

(2.5)

gp~g~ =g))I —
g2)( +g2+ ~

and II is the momentum-density conjugate to P„,

[11 (x),P„(x')]= i5„„5(x——x') . (2.6)

As is well known, in one dimension an ordered ground
state with a broken continuous symmetry cannot exist.
However, the tendency of the system to order manifests
itself in divergent correlations of 2kF charge-density
wave (CDW), spin-density wave (SDW), or singlet (SS)

P„(x),8„(x)= T g —e ~~ ~
~ '~"[v+(p)+v (p)],

@~0~
(2.3)

v=poro .

In A, B = the upper sign refers to A, and a is a
short-range cutoff' parameter of the order of the lattice
constant. In terms of boson operators the Hamiltonian
is expressed by

and triplet (TS) superconducting Cooper-pairing type.
These 6uctuations are described by the correlation func-
tions

(2.7)

where T, is the time-ordering operator for the imaginary
time z, and

2lkFX
8

OcDw(x~&) =
ma

exp[ i &2$—(x,~)]

Xcos[~2$ (x,v)],
2ikFx

8
0sDw( x&T) =

7T'C
exp[ —i ~2$ (x,~}]

(2.&)

Xcos[~/28 (x,~)] .

Oss and OTs are obtained with kF ——0 and replacing
/&~8&. For the triplet-type phases (SDW, TS} only one
of the three possible spin orientations is exhibited.

The asymptotic behavior of the correlation functions
is determined by the coef6cient I{.'„ in (2.5). One has

—2+& ~

R, (x,r ) —max(x, u „~)

with

acDw =2 —K —X*, asDw =2 —Kp 1/IC ~
(2.9)

ass ——2 —1/Ep —E', aTs ——2 —1/Kp —1/E

Here E' is the renormalized value of E „containing all
corrections due to the g &~ interaction. For spin-
independent interactions one has E' =1 (g, i &0) or
K' =0 (g,~ &0). One should note that the relation be-
tween the I( „and the Inicroscopic constants given in
(2.5) depends on the s ecific cutoF procedure used in the
boson representation' and is universal only to first order
in g&,gz. On the other hand, the low-energy properties
of sny interacting one-dimensional fermion system are,
in the absence of commensurability elects, described
correctly by (2.9), with the parameters E„,u„ functions
of the microscopic coupling constants, and E' =1 (or 0)
for spin-independent interactions. "" Speci6cally, the
relations between difFerent exponents following from
(2.9) are expected to be universally valid.
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P„=exp D„—' f rI (x)dx
L

P&
——exp D&

' —fg'(x)g(x)dx
(2.10)

where D„= UF/ r„, and r, is the scattering time associat-

As pointed out by Abriksov and Ryzhkin, in the limit
of a weak impurity potential, the interaction between the
electrons and the impurities can be parameterized by
two uncorrelated Gaussian random 6elds i) and g. These
two fields, respectively, describe the forward and back-
ward scattering by the impurities (see Fig. 1) and have
the probability distributions

+kF

FIG. 1. Diagrams representing respectively, the forward
and backward scattering by impurities. The solid (dashed}
lines indicate fermions w'ith momentum +kF ( —k~ }.

ed with each process. The field rI is real, whereas ( is
complex, g and g' being associated with momentum
transfer 2k+ and —2kF, respectively. The interaction
Hamiltonian with the impurities is given by

H& ——g f dx rt(x)[ij'j+ (x)1(+ (x)+1( (x)g (x)]=—

Hb= g f dx[g(x)g+ (x)g (x)+(*(x)g (x)P+ (x)]

2 f dx i)(x)8,$
(2.11)

f dx I((x)e " cos[&2$ (x)]+H.c. I .

The forward scattering due to impurities can thus be absorbed in the free part of the Hamiltonian which becomes

He —— f dx u E (@II ) + IB„[(()(x)+rI(x)])2
2m . p.

E f dx rj (x),

g(x) =—&zx, f dz g(z) .
(2.12)

%e will only consider in the following the case of quenched disorder. In order to treat the backward scattering we
use the replica trick, ' and after averaging over the field g, the complete action of the replicated system is

5= g f dr L"+L,'+ f dx cos[&8$'(x,r)]
(2ma)

D( g f f f drdr'dx cos[&2$' (x, r)]cos[&2$'(x, r')]cosj &2[/'(x, r) P'(x, r')]I, —
i,j

(2.13)

where i,j are the replica indices, the L; are the Lagrang-
ians associated with the Hamiltonians H;, and integra-
tion over ~, ~' is from 0 to j./T. The free energy F of the
system at temperature T is given by

The forward scattering due to impurities can thus be
completely absorbed in the redefinition of the P field.

The conductivity is given by the Kubo formula

Z( )=f gX((),e

I" (T}=—T lim —[Z(n) —1],1

n —«0 Pl

c'(ei)= —f dt e'"' f dx([j(x, t)j (0,0)]) .

(2 14) If we use the Matsubara frequencies we have

—g 1/T Eco 7'

dre " =(r}
0

(2.16)

(2.17)

cos[&2[P'(x, r) —P'(x, r')]I

=cosI&2[P'(x, r) Pej(x, v')]J . —(2.15)

where n is the number of replicas. To eliminate the for-
ward scattering we introduce the field P=P (x)+g(x).
The whole Hamiltonian can be expressed in terms of the
new field since

where

:"(r)=f dx ( T,j (x,rj)(0,0)) .

Using the boson representation = becomes

:-(r)=, f dx ( T,[BP (x, r)][B+p(0,0)]) .I

(2.18)

(2.19)
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When expressed in terms of the»|) field this gives (we do
not explicitly rewrite the (() part which is not affected by
the transformation)

The change from P to P is then no longer trivial. This
point necessitates a separate study and will not be con-
sidered in the following.

0 (co)= ', ( 2,[BP,(x)][&y,(x) ]), „„
k)%

+i(iii i ~(0)) g iv 2»I (x, i) —iv 2e io, o
)R cow sow(x» )

iv 28 (x, i) —+28 io, o&,
Rss, rs(x»t)~ e ~ '

e ~ '
) .

(2.20)

—D (Jc /u ) ixl
Rcow, sow(x»t)=e " Rcow, sow(x t)

I »i—=0 .

