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We report a simple analytic form for the convolution integral in transmission Mossbauer spec-
troscopy allowing accurate representation of the line shape even for very thick absorbers {t=10),
and permitting easy fitting to the true line-shape function. This representation permits the accurate
determination of all Mossbauer-effect (ME} parameters, including position, width, cross section, and
interference. This analytic method can be applied to deconvolute accurately information contained
in either source or absorber, and an explicit analytic form for the emission and absorption Fourier
transforms is given. We show that from the asymptotics of the line shape, it is possible to determine
all line-shape parameters, and that line-shape asymptotics can circumvent short-ranged hyperfine or
instrumental broadening contributions to the observed spectrum. A formula for the correction to
the line shape caused by source self-absorption is given, and it is shown that when there is
significant source resonance self-absorption a "good" fit to data, judged by a chi-squared analysis,
can yield completely wrong ME line-shape parameters. We find an equation for the dependence of
the area under the absorption curve and the resonance peak height, and give its explicit dependence
on the interference parameter and source broadening parameters. Although these effects have been
neglected in earlier work, their contribution may be of order 10% in many cases of interest.

I. INTRODUCTION

From the earliest days of Mossbauer-eS'ect (ME} spec-
troscopy it was recognized that the intrinsic shape of the
emission line was a Breit-%igner or I.orentzian function.
When the emission spectrum is convoluted with the ab-
sorption spectrum in a transmission experiment, the ob-
served ME pattern ideally is a shape, in the absence of
hyperfine structure or interference effects, which is de-
scribed by

A (x)= A ( 00 )+C(x +1)
where x is a dimensionless gauge of the relative energy
(Doppler velocity) shift, and is given by

x =(E E)rl trt( —U U—o)Eowlkc .

Eo is the energy of the ME transition and is very large in
magnitude compared to any of the other energy terms, E,
is -the relative chemical and thermal shift of the absorber
compared with the source, and E is the Doppler shift in
energy resulting from the source motion relative to the
absorber. The Doppler velocity representing the shift
from the resonance peak is v —vo, and is proportional to
the energy shift in accordance with Eq. (2). Uo is the
Doppler velocity corresponding to the difference in tran-
sition energy of absorber compared to source, taken as
positive when the absorber moves toward the source. C
and A ( 00 }= Ao are constants gauging the size of the ME

spectrum and the off-resonance (photoelectric absorption)
count rate registered through the resonance absorber, re-
spectively. A' is Planck s constant divided by 2n. , and c is
the velocity of light. We summarize the de6nitions and
often repeated relations in Appendix A of this paper for
easy reference.

%'e shall make our analysis based on the use of a
monochromating crystal filter, such as shown in Fig. 1,
and we assume that the geometry of collimation and the
Debye-Wailer factor for the crystal used is such that the
number of recoilless photons incident on the scattering
crystal is the same as that leaving this crystal. Thus the
only nonresonant gamma rays received by the crystal are
those associated with the ME transition. The zero-
phonon transitions are called recoilless and the one-or-
more phonon processes are classified collectively as the
nonresonant radiation. In general one will have other
nonresonance radiation associated with other higher en-

ergy transitions in the source. For simplicity of exposi-
tion we take a geometry where these have been filtered
out, although there is no diSculty in including them in
the analysis.

In Fig. 2 we display the notation associated with the
various count rates that register at the detector in an ex-
periment using the transmission geometry shown in Fig.
1.

It was soon noted' after the discovery of the ME that
for finite thickness absorbers Eq. (1}was not a good rep-
resentation of real ME lines, and several researchers
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FIG. 1. Schematic drawing of a ME transmission experiment
using a Lip crystal as a monochromating crystal to select the
ME transition. %ith good shielding such a filter will suppress
almost all radiation from the gamma detector except for the ME
transition which will have two components: the zero-phonon
part and the one- and muliiphonon part.

have contributed to the analysis of line-shape
modifications that result from saturation effects that are
always inherent in real ME experiments, where the ab-
sorber thickness number is typically far from the thin
limit„and in many cases the source resonance self-
absorption (SRSA) significantly modifies the ME hne
shape.