(2.21)

In the absence of disorder the correlation functions have
a power-law decay in real space which leads to a power-
law behavior of the Fourier transformed functions for
small q and ~

Thus neither the conductivity nor the pairing Quctua-
tions are affected by the forward scattering. This agrees
with previous results for the noninteracting case. ' For
the CD%' and SD%' fluctuations the average over the
field g is easily done and we get

III. IMPURITY BACKWARD SCATTERING:
RENORMAI. IZATION EQUATIONS

AND PHASE DIAGRAM

The e8'ect of electron-impurity backward scattering, as
described by the random field g, is much more drastic
than forward scattering: In the noninteracting case this
term leads to localization. More generally, both impur-
ity backscattering and the g, ~ interaction give rise to
divergent terms in a perturbation calculation. %e there-
fore use a perturbativc development in the disorder D&
and in the interaction g, i to generate the renormaliza-
tion equations under a change of the length scale
a~e'u. %e will limit ourselves to a first-order develop-
ment in D& and a second-order development in g,j. To
this order the renormalization equations can be derived
without using replicas, and we wi11 omit the replica in-
dices in the following. To this order, the renormaliza-
tion equations are therefore identical for quenched and
annealed disorder. This point and its physical conse-
quences will be discussed in greater detail in Sec. VI.
The part of the action due to the backward scattering is,
in the fermion representation,

R;(q, a)) ~ [co +(uFq) ] (2.22)

The exponents a, depend on the interactions [cf. Eq.
(2.9)]. This behavior is modified in the presence of disor-
der. If we compute the Fourier transform of (2.21), we
get

where m =D„(K /u ) . For a; ~1 the integral is con-
vergent, and thus the CD% and SD% are not divergent.
If a; & 1, we have for ko =0,

R cow, sow(ko =U~q t0) ™
(k 2+ 2) CDW, SDW

m +(ko —k)

(2.23)

SD —— D& g J—drdr'dx(i'~+ g )„,
a, a''

(3.1)

Such a process is purely elastic due to the double in-
tegration over time. In order to derive the renormaliza-
tion equations, we have to split the integral in two parts
by using the cutoff u~

~

r —v'
~

&a. If we denote by f
the integration for u

~

r —w'
~

)a, we have

SD —— D& g f drd—r'dx(i'+ P )„,(l(» .f+ )„,.

g J drdx(g+ g )„,(P P+ )„,.
u, o

2I (1/2)l (a; —1)
R;(O, co)- co (2.24)

(3.2)

2g3
Jdx cos[v 8$ (x)] .

(2ma)
(2.25)

The forward scattering suppresses all divergences for
CD% and SD%' from the space integration. The only
source of divergence remains the time integration. Thus
the forward scattering reduces the exponent of the CD%
and SD% correlation functions.

The above discussion should be modified in the case of
a half-filled band. Gnc can then have electron-electron
umklapp scattering which in terms of the boson fields is
given by a term:

III
g &ll, &i =g ill, &~ (3.3)

Details of the derivation of the rcnormalization equa-
tions are left for Appendix A, and we give here only the
resulting equations. The rcnormalization equations are
expressed in terms of the modified g constants (3.3):

The second term in (3.2) is equivalent to a g, process
and can be absorbed in the definition of the g, j and g, ll

constants. Thus the initial values of the g are modified.
If we call g'" the original constants of the g-ology repre-
sentation, wc have
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dK (1) l KFup X(1),
dI 2 u

dK (1) = —
—,
' [2)(1)+y (1) ]K

with the dimensionless quantities

2D~a u

m'u ~ ~p
2 y =g„ /(mu ) .

du (1) uFE~ $(1),
dl 2u

du (1) u K~

dy (1)
dl

=[2—2K (1)]y (1)—X)(1),

d2)(l ) =[3—K (1)—E (1)—y(l)]2)(l),

(3.4)

(3.5)

ization in our case (i.e., only the renormalization of the
disorder is considered). We recover also the result of
Apel and Rice obtained by using scaling arguments on
finite-length systems. All these previous results [except
Ref. (7)] neglect all the renormalization effects on the in-
teractions due to a finite disorder. They are thus valid
only in the limit $~0. Another method used is the
self-consistent harmonic approximation (SCHA} of
Suzumura and Fukuyarna. The SCHA allows us to
treat the g, ~ interaction but neglects both renormaliza-
tion e8ects from the disorder and from the

g&~~
term.

This method is thus valid only in the limit g),y ~0.
Close to the noninteracting point (which means

g'"=0) one has to check that our renormalization equa-
tions does not generate g'" terms, In order to do so, we
have at a scale 1 to separate in K(1) the part coming
from inelastic processes and the part coming from the
second part of Eq. (3.2). Close to the noninteracting
point, if we write the Hamiltonian as a sum of inelastic
processes (g'") and a purely elastic process like Eq. (3.1),
we have, according to (3.2),

The renormalizations of E, and u are of first order in
Xl and y, and consequently can be neglected on the
right-hand sides of the first three equations. Contrary to
the pure case, charge and spin degrees of freedom are
now no longer decoupled.

The last equation governs the disorder effects. If
(3—KF E —y) &—0, 2) will increase under renormaliza-
tion. The solution Aows to a strong-coupling regime
where our first-order renormalization equations are no
longer valid. The physical properties of this strong-
coupling regime will be strongly dependent on whether
we have quenched or annealed disorder, although the
first-order renormalization equations are not. Let us
consider quenched disorder (a short discussion about an-
nealed disorder will be given in Sec. VI). The strong
coupling (S~oo) regime contains the noninteracting
point, which we know is localized. Assuming that
there is no fixed point at intermediate coupling, we can
identify the whole &~ 00 phase with a localized phase.
If 3 EF —K —y &—0, 2) will decrease, the disorder is ir-
relevant, and the system is delocalized. K and E are
functions of the interactions [cf. (2.5}] and E increases
for increasingly attractive interactions. Therefore, a
localized-delocalized transition is driven by the interac-
tions. In the limit of extremely weak disorder (2)~0)
the boundary between the two regimes is given by the
following condition:

gild, il(1) g lii, 1I (1)
2D((1)a

(3.7)

Our renormalization equations are at the noninteracting
point (g ~" =g 2

——0),

l d(gl 2g2}

UF d1

l 8g) = —B(1),
KUF AI

(3.8)