Even in the ideal thin limit where there are no sources
of broadening, the line shape is generally altered because
of dispersive eff'ects, resulting from interference between
Rayleigh and nuclear resonance scattering and between
photoelectrons and conversion electrons. These disper-
sive efFects modify Eq. (1), giving it the form

A (x)= Ao+C(1 ZPx)L (x), —

where L (x) is the Lorentzian function

L(x)=(x +1)
For notational brevity we shall de6ne the product in

Eq. (3) as

X(x)=(1 2P—x)L (x) .

The magnitude of the dispersive term P, called the in-
terference parameter has been calculated by Goldwire
and Hannon" and by Davis, Koonin, and Vogel' for
many ME transitions. The importance of this term in
ME time-reversal experiments has been discussed by
Hannon and Trammell. '

In this paper we present an analysis of saturation
sects in transmission experiments that includes source
self-absorption and interference contributions to the hne
shape. In addition to giving a simple analytic expression
for the transmission line shape we give formulas for the
Fourier transforms of source and absorption terms aris-
ing in the convolution integral. The latter have use in the
problem of deconvolution of ME spectra. Numerical ap-
proaches to Fourier deconvolution have been discussed
by several authors, ' ' and an analytic expression for
both the source and absorber line-shape Fourier trans-
forms greatly augments these techniques for deconvolu-
tion, making the extraction of the physics from ME mea-
surements more precise and free of anomalies associated
with the necessary divisions by source or absorber
Fourier transforms in the deconvolution procedure.

II. THE TRANSMISSION CONVOLUTION INTEGRAL

Cb

'IC

Jl

Ao

Co
I(

io, (x —x')gi (x')dx',

%"hen a transmission experiment is carried out in the
geometry of Fig. 1, the photons transmitted to the detec-
tor are attenuated by the absorbing foil as a function of
its reduced velocity x. Denoting to, (x) as the spectral
distribution of recoilless photons emitted by the source
and re6ected by the I.ip 6lter, the absorption from the
beam is described by

A (x)=Cb J (6)

Nb

„An

FIG. 2. Schematic representation of the resonant, R (x), and
nonresonant, X, gamma radiation received at the detector: (a)
when there is no resonance absorber in the beam, and (b) when
there is a resonance absorber moving at reduced velocity x with
respect to the source. S(x) is the observed signal which is mea-
sured against the ofF-'resonance background Co. C~ is the count
rate when the absorber foil is absent and Co is the o8'-resonance
count rate when the absorber is present. A (x) represents the
absorption of resonance radiation and A„ the absorption of
nonresonance radiation. The o8'-resonance count rate of the
resonance radiation is Ro ——R(00). This recoilless component
of the count rate will be reduced as self-absorption becomes
significant (t R0.05) and Ro wiH be reduced by a factor p
defined in Eq. (31)of text.

where we take Cb as the count rate at the detector before
the absorber is placed in the beam, and is equal to the
recoilless plus nonrecoilless count rates, i.e., Rb+N& as
shown in Fig. 2(a). T„ is the number of characteristic
absorption lengths for electronic absorption (primarily
photoelectric), and g, (x') is an absorption function,
which convolutes with the source spectral distribution to
give the observed ME line, which is described by

g, (x') = 1 —exp I
—[tX(2x *)+T„JI,

where t is the number of characteristic absorption lengths
in the absorber for the resonance radiation at the reso-
nance maximum (x=0).

In addition to the absorption of recoilless (zero pho-
non) radiation [Eq. (6)] there will be an absorption of
nonrecoiBess radiation, A„, which is independent of the
reduced ve1ocity x and is given by
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A„=[1—exp( —T„)]Xb
=(1 f—, )[1—exp( —T„)]Cb——(1 f—, )(Cb —Co),

—[exp( —T„)]t exp[ —tX(2x')] I, (9)

we may remove the electronic absorption from the prob-
lem, i.e.,

A (x)=f,Cb[l —exp( —T„)]
+[exp( —T„)]Ci,f io, (X)g (x')dx' (10)

= AD+Co f io, (X)g(x')dx', (11)

where Ao is the off resonance absorption. %'e have

adopted the notation that the Doppler shifted relative ve-
locity of the source spectral maximum with respect to the
absorber maximum is

(12)

with the absorption term given by

g (x') =1—exp[ —tX(2x ')],
and we take the emission probability sum to normalize to
the recoilless fraction emitted in the beam direction, f„
l.e.,

f io, (x)dx =f, . (I&)

Notice that at the resonance peak for large t, the reso-
nance absorption term g (x ')~ I, so that the second term
in Eq. (11}is f,Co=Ra as expected, i.e., the absorption
rate at the resonance center is Ro, as all of the resonance
photons transmitted at x = Oc are absorbed at x=0 in
this high-absorption limit. %hen there is insignificant
resonance self-absorption in the source, the normaliza-
tion factor on the right side of Eq. (14) will be set equal to
f,o, where f,o is the recoilless fraction of radiation leav-

ing the source in the beam direction, which is the usual
meaning of recoilless fraction, and f, is the recoilless
fraction leaving the source with resonance self-absorption
by the source, which is always less than f,o. For the
cases we will consider the resonance self-absorption
reduction factor p=f, If,o is typically between 0.9 and
1.0. As we explain in Sec. VII, good line-shape experi-
ments should avoid sources ~here this ratio is less than
0.9, even though such cases could be dealt with by the
methods given in this paper.

The first term in Eq. (11) is a constant Ao representing
the off-resonance absorption (principally photoelectric)
and the second term is the measured resonance signal.
This signal in transmission experiments is given by the
convolution of source and absorption spectral distribu-
tions. Having factored out the dependence on T„, we
write

where Co is the off-resonance count rate (x ~~1) after the
absorber is in place.

From the identity

g, (x '
) = 1 —exp( —T„)+exp( —T„)

III. SPECTRAL DISTRIBUTION
OF A SOURCE KITH SELF-ABSORPTION

The time Fourier transform of the exponential decay
law for a nuclear level leads to a Lorentzian line shape
having a width A'/~, where r is the mean life of the ME
nuclear level. Using the same notation as given in Eq. (2)
to describe the absorption line, the emission spectral dis-
tribution in the absence of resonance self-absorption is

io, (x)=C, [I+(2x)'] '=C,L(2x), (16)

where the factor 2x in the Lorentzian function arises
from the fact that the level width is only half of the ideal
convoluted width observed in an ME experiment. Some
authors use the half-level width to set the gauge of the di-
mensionless reduced velocity (see Ref. 5 as an example).
We prefer the above form as it leads to simpler expres-
sions in the final results and because experimentalists usu-
ally use the full-level width, or half the ideal ME width,
in the discussion of data.

It is general practice to use a Lorentzian for the source
distribution, as given in Eq. (16), although it is in many
cases grossly in error as we shall show. As a source de-
cays there is an inevitable production of its daughter nu-
clei. As the decay continues there is a progressive build-
up of resonance self-absorption, resulting in an ever in-
creasing broadening in the emission spectral distribution
and distortion in the line shape.

The effect of source resonance self-absorption (SRSA)
is easily calculated. Consider the uniform source illus-
trated in Fig. 3. If we sum the contributions to absorp-
tion for each small element of thickness dn, we find for a
uniform source that the resulting spectral distribution is
given by

n,
w, (x)= f L(2x)expt —[o„,(x)+o„]n )dn, (17)

llew

0

or after integration

w, (x)=C,L (2x)[1—exp( t, )]/t, , —

t, =t X(2x)+T„. (19)

The quantities used in Eqs. (17} through (19) not previ-
ously defined are as follows:

o „,(x)=f,o~, &X(2x), (20)

es +ei ~si
i=1

(21)

S (x)=C, f "
w, (X)( I —exp[ —tX(2x ')] I dx

' . (l5)

In this paper we shall calculate w, (x) including source
resonance self-absorption (SRSA} for uniform sources,
give analytic expressions for S(x) to order P, and give
analytic expressions for the Fourier transforms of the
source and absorption terms, which can be used in the
deconvolution of source from absorber spectral distribu-
tions.