=S(!},
dl

d (g '1" —2g z" ) =0,
%Up ll

Jg I =0,
KUF dl

(3.9)

where we have neglected terms of order 2) as should be
done, and used the fact that the equations for g, ~ and

g,
I~

are identical. At the noninteracting point we also
have 2)=2D~almUF2. Using (3.7) and y =glil~UF we
get y, =y',"—S. And thus from (3.8) we have

3—K —E =0. (3.6)

~here K* is the value of E renormalized by the g,~ in-
teraction [E'=E (g +) with g, =(g, —g,i}' ]. In
this hmit, our renormalization equations reproduce pre-
vious results. The case of spinless fermions (formally
K' =KF =K and y =0) was studied by Chui and Bray
using a series expansion, and by Apel by a
renormalization-group method. In this particular case
our equations reduce to those of Apel, and the result of
Chui and Bray corresponds to a zeroth-order renormal-

Thus the renormalization equations do not generate any
inelastic processes if we start from the noninteracting
point. Of course if we start from the transition point
~here the couplings g'" are nonzero, inelastic processes
are renormalized.

To obtain the phase diagram for finite disorder, the re-
normalization of KF and K by 23 must be taken into ac-
count. As the spin-anisotropy is usually small, we will
consider the following:
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g(j. =g)(~ =g) )

g2i =gzt~ =g2 ~

and to be consistent with our development in g, ~

(3.10)

K =1+—+0(g',
,
),

u~ =Up+ 0 (g i() ),2
(3.11)

where y =g, /(irur). Inserting this into Eq. (3.4) the
second and fourth equations coincide and we obtain

ever, the fixed line can only be reached if initially g, p 0,
and therefore, as in the pure case, ' there are logarith-
mic corrections which lead to dominant triplet Auctua-
tions.

(2) Xl flows to zero and y to —co. If g, is initially
smail or negative, y Aows to large negative values, indi-

cating, as in the pure case, that the spin degrees of free-
dom are frozen. If 2) initially increases much more
slowly than y, i.e., for large K, one is in a situation
where P fluctuations are essentially frozen out. The re-
normalization equations become in this case (cf. Appen-
dix A)

dK(l) 1 Ku
P P P

dl 2 UF

(3.12)

dK (l) = —
—,'K 2)(l),

du(l) uK
P P P cg(l)

=[3—K (l)]2)(1),

(3.14)

From these renormalization equations diferent kinds of
behavior are obtained.

(1) 2) and y flow to zero: This is a fixed line of equa-
tions, parametrized by K . As 2) =0, the system is delo-
calized, and charge and spin degrees of freedom are
asymptotically decoupled. We recover power laws for
the correlation functions but with renormalized ex-
ponents a,' [see Eq. (2.22)]:

with

2C D(a
STAN p

(3.15)

and C is a constant of order unity coming from the P
correlations in the perturbation expansion. In this case
the exponents are given by

clcDw, sD%' l +
p

ass Ts= 1 —(K& )
(3.13)

CZCDW 2 j).
p

ss=2 —(K" )

(3.16)

where the asterisk indicates fixed-point quantities. The
complete study of the equation has to be done numeri-
cally. Some curves for the renormalized exponents are
sho~n in Fig. 2. The stability of the 6xed line requires
3." &2, so that we have superconducting fluctuations in
the delocalized phase. The nature of the dominant IIuc-
tuation depends on the spin part of the correlation func-
tions. Formally, SS and TS are equally divergent. Hom-

2.4

2.2

0.25 0.5 0.75
I

1.0

FIG. 2. Renormalized value of K~ as a function of the dis-

order 2). The curves end at g),„t for which the localized-
delocalized transition takes place. Curves 1,2,3,4 are for

y =0.S,0.4,0.3,0.2, respectively.

As K &3, singlet-pairing fluctuations dominate in
this region.

(3) S f&ws to infinity: The solution of the equations
flows towards a regime where the renormalization equa-
tions are not valid. If we suppose that there is no inter-
mediate 6xed point we scale to a strongly disordered sys-
tem. The system can then be described by a Harniltoni-
an of localized particles. The magnetic properties of the
model will depend again on thc renormalized value of
g, . If g& gO we will have a nonmagnetic system of lo-
calized pairs of spins. This is equivalent to a charge-
density wave pinned by the impurities ' (if the pinning is
strong enough the CD% mill adjust itself on the irnpuri-
ties and the 2kF modulation will not matter very much).
We mill denote this state by the somewhat imprecise
term "charge-density glass, " or pinned charge-density
wave (PCDW). On the other hand, for g f & 0, there is a
repulsion between electrons of the same spin. The elec-
trons thus avoid localizing pairwise in the same state.
The system of localized electrons will consist mostly of
isolated spins localized around randomly distributed
sites. Due to the randomness, the exchange interaction
between adjacent electrons mill also be random, and me

therefore expect properties typical of a random antifer-
romagnet (RAF) (Ref. 22).

The phase diagram for a 6xed value of disorder is
given in Fig. 3 together with the usual diagram of one-
dirnensional systems without disorder. The limits be-
tween the difrerent regimes depend boih on disorder and
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0.3,

RAF

(b) 0.5

&QM Cl% SS

t~s~ t~o~»

FIG. 3. Phase diagram for electrons in the y -E~ plane. (a)
is for finite disorder, %=0.05, and (b) is the usual one without
disorder. In one dimension, "phase diagram" means a diagram
of the dominant fluctuation. The fluctuations less divergent
than the dominant one are within parentheses. Dashed lines
are for parts of the phase diagram that cannot be obtained pre-
cisely by the present method. In (a) the two vertical lines are
the limit of the phase diagram when %~0.

interactions. In general, the different phase boundaries
have to be determined numerically. However, for large1 we Snd that the SS-TS boundary is given asymptoti-
cally by y, =2)/(Ez —2).