FOURIER-TRANSFORjI)III METHOD FOR ACCURATE ANALYSIS. . . 3229

Eq. (23) can be written in the form

w, (x)=C, g Ek(T„}t„",L(2x)X (2x) .
k=0

(26)

DIRECTION OF PHOTONS
USKO IN EXPERIMENT

FIG. 3. Sketch of a uniform source with an imaginary section
parallel to the face. ME photons in the beam direction are ab-
sorbed by n atoms/cm of which a„n, resonantly absorb the
emission line, both broadening and modifying the shape of the
line.

cr„ is the electronic cross section associated with the ith
type atom, a, i is the fraction of source atoms of the ME
type, and o„ is the fraction of source atoms of species i.
n, is the total number of atoms per unit area of all types
of atoms in the source,

t, =[o (x}+o„]n,„

t„ is the number of characteristic thicknesses in the
source for resonance absorption, f,ccrctt„n„and T„ is
the number of characteristic thicknesses in the source for
nonresonance electronic absorption, o „n,.

In order to calculate the Fourier transform of the
source distribution function, it is necessary to expand Eq.
(18) in a power series. Thus,

+~,t'L'(2x)] . (28)

To show how sensitive the spectral distribution is to
the number of resonance thicknesses of the source, we
show in Fig. 4 the source distribution function given by
Eq. (18) for T„=1, t =0 and 0.5, and compare the latter
case with the linear approximations given by the first two
terms of Eq. (28). Note how the peak of the distribution
is very fiattened, while the wings are relatively unaffected
by SRSA. This is the result of the condition that the
source absorbing nuclei are stationary with respect to the
source emitting nuclei and cause maximum resonance ab-
sorption at the peak. Figure 4(c} shows the linear ap-

(a)

Good line-shape measurements are much simpler with
thin sources, although it is often impractical to use
sources that have negligible self-absorption, and which
are weB represented by only the leading term (k=O) of
Eq. (23). For high intensity sources hke ' Ta, which we
have fabricated by neutron irradiation at the University
of Missouri Research Reactor, we choose the thickness of
our ' 'Ta foil such that T„~l. After a 1-week irradia-
tion t„, is of order 0.03 and after a 2-week irradiation and
subsequent decay, t may approach 0.3, depending on lo-
cation in the Aux trap and local flux magnitude. For
sources ~here t =0.5, it is desirable to take at least one
and preferably two or even three terms in Eq. (26) beyond
k=O, which is the simple I.orentzian form occurring
when SRSA is neghgible.

De6ning

rk(T„)=Ek(T„)/Eo(T„),
the source distribution is given to third order by

w, (x)=C,EoL(2x)[1+~,t„X(2x)+r2t 2 (2x)

w, (x)=C,L(2x) g ( —1) +'(m!) 't,
m=i

If we also expand t, using binomial coefficients, we have

ce m —1

I)m+l( ))—i w I Tm —i —k
es

m=I k=O

Xt "L (2x)X"(2x) .

If we define

0
as
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ce m —1 oo 00

X X-X X
m =I k =0 k =0m =k+1

(24)

(25)
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FIG. 4. Plots of the source distribution function w, (x)/f, o
for (a) T„=1, t„,=0 by direct numerical evaluation of Eq. (18);
(b) T„=1, t„,=0.5 by direct numerical evaluation of Eq. (18);
and (c) T„=l, t„,=0.5 by direct numerical evaluation of Eq.
{28), using only the linear t correction for source broadening.
The second-order correction is almost indistinguishable from
curve (b) on the scale shown.
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proximation in t to the source distribution. The quad-

ratic approximation cannot be distinguished from the ex-

act distribution within the accuracy of the plot.
The normalization constant in Eq. (26} is given by the

normalization condition [Eq. (14)], i.e.,

f to, (x}dx =(&/2)C. F.o p=f.op=f

p= 1+ 2v')E + av'gl + —,6T3E (32)

For T„=1, t =0.5, p=0.91. Of course, in the ab-
sence of SRSA t =0, whence p=1.