Along the SS-localized and TS-localized limits the lo-
calization length diverges. A more detailed discussion
will be given in Sec. IV. In the SS phase where there is
a gap 6 in the spin-excitation spectrum, we can define
a spin-correlation length u /b, . As along the TS-SS
limit, this spin-correlation length is also divergent; the
three curves meet on a multicritical point. From our
method we can obtain only the TS-localized limit, the
TS-SS limit, and the asymptotic form of the SS-localized
limit for large negative y (solid lines in Fig. 3). Along
the TS-localized limit we 6nd a nonuniversal value of
E

We cannot give the location of the multicritical point,
but we can estimate the SS-localized curve if the spin-
correlation length is smaller than the localization length.
We start with Eqs. (3.12). If we are close to the SS-

localized transition the disorder starts to decrease,
whereas y becomes negative and increases in absolute
value. Thus the spin degrees of freedom are increasingly
frozen while the disorder remains weak. We stop the re-
normalization when y has reached a given value

yo =y (10). As the disorder is still weak, we can use the
values E (Io) and 2)(10) as initial values in (3.14) and
resume the renormalization. This picture breaks down
when we get too close to the multicritical point, where
the two lengths diverge simultaneously. This argument
gives for the SS-localized line E (I =0) & 3; thus we

would expect the multicritical point to be also at
E (I =0) & 3. As the spin degrees of freedom are always
frozen in the SS phase, the renormalized value E* on
the critical line SS-localized is always 3, as can be seen
from (3.14).

Our erst-order equations imply that for the localized
phase (S~ao) one should have g;~ —oo, i.e., a non-
magnetic behavior of the PCDW type, regardless of the
strength of the original interaction g, . This unphysical
behavior of the model arises because we consider here
only first-order impurity effects. In the pure case
(&=0), for y ~0, the exponents of the charge- and
spin-density fluctuations are the same, but logarithmic
corrections favor the SD%' fiuctuation. ' For y &0, the
system is thus dominated by SDW fluctuations with
coexisting CD% fluctuations. In our calculation, we
have limited ourselves to the first order in the develop-
ment in the impurity Hamiltonian. The coupling be-
tween the CD%' and the impurities is of the first order in
the impurity potential, and the CDW gains energy by
adjusting to the impurity potential. ' On the other
hand, the magnetic (SDW) fluctuations interact with the
disorder via second-order terms only. Thus, to the order
of the present calculation, the only phase which can take
advantage of the impurities is the CDW. This
suSciently favors the CDW fiuctuation to lead to a
PCDW phase for all values of y. For a proper descrip-
tion of the magnetic properties in the localized phase a
next-order (at least) development is necessary —a point
to be discussed in greater detail in Sec. VI.

In the delocalized regime, due to the presence of dis-
order, the singlet superconducting phase grows at the ex-
pense of the triplet phase which is in agreement with the
fact that triplet pairing is more sensitive to disorder than
singlet pairing. 2 However, the triplet phase is more
stable against localization than the singlet one, i.e., it ex-
tends further to the left in the phase diagram (Fig. 3).
This can be qualitatively explained by the fact that the
phase in competition with singlet superconductivity is a
CDW which is easily stabilized by the impurities. This
was also pointed out by Suzumura.

IV. LGCALIXATIQN LENGTH AND
FIMTK-TEMPERATURE EFFECTS

The renormalization equations allow us to obtain the
asymptotic form of the localization length. These equa-
tions describe the modification of the interaction con-
stants under a change of the short-range cutofF, due to
coherence efFects. Starting from the initial values of the
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ln(2)„ /S) = [1(2)„)—l(2) ) ](3—E E' )—, (4.2)

where E* is the Axed-point value in the absence of disor-
der. The asymptotic behavior of I.]„jsgiven by

1
&/(3 —K —K* }

Ll„(&)~

If we take into account the renormalization of the in-
teractions by the disorder this power-law behavior is
changed. The solution in the general case can be ob-
tained numerically. Close to the critical surface an ana-
lytic solution can be obtained (see Appendix 8 for de-
tails). Let us write r1=E —2. For y /i) « 1 and
2)/r1 «1 the critical surface is 2)=r)y. The asymptotic
behavior of the localization length is

L,« ~exp 71

—Y)JP

(4 4)

In fact, on the boundary between the localized and delo-
calized phases we always renormalize to y~0, 2)~0.
There is always a length scale 10 for which the condi-
tions y(lo)/r1(lo) «1 and 2)(!0)/r1 (10)«1 are fulfilled.
Equation (4.4) can thus still be used by replacing the ini-
tial values S,y by the renormalized ones 2)(10),y(lo),
which are continuous functions of S,y.

If the spin degrees of freedom are frozen the equations
simplify and reduce to (3.14). Writing 3+ r1 =E the
equations become

(4.5)

In terms of the new variables 2X =—92) and y =i) /2 we

recover the equations of a Kosterlitz-Thouless transi-
tion. In this case the localization length is given in
terms of a crossover function f,

Ce f (y/7)/7ioC—

where C is a constant which cannot be given by the re-
normahzation equations. f is given by

f (x)= P/sin(P) cos(P)= —x ( —1&x &1),
(()/sinh(P) cosh(P) = —x (x & —1) .

We have the two following limiting behaviors of the lo-
calization length.

interaction constants, the renormalization equations will

be iterated up to a point where the system is dominated
by the localization effects. Practically, the iteration
stops when 2) has reached a given value 2)„. The precise
point does not affect the asymptotic behavior of the
quantities studied. %e have

Ll„(2))=Ll„(2)„)e (4.1)

Ll«can be easily obtained in the 2)~0 limit. Then we
can neglect the renormalization of E and K by the
disorder and obtain from (3.4)

(1) Deep in the localized region (or in the limit 2)~0)
we have

~ y ~

~~+ and

1J o:loc (4.8)

(2) Close to transition (y=X),

L,„,~exp[2m. /(92) —i) )'~ ] . (4.9)

As our renormalization equations are equivalent in the
$~0 limit to the SCHA method, we thus recover in
(4.8) the localization length computed by Suzumura and
Fukuyama. In their method the disorder efkcts seem to
be dependent both on the impurity concentration n, and
on the disorder potential V. One can check that in the
physical quantities (such as the localization length and
the energy) only the product n, V (i.e., our 2)) occurs.

One can remark that, in the case of spinless fermions,
the fermion Hamiltonian in the presence of impurities is
equivalent to that of a charge-density wave in the pres-
ence of impurities. ' The main di8'erence comes from
the fact that in the case of fermions (at least for reason-
ably strong interactions) the quantum effects are impor-
tant: The quantum term in the Hamiltonian [(uE)11 ]
has a prefactor close to UF. In the case of a charge-
density wave one often neglects the quantum terms due
to the large erat'ective mass of the charge-density wave.
The delocalization transition found in this study corre-
sponds to a depinning of the charge-density wave due to
quantum eFects. The renormalization equations are ob-
tained from (3.4}, setting E =E =E, u =u =u, and

y =0. In the localized region we can use (4.3}. The clas-
sical limit of the Hamiltonian (2.5) is obtained by writing
K =0. The "localization length" becomes

' 1/3

(4.10)

In this case we simply recover the Lee-Fukuyama pin-
ning length (in the weak-pinning case) for the charge-
density-wave system.

The renormalization equations also provide some in-
sight into the influence of finite temperature on the delo-
calized phase. %e will neglect here all the phonon pro-
cesses taking only into account the inelastic processes
due to the electron-electron interactions. At zero tem-
perature we can iterate the renormalization equations up
to an infinite length (as long as the coupling remains
weak, which is the case in the delocalized phase). At
flite temperature, the coherence effects disappear for
any length greater than fr=UF/T due to inelastic pro-
cesses, and the renormalization stops at this length scale.
Under the assumption that temperature does not drasti-
cally modify the renormalization equations of the system
until the thermal length is reached, the renormalization
stops at e =fr/a. At this length scale the disorder
can be treated in the Born approximation. As the con-
ductivity is a physical quantity it is not changed under
renormalization and we have
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a [n (0),2)(0),0]=0 (n (l),2)(l), I)

n ( l)2)(0) e'X)(0)
II (0)2)(I) S(&)

(4.11)

where a[n(1)gl(1), ij=o'(l) and n(l} are, respectively,
the conductivity and the electronic density at the scale l.
pro e——

UFI /2mfID& is the conductivity in the Born approx-
imation, expressed with the initial parameters. %hen
the renormalization stops at e we get at low tempera-
tures S-Tr, with y=E' —2 in the TS region and

y =EC* —3 in the SS region. In both cases one has y &0
in the delocalized phase. The conductivity then behaves
as

0,5,

0.25 0.50 0.75 ~00 T

0(T)-T (4.12}

The exponent y decreases with increasing disorder as
can be seen from Fig. 2. Thus in the limit S—+0 we re-
cover the result given in Refs. 28 and 29.

The renormalization can also give the crossover to-
ward the localized regime. At a high temperature the
properties of the system are correctly obtained from the
Born approximation. If the temperature is lowered the
quantum (interference) effects will become increasingly
important, and at low temperature they wiH dominate
the behavior of the system. The crossover can be de-
scribed by the renormalization equations: Even if the
solution Sows toward the localized regime (i.e., strong
coupling), if the temperature is high enough the renor-
malization will stop when the renormalization equations
are still valid (i.e., for small-coupling constants). What
we are left with is a system where the disorder can be
treated perturbatively and there will be no localization.
We can thus introduce a temperature T»c which will

roughly indicate when the quantum-interference e5ects
will dominate the behavior of the system. This will hap-
pen when the thermal length gT is greater than the lo-
calization length, and we thus have

0.50

FIG. 4. Temperature dependence of the resistivity. po is the
value of the Born approximation, and f'=T/Er (a) Curves.
are for y =0.3, E =2.5, and 2)=0.02, 0.10, 0.18, 0.26, 0.34,
0.42 (p increasing). (b) Curves are for y =0.3, g)=0.05, and
E =2.7, 2.5, 2.3, 2.1, 1.9, 1.7, 1.5, 1.3, 1.1 (p increasing). Ex-
cept for strongly repulsive interactions, a difFusive regime exists
at finite temperature.

Tloc UF ~~ loc (4.13)

The complete temperature dependence of the conduc-
tivity, as obtained from a numerical integration of Eqs.
(3.12), is shown in Fig. 4 for different values of the
electron-electron coupling and the strength of the disor-
der. It is remarkable that, provided that initially
2 —K —3y l2 ~ 1 (i.e., superconducting Auctuations
would dominate in the pure system), the resistivity first
decreases with temperature, and increase occurs only at
rather low temperature, below (approximately) T,
This behavior can be understood, noting that for
T & T&„quantum-interference e8'ects from the disorder
are absent, and the description in terms of a modified
Born approximation (so as to take into account the in-
teractions) of Ref. 28 is correct. Only below Tl~ does
OIlc 11Rvc gT )Llo„and thc localizatioil effects bcco111c
important, leading to a sharp increase in resistivity.
Thus, in the presence of interactions, a diffusive regime
exists at short-length scales, when interference elects are

unimportant. This regime is of course especially large
close to the localization transition where L&„becomes
very large.

If Ref. 29 the behavior in the delocalized region is in-
terpreted as complete screening of the impurity poten-
tial, the effective scattering potential being V,s(q)
= V, ~(q)II(q, O), where II(q, co) is the density-density
response function. One should, however, notice that
even if acDw~O, so that II(q, ~) does not diverge for
(q, co)~(2k+, 0), II(2k', O) is finite and does not vanish.
Thus, there is no complete screening of the impurity po-
tential. The increasing conductivity can be imputed to
the superconductiue behavior of the system. In this con-
text, it should be noted that the long-range order of the
superconducting correlation function is not absolutely
necessary to have a perfectly superconducting response
behavior. A suSciently slow power-law detay is actually
suScient. In this sense the zero-temperature state is a
real superconductor.
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V. I.GCAI.IZATION TRANSITION
IX W OXK-DIMKXSIOX+r.

BQSGN SYSTEM

The method developed here can be applied to a one-
dln1enslonal system of 1Ilteractlng bosons 1Il a randonl
potential, and speci6c ally to the localized-super Quid
transition in such a system. %e use a representation of
boson operators in terms of phase fields introduced by
Haldane. ' The single-boson creation operator is written
RS

and ri and g are the parts of the random potential with
Fourier components around q =0 and q =+2mpo, respec-
tively. We will take for i) and g the same probability
distributions as in (2.10). A unitary transformation
which exchanges P and 0 [p (p)~ —p (p) in Eq. (2.3)]
turns the complete problem [Eqs. (5.4) and (5.8)], into
the one discussed in Sec. II, Eqs. (2.4) to (2.11) (or more
precisely its spinless analogue). Following the same
route as before, we find the scaling equations

dK

+ (x)=[p(x)]'~ e'~'"' (5.1)
(5.10)