To third order in source resonance thickness number, t„,
we have

C,Eo ——(2/m') f,o, (30)

where the reduction factor p is obtained by the integra-
tion of Eq. (26) term by term, using the method of resi-
dues, and neglecting terms of order r2t„p, i.e.,

p= g 4 "[(2k!)/(k!) ]rkt,", .
k=0

IV. FOURIER TRANSFORMS
OF THE SOURCE AND ABSORBER FUNCTIONS

Using the emission distribution described by Eq. (28}
the basic transmission integral [Eq. (15}]can be written in
the form

&(x)= f,oCo —f L (2X)g(x')dx'+~, t f L (2X)X(2X)g (x'}dx'

+r2t f L (2X)X (2X)g(x')dx'+r3t f L (2X)L (2X)g(x')dx'+ (33)

where we note that in the limit of large resonance self-
absorption, where t ~ oo, g ~ 1 and S (0)=f,oCop
=f,Co=Ro, that is, the resonance signal in this limit is
R o and all of the resonance photons are absorbed.

We shall focus on the four leading integrals, which are
explicitly displayed in Eq. (33). If the source thickness
number is not greater than about 0.5, the signal S(x) is
well described by the terms given in Eq. (33). Good line-
shape experiments require good count statistics and make
high-intensity sources very desirable. For sources pro-
duced by neutron irradiation this means that we want the
thickness of the source to be as great as possible, con-
sistent with permissible electronic (primarily photoelec-
tric) absorption. Thus T„=l is the norm for such
sources. ~k is a very slowly varying, nearly linear func-
tion as can be seen by the direct evaluation of Eq. (27) us-

ing Eq. (24). If we use a linear approximation and require
the values of ~k at T„=O and T„=1be exact, then ~k's
dependence on T„can be approximately represented by

rt( T„)= —0.5+0.082T„,

r2( T„)=0.167—0.040T„, (34)

~3( T„)= —0.0417+0.0117T„.
In most experiments the source thickness is constant

and exact evaluation of ~k(T„) for these cases is without
diSculty. Equation (34) above is used here only for
stressing the magnitude of these terms and their relative
insensitivity to the precise electronic absorption thickness
number T„.

The convolution integrals of Eq. (33), are expressible in
terms of Fourier transforms, which lead to a rapidly con-
vergent truncation procedure. To calculate these trans-
forms requires an expansion of the absorption function

I

g (x ') in a power series, i.e.,

g(x')= g ( —1) +'(m!) 't X (2x') .
rn =1

(35)

Continuing Eqs. (35) and (33) we can write the general
resonance transmission signal as

&(x)=—f»Co g g ( —1) +'(m!)-'t rk(t„", )Ik7T"'
m =1k=0

where

1k~ = f L (2X)X"(2x)L™(2x')dx'.

(36)

(37)

1 (1—4PX) (1—4@x') dx'
4m +k+1 (X 2+ 1/4)k y 1( ~2+ 1/4)m

If we expand the numerator of the source term to the
linear term in p, the error will be only of order ~2t p, or
of order 10 even for the most unfavorable case. Ex-
panding the absorption term to order P again limits the
errors to about 10 . The source and absorption Fourier
transforms are then

p(o)( )
1 ~ e dx

4k+1 (x2+ 1/4)k+1
(39)

While this integral and the corresponding sum in Eq. (36)
converges rapidly in k for moderate source self-
absorption, the convergence in m is poor for typical ME
absorption thickness number of 4. Application of the
convolution theorem organizes terms that contribute to
the integral in such a way that the sums on m are easily
performed. Rewriting Eq. (37), we have
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—4Pk ~ xe dx
4k+1 ( 2+ 1/4)k+i

T

= —4Pk i F„' '(a)
do!