1 BO(x) +"
p(x ) = — g exp[2im 8(x )],

Bx
(5.2)

where 88(x)/Bx =n.[pa+ II(x)], pu is the average densi-

ty, and II(x) obeys the canonical commutation relations,

[P(x), II( x)]=i5( x—x') . (5.3)

The 1ong-wavelength-low-energy properties are de-
scribed by the Hamiltonian, '

0 = f dx (uK)(mII) + —(B„P)
2m E (5.4)

where from Galilean invariance one has /u(nK)=po/m,
and muK =a/(m pu), where a is the compressibility.
Clearly, the excited states of H are sound waves with
phase velocity u, which from Eq. (5.1) are the phonon
modes typical of a Bose superAuid. As already pointed
out in the preceding section, the existence of such modes
is suScient for true superAuidity to exist. ' The
coeNcient E determines the asymptotic behavior of the
correlation functions,

(p(r)p(0) ) = —(2~por)

where p(x) is the particle-density operator and P(x) the
phase of the boson field. Taking the discrete nature of
the particle density into account, the density operator is

where 2)=2)&/ir u 'po. Thus for K ~ —,
' the disorder

scales to zero, indicating a delocalized, superAuid phase
with renormalized exponents due to the renormalization
of E For E p 3

the disorder grows under scaling, indi-

cating that the properties of the system are qualitatively
di8'erent from the region K g —', . In analogy with the

previous chapter, we interpret this as the localized re-
gion. The phase diagram in the disorder EC plane is
shown in Fig. 5. Along the superAuid-localized transi-
tion line, the fixed-point value of K is E' =-'„and conse-

quently the single-boson correlation function, Eq. (5.5)
decays with a uniuersa/ power —, along this line. This is
the same exponent as found along the SS-PCD% limit
before. This equivalence certainly is not unexpected, as
in the SS region fermions are bound into singlet pairs,
with binding energy 5, and these pairs behave like bo-
sons, at least at large length scales.

The coefBcient K increases with increasing repulsion
between bosons (K-x'' ), and consequently the transi-
tion discussed above occurs with increasing repulsion.
In this context we may note than an external potential
with period 1/po (1 boson per site) is a relevant pertur-
bation, i.e., leads to a long-range ordered state, for
K ~ —,, i.e., within the stable (against disorder) superfluid

region. On the other hand, a potential with period —,'po
(one boson per two sites) needs K y2 to lead to an or-
dered state, and this can only be achieved for a very
strong repulsion with a finite range [5-function repulsion
leads to K & 1 (Ref. 18)].

+ A pu(pur) cos(2~par), (5.6)

with son1e numerical constants A and 8.
%'e now introduce a random potential V, described by

an additional term

H„= dx Vxpx (5.7)

in the Hamiltonian. Inserting from (5.2) and retaining
only the most important terms (m =0, m =1), this be-
comes

Ja

/
r S UPSY F LU10

/

LOCA L12 K 0

a„= I dx [q(x)II(x)+[g(x)p,e'""+H.c.]I, (5.8)

88(x) =nil(x),
X

(5.9)

where in 9 the linearly increasing part of 8 is subtracted,
FIG. 5. Phase diagrams for a one-dimensional boson system.

The thin lines indicate the qualitative shape of scaling trajec-
tories, as discussed in the text. The dashed lines are for parts
of the diagram that cannot be obtained by the present method.
The Inulticritical point can also be located at I( =0.
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Clearly, noninteracting bosons are localized for arbi-
trarily weak disorder. Consequently, the superAuid-
localized boundary is bent down for small values of K, as
shown schematically by the dashed line in Fig. 5. Ac-
cording to Eq. (5.10), on the phase boundary, scaling is
toward the end of the fixed line 2)=0, K =—', . Such a be-
havior is questionable for points of the phase boundary
close to K =0. It seems more reasonable to assume the
existence of a multicritical point A on the boundary.
This point will separate the scaling to K =—', from the
scaling to E =0. It also implies the existence of two lo-
calized phases I.f EC scales to zero all the particles con-
dense into the single-particle ground state of the random
potential, giving a highly inhomogeneous state. On the
contrary, if the repulsion between the bosons dominates
(scaling to large K) we have a localized state with a
homogeneous density similar to the case of fermions.
We have indicated on Fig. 5 by thin lines the qualitative
shape of the scaling trajectories corresponding to this
problem. It is also possible that the noninteracting line
is singular. If that is the case the multicritical point is at
E =0. However, such a picture gives very peculiar re-
normalization trajectories. The location of the multicrit-
ical point, the detailed shape of the phase boundary, and
the scaling behavior close to E =0 cannot be determined
by the present approach.

VI. DISCUSSION AND CQNCI. USION

In this paper we have developed a renormalizatian-
group method to study the combined effects of disorder
and interactions in one-dimensional quantum Auids. In
the case of fermions we find a localized-delocalized tran-
sition for sufficiently attractive interactions. The delo-
calized phase is dominated by superconducting Quctua-
tions, whether singlet or triplet, depending on the in-
teractions, whereas the localized phase corresponds to a
RAF or a CDW pinned by impurities. The singlet phase
is found to extend over the triplet one. It is less stable
against disorder because of competition with a CD%
phase which is easily pinned by impurities,

We calculate the localization length. In the localized
regime we find a power-law dependence on the disorder.
In the limit where quantum effects can be neglected in
the dynamics of the CD%, the localization length calcu-
lated here becomes identical to the Lee-Fukuyama pin-
ning length. Close to the localized-delocalized transi-
tions, the localization length diverges exponentially.

Our calculation also allows us to discuss the tempera-
ture dependence of the conductivity and the temperature
below which localization effects become important.
Specifically, we have shown that in the localized region,
but not too far from the localized-delocalized transition,
the resistivity initially decreases with decreasing temper-
ature, and localization effects set in only at very low
temperatures. This can be explained, noting that in the
presence of attractive electron-electron interactions there
is, at short-length scales, a diffusive regime where quan-
tum interference effects are absent. Such a regime does
not exist for noninteracting particles in one dimension.

Finally, we have shown the existence of a localized-
superAuid transition in a one-dimensional Bose Auid.
The problem is formally similar to fermions with a
short-range (g, ) interaction. We find universal power
laws for correlation functions on the localized-superAuid
transition line.