(40)

(o)( 1 e ' dx
4 —~ (x +1/4)

(41)

G")(a)=—4Pm i G' )(a) (42)

where the first-order transform which is hnear in P is
easily solved by differentiation with respect to a of the
solution to Eq. (39). The superscript (0), (1), and (2) mean
zeroth-, first-, and second-order terms with respect to in-

terference parameter P throughout this paper.
The Fourier transforms of the absorption term in Eq.

(38) for the zeroth, first, and quadratic P terms in Eq. (40)

1 271 + ( —2)" (k ++)!
4"+' k! o p!(k —p)!

X (+a/2)" ~exp(+ &/2),
(46)

where the result for Fk ' has been included and follows

by the same analysis, but with the pole at +i /2 used to
evaluate the residue when closure is carried out in the
upper half plane.

%hen there is no SRSA the only I' term required is for
k=0. Most of the physics is contained in this term. We
give I'k+ for k=0, 1, 2, and 3, in Table I, which are all
even parity functions, and the odd parity derivative
Fk('+)(a) for k= 1, 2, and 3. These are sufficient terms to
yield an excellent representation of the signal S(x), for
sources having a resonance thickness number t„&0.5.

Applying the same procedure to calculate G' +) ((z), i.e.,
substituting m —1 for k we find after replacing the index

@by m —j

and

G' )((z)=8P m(m —1) i G")((z) (43) C

G' +(a)=4 g C~ (+c(/2} 'exp(+a/2), (47)
i=&

(2m )( —2)J '(2m —j —1)!
(m —1)!(m —j}!(j—1)!

Again the higher-order terms follow directly from the
zeroth order, represented by the solution to Eq. (41). The
formal similarity between Eqs. (41) and (39) means that
the solution to Eq. (39) will immediately give the solution
to Eq. (41). Thus all of the relevant Fourier transforms
will immediately follow when Eq. (39) is solved.

The Fourier transform in Eq. (39) can be evaluated by
the method of residues. For positive a, F(+'(a) can be
found by closing the contour of integration on the lower
half plane, and F' )((z) by closing on the upper half
plane. Writing the integral in Eq. (39) in terms of the
complex variable we enclose poles of order k at —i/2 in
the lower half plane. Thus we have

1
—ECZ

p(o) (~) 4k+1 ~
( + /2)k+1( /2)k+i

The linear and quadratic terms in the absorption trans-
forms follow from Eq. (47) by direct difFerentiation using
Eqs. (42} and (43), and they are summarized in Table I.
Notice that the transforms are written in a particular
form, which allows the signal S(x) to be read off'immedi-
ately by the power of (+a/2) associated with the various
transform products required for each contribution to
S(x}.

V. RESONANCE SIGNAL IN THK ABSENCE
OF SOURCE BROADENING AND INTKRFKRKNCK

By taking the inverse transform of I'k+G' + we obtain
the term Io in Eq. (38) and an expression for the reso-
nance signal as prescribed by Eq. (36). We have

(49)

(uv)
2S'l (k)
k!

z = —i/2

~ k21rl y k (p) (k p)

z = —i/2

(44)

where the superscript on I gives the order in P that the
integral represents, where 2, (x) is the integral

S.(x)= I (a/2)' 'exp[iax+a((v+1)/2]da

+ f ( —a/2) 'exp[iax —a((v+1)/2jdu .

where the superscripts on u and U refer to the order of
derivative with respect to z and where the functions are
evaluated at the pole with u and u defined by

u (z) =(z i /2) '"+"—

v(z)=e

Carrying out the indicated differentiations and evaluat-
ing at the poles yields the required transform, i.e.,

Note that the exponential has been modified by replac-
ing o, in the second term of the argument of the exponen-
tial with a((v + 1)/2. The reason for introducing this fac-
tor is primarily to permit the use of a recursion relation
that is a helpful tool in evaluating the integral for succes-
sive j values and to permit the result to be expressed in a
natural way as a simple polynomial in powers of I. (x),
which is easily programmed onto a computer. Also, it
should be noted that this width parameter, m, arises natu-
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T&13LE 1. Fo«ie«rsnsfortns used to describe ME line-shape to second order in p and third order in r„, .C, is given in Eq. (48)
of text.

Fo+(a) =2%4',
4 )exp(+ o./2)

F",+(a)=2~{—,
' )[1—{+a/2)]exp{ T a/2}

FI'+(a) =2m{P/2}[{+ i/2)(+a/2)]exp{ Ta/2)
Fz+{a}=2m{3'2 )[3—3(+a/2)+( Ta/2) ]exp( Ta/2)
F'i~{a}=2m{—P/4)[ —{+i/2){ Ta/2}+( Ti/2){ Ta/2}']exp(+a/2)
F',+ (a }=2m {+i)[15—15{T a/2)+6( T a/2)' —( T a/2)']exp( T a/2)
F3'+ ——2e ( —P/16) [—3( T i /2)( +a /2) +3( T i /2)( T a /2)' —( T i /2)( T a /2)']exp( T a /2 )

6' +(a)=4 g C, (Ta/2)' 'exp( Ta/2)
j=l

6"+{a}={—4m)4 g C, [{Ti/2){ Ta /2)' '+(j —1)( Ti/2}( Ta/2}J ']exp{ Ta/2}

6' ~ {a)= —[2m (m —1}pi]4 "Q Ci~ [( Ta/2)' '+2(j —1)( Ta/2}' '+(j—1 }(j—2)( Ta/2)' ']exp( %a/2}
j=l

rally if we replace the factors ( —,
' ) in the denominators of

integrals of Eq. (38) by (ur /2) . Thus, this parameter can
serve as a natural way for generaHzing to the case of in-
trinsically broadened Lorentzians such as have been pro-
posed when ME lines are diffusion broadened. %e mill
not consider this latter case in this paper and will always
taken m= 1 in all final results. For the purpose of this pa-
per m is merely a parameter which facilitates the evalua-
tion of the higher order items in Eq. (50) and, subsequent-
ly, Eq. (71) as a polynomial in powers of Lorentzians.

There are two alternative ways of evaluating the in-
tegrals in Eq. (50), and we shall examine both of these ap-
proaches. The first of these involves formulating a recur-
sion relation for successively higher terms in j, which can
be generated by taking derivatives with respect to x of
lower 2 terms, and the second involves developing a re-
cursion in terms of derivatives with respect to tU. When
the first approach is used the width factor in introduced
in Eq. (49) is superAuous and need not be introduced.
There are some important aspects to be considered in
both approaches and we will briefly discuss each method.

For j=1 Eq. (50) is an elementary integral and im-
mediately evaluated, i.e.,

2', '(x ) =2L (x ) .

CalHng the first integral in Eq. (50) SJ and the second
one 2 +, we see that

(52)

The lowest order even j term is then given by

22 '(x ) = —— exp( i ax —a )d a(0) 1 d 0

2 dx

I, d I exp(iax +a)da,
2 dx 0

All j odd and even terms are simply related to JI '(x)
and 2{2 '(x), respectively. Thus, from Eq. (51) it follows
immediately that

(55)

where the double prime means the second derivative with
respect to x. Expressing 2 in terms of the lowest odd
and even terms given by Eqs. (51) and (53), respectively,
yields

J
S' '(x) =( —1)'~ " 2 J L(x), j=13.5. . . ,xJ

(56)

S '(x)=( —1}J 2 . [xL(x)], j =2,4, 6. . . .z z-
dx'

Substituting Eqs. (56) and (57) for the integral, Eq. (50),
we obtain an explicit functional dependence for J (x) in

Eq. (49), which yields, when substituted into Eq. (33), the
resonance signal in the absence of source broadening and
interference, i.e.,

S' '(x)=f,oCo g D' '(t)d& '(x),
j=l

where the capital D's are pure functions of the absorber
thickness number t and the small d's are pure functions
of the reduced velocity x, and in this case are equal to
J",(x). The explicit form of D, for this case is

D,'"(r)= y ~,.r-,
m=j

with

or, if we explicitly evaluate the integrals in Eq. (53), we
find

( —1) +'2' '(2m —j —1)!
4 m!(m —1)!(m —j)!(j—1)!

(60)

2P'(x) = — [xL (x )],dx

which like 2t(x) is again an even function of x.

It is instructive to explicitly write out some of the
terms of Eq. (58) to show the convergence and character
of this expansion. To order j=4 we have



37 FGURIER-TRANSFORM METHOD FOR ACCURATE ANALYSIS. . . 3233

( —1) +'(2m —2)! " 2( —1) (2m —3)! d,
4 m![(m —1}!] 2 4 m!(m —1)!(m —2)!

2 ( —1) +'(2m —4)! d, " 2 ( —1) (2m —5)! d

3 4 m!(m —1)!(m —3)!2! dx '
4 4 m!(m —1)!(m —4)!3! dx

(61)

Evaluation of the leading terms in each sum gives

S(x)=f„C,I (t /2 t'l—8+ t '/32 5t'—/768+ )L (x) (t '—!16 t '—l64+ 5t'/1536 . —)[xL(x) ]'

(t'—/384 t'/—1536+ )[L(x)]"+(t'l18432 — )[xL(x)]'"+

where the primes on the square-bracketed quantities on
the right refer to the number of derivatives with respect
to x of the quantity inside the brackets.

At this point the value of the Fourier transform tech-
nique is clearly manifested. A brute force approach to
the problem requires a prohibitive number of integrals to
be of much interest. The Fourier transforms and their
inverses give a way of partially evaluating the higher-
order I 's and organizing the terms in such s way as to
yield a very rapidly converging series for the resonance
signal S' '(x). The slow convergence in m for large t is
unimportant as this series is easily handled by even a
modest computer. The rapid convergence in j is crucial
and we shall be discussing this in greater detail later.

From Eqs. (58), (61), and (62) we can immediately draw
several interesting conclusions. Since all of the terms
have derivatives with respect to x times coeScients which
are independent of x, except for the first, the first term
alone wiB contribute to the total area, AT, under the res-
onance curve. Thus, we immediately arrive at

~ r =fsoCo(2tr) g A im™
m=1

(63)

where 3, is given by Eq. (60) with j= l.
This result can be shown by direct numerical calcula-

tion to agree with sn earlier result derived by Bykov and
Bien, even though their result was expressed in terms of
Bessel functions and arrived at by a completely different
approach. It should be noted that the formula by Bykov
and Hien gives results difFering by a factor of 2 from ours
due to a difFerent choice of dimensionless units for the re-
duced velocity factor x. %hen care is taken to account
for this difFerence in units, the results are identical. One
advantage of the present analysis, as we shall show ex-
plicitly in Secs. VI and VII, is that we may easily include
into the area calculation the effects of both source reso-
nance self absorption snd interference, as these are mere-
ly add-on terms to Eq. (63).

Each sum in Eqs. (61) and (62) represents successively
higher j in Eq. (58), i.e., j=1,2,3,. . . . Since successive
terms of each of the power series sums in Eq. (58) can be
expressed in terms of a simple recursion relation, i.e.,

to erat'ect s sum to inanity while minimizing computation-
al time.

%e should mention here that the Fourier transform
approach is what makes possible the rapid convergence
of S(x). The integrals arising in Eq. (33) can be directly
evaluated by the method of residues without utilizing
Fourier transforms. Unfortunately, the complete in-
tegrsls