As we have seen in Sec. III, the fact that we use a
first-order development leads to an incorrect description
of the magnetic properties of localized phase. But there
is another limitation specific to our study. As we have
used a first-order expansion in Xl, there is no diff'erence
between annealed and quenched disorder (annealed dis-
order could also be seen as a classical phonon field, and
in this case similar equations are found ). Close to the
transition line there is thus no difference between a
localized-delocalized transition, which occurs for
quenched disorder, and a disorder-induced density-
Auctuation-superconducting transition for annealed dis-
order. The transition for annealed disorder is similar to
a Peierls transition. The difference between quenched
and annealed disorder has also to appear in the renor-
malization equations. One can check in a second-order
development in 2) that diagrams with different replica
indices, i.e., those responsible for difFerences between
quenched and annealed disorder, become relevant when
the couplings How into the localized region. Thus a
correct description of the localized region and the vicini-
ty of the multicritical point would require higher-order
renormalization equations and taking into account the
diagrams with different replica indices.

We try now to give some possible application of the
effects discussed to real compounds. We find a
localized-delocalized transition which occurs at E =2
which means g2

———( 3m u~ ) /5. Thus the delocalization
transition occurs for strongly attractive (comparable to
the bandwidth) interaction only. Even for compounds
with a superconducting ground state it is reasonable to
think that the interaction will not be attractive enough
to be in the delocalized region. The absence af localiza-
tion effects in these compounds is likely to be due to
three-dimensional coupling between chains.

This model predicts at low enough temperature a tran-
sition from a superconducting state to a random antifer-
romagnetic state if disorder is put into the system. This
could be a possible explanation of the transition ob-
served in (TMTSF)C104 compounds. (TMTSF)C104 is
superconducting at ambient pressure. A small amount
of disorder [either by anion disorder or in
(TMTSF)(C104), „(Re04)„alloysj induces a transition
toward a SD%'-type state. " Under pressure this SDW
state is suppressed and one recovers the metallic state.
This could be explained in our madel by saying that the
pressure increases the interactions and the system enters
into the delocalized phase where the conductivity
behaves like T ~ at fimte temperature. But this ex-
planation has ta be considered with a critical eye: At
the temperatures involved in such transitions (5 K)
three-dimensional effects due to the interchain coupling
t~ are expected to be important. A complete explana-
tion of the low-temperature effects would require a study
of the inhuence of the interchain coupling.



336 T. GIAMARCHI AND H. J. SCHUI.Z 37

%'e mould like to thank E. Brezin for a helpful discus-
sion and D. S. Fisher for valuable comments on the bo-
son 1ocalization problem.

In order to derive renormalization-group equations,
following Jose et al. , me consider the two correlation
functions:

i +2/' (x, ,~& ) —i ~2$' (x2,v2)R (x, —x,r, —r)=(Te ~ "'e ~ ''),
(A 1)

i +2/' (x, , r& ) —i +2/' (~2, ~ )R (x, —X2,r( —r2)=(y;e " 'e ' )

%e vrill not indicate in the follovnng the replica indices
because we will make a first-order development in 2). To
this order the expansion can be carried out without us-

ing replicas, and the calculation is similar to that for the
electron-phonon problem. 3

We develop R in powers of D& and g, i we find

—Z (r, —r2) 1 S&Z
R (r( r2—)=e

(2@a)

i+2/ (r& ) —i~2/ (r2}
y. f dx, dr, dx, dr, & T',e ' e

iei&8$ (ri) ir~&8$ (r4—)
)ge e

+ 2 g fdxid1pdx4dr45(xi —Xg)
() (re)

~2$ ( ) - v2$ ( ) i ~2/ ( ) —' )r2Q ( ) [+2/ ( ')—)r2(i ( )))1 e
0' 2 e 3 0 3 e 4 tT 4 e 5 p 3 p 4 (A2)

where r; denotes (x, , ~; ) and F, is the correlation function in the absence of interactions. We have

X„(x—x') +[u„(r—r')]
F„(ri—r2) = ln +d,cos(28„„„),

C t 2
(A3)

where 8„„is the angle between the vector (x,u, r) and the x axis, and d„parametrizes the anisotropy between the
space and time directions. In the original Hamiltonian d„ is zero but will be generated during the renormalization.
After a straightforward calculation we find

—F (r& —r2) g1&R (r) —r2}=e 1+2@I+(r)—r2)
(2m} u

, 2 '3 —4K

Q C

K
DgC

X~[I+«) —r2) I (r( r2)1~-—
8m

(A4)

I,(r( —r2) =f d'R ln
I r) —R

I
(ax2+a2„)ln

I
R —r2 I,

2 —K —K
2 +~ 1 rJ dr

g a C2

(A5)

The integrals in (A5) are

I+(r( r)=22~1 —lrn, r2 I—
I (r, r2)=m cos(28, „). — (A6)

Equation (A4) is a first-order cumulant expansion of the correlation function (Al) (Ref. 35), and if one reexponentiates
Eq. (A4), one recovers the original functional form, but with the efFective quantities

'2 —K —K ' 3—4K

x' =x —-'2)x +oo $ r 2 2 +oo 1 r
0' 0' 2 cT dr — ——-'y K

ET
dp'

C a C C
'2 —K —K0' p

T

d =d +—'2)K dre8' 2 + ~
0 cT 4 g

J

(A7)
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We have introduced
K

2D pe Q ~

O'Q ~ ~p2

y =g, j/{n.u ) .

The correlation function R can be expanded in the same way,

R (r, r—)=e ~"' "'+— g f f f f dx drdx dv5(x —x )
g (na)

iv'2$ (r& ) —i@+ (r&) ieP'+ tr3) ie&~2$—(r4)Te ~'e ~'e ' 'e

ie~[+2P (r3)—V2Q (r~ )]
)5 p 3 p 4 (A9)

and from this effective constants follow as
2 —K —K

K' =E — 2)E dr
1

2u ~ a a a
'2 —x -x

~P 2 +~ 1 rd'e=d + 2)E dr
4u ~ e O, a

dE up E~' K,'n(l), B() y'()

l
y =[2—2K (l)]y(1), =[3—E (l)—K (l)]$(l),4f

K2$(l),
d 4Q~

= —,'K $(l) .

We have used a short-range cutofF so that
x +u r &a . Under a change of the cutoff
a~e'a=a+da we get the following renormalization
equations:

The renormalization of d„ is equivalent to a renormal-
ization of the velocities u„[cf.Eq. (A3)],

du„ 2 dd„
u„dl E„dl (A12)

As the anisotropy parameter is of the first order in 2),
the corrections to the u„can be neglected in the first of
Eqs. (Al 1).

These equations do not preserve the symmetries of the
original system: Obviously if we start the renormaliza-
tion from a Harniltonian invariant under spin rotation
(gQ(( gpss and g]l g&~ ) this symmetry has to be
preserved during the renormalization, which is not the
case for Eqs. (Al 1). The problem arises from the neces-
sity to take into account renormalizations coming from a
third-order term in the expansion of R„which is

R'„""(r,—r, )= ——,', y f f f f f f dx3d73dx4d74dx5d755(xg x5)
(2~a ) (n'a )

i+2/„(rl ) —i+2~ (r2) i&3+8/~(r3)

ie&+2P (r4) —ie&+2/ (r5) ie6)+2/ (r4) —+2/ (rs)j &

Xe ' . 'e ' . 'e ' ~ ' ~ ' ).
Following the method of Nelson and Halperin, only the case ~here two internal points of this term are close to a
distance of a needs to be taken into account. Under renormalization this ~ill give terms similar to those previously
examined (we will caH them "contractions'"). Only two contractions are possible (see Fig. 6).

(1) If the points (x4, u~r~) and (x5,u ~z) are close together in a ring of inner radius a and width da the element of
integration becomes

f f f f f f dx, d~,dx, d~,dx, d~,5(x, x, ) f f—f f dx, d~,dx, d~, .26(A
{A14)

%hen contracted and summed over e6 the
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i@6)+2/ (r4) —+2/ (r5)],

part gives a factor 2(u lu ), and from the eliminated degrees of freedom we get a contribution,

K
i +2/, ,(r

&

) —i +2/, ,(r& ) i e3+8$ (r3 ) —i e4+8P (r4 ) &

(2vra ) (ma ), +,

(A15)

which is similar to a g Ij term and contributes only to 8
(2) If the points (x&, r&) and (x4, r4) [or (xs, r&)] are close together the element of integration becomes

f f f f f f dx3d73dx4dr~dxsdrs5{x4 —xs ) —+ f f f f dx4dr4dx&dr+(x& —x ) .
Q~

(A16)

As there are two contractions [(x,, r, )~(x4, r4) and (x, ,r, )~(x„r,)] we have a factor 2 and we get a contribution

1TQd CK g 1 j. y f f f f dx, d.„dx,dr, S(x, x,)-
(2ma) (ma)

X(Te "'e ''e ' ''e ' 'e ' '' ~', (A17)
iv 2(() (r ) i v'2P—(r&) iE&&2$ (r ) ie&v 2P (—r&) (f6[v 2$ (r ) —V2(() (r )l

which is similar to a D& term and contributes both to
R and to 8

p
If one takes into account these terms in

the renormalization equations, one finds that the last two
equations in (A11) become

which are now spin-rotation invariant.
For g & g 0 the spin degrees of freedom are frozen. %e

will use the same expansion of R [cf. Eq. (A9)]. But if
g] go we have for large r& —r2, '

=(2—2K )y —2),
(A 1 8)

iv 2$ (r) ) —i+2/ (r&) & (A19)

= (3—K E —y)2), — If we use the cutoff [x +(u r) ] &a the effective con-
stants are

'2 —K
+ (x) 1 rE' =E ——E dr—

2 ~ a a o,

2 —K
eff + 2 +d' =d +—E dr—

4 ~ a a a

(A20)

where we have introduced

t5 Kp 3Q]

l + ~ l The renormalization equations then are

FIG. 6. %'e represent the correlation functions by analogy
with a gas of vectorial charges. Only "neutral" {gq) terms
are not zero. The wiggly line indicates that the two operators
are at the same time. Nonlinked arrovvs are at di6'erent posi-
tions (space and time). The box denotes the contraction of the
two operators.

dd K
dl 4
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WPPKXDIX S

%e want to obtain the asymptotic behavior of the
correlation length close to the transition. The renormal-
ization equations are [cf. (3.4)]

(81)

dl
= —(g+ —'y)2),

with rI=II z
—2 and C =E&uz/2u . On the fixed line

one has g*go, y =0; thus close to the critical surface
we write y =tlu, 2)=t) U, and t)=e'. Equation (81) be-
comes

sponds to a zero of the numerator in (86) for a value of z
which is given by

AJ, (z, )+BR, (z, ) =0 .

Using the expansion of the Bessel functions for small
values of the argument we obtain z, =4@/tr (where
c=B/A ). The value Eis'imposed by the lnttlal coildl-
tions, and using (86) we find

zo —4uo2

4 1+2uoln(zo/2)

The phase boundary between the delocalized and local-
ized regimes is given by e=O (e&0 is for the delocalized
phase, e g 0 for the localized one). This gives

z(i —4u(i ——0. When expressed in terms of 2) and g the
boundary is given by

1 M +1—Cu
C U

2) = rig (89)

dU 1 3Q1+ — —2CU
dt C

(82)

dU 1

dt (C'
' (83)

%e will solve these equations in the limit u gg1 and
U &~1. We obtain from (82)

The localization length is given by the length to which
we have to renormalize until the parameters reach a
given point in the localized phase (the precise point in-
troduces only 6nite corrections and does not aft'ect the
asymptotic behavior close to the critical surface). Sup-
pose we stop the renormalization at a point u =u& ~0.
We have, using (86) and the development of the 8essel
functions

which comes to (the index 0 indicates initial values)

C(v —Uo]
'9 ='9oe (84)

zI —4e/m.
2Q

2+ (4e/m )1n(z& /2)
(810)

Moreover we have from (82),
If we are close to the critical surface @=0, and (810)
gives

It is a Ricatti equation, the solution of which is

3I i (z)+BE,(z)
u (U)=—

2 A Jo(z)+BNo(z)

where J and E are the 8essel functions, and z =2&U. In
the delocalized regime the trajectories will Aow to
u =U =0, whereas in the localized regime the trajec-
tories will cross the line u =0 at finite U. This corre-

—7;/6.

f
then from (84) and dt)/dl = —C2) we deduce

As Li„—e', using (811—), we have

goL„,.=exp
o J'ot)o

(811)
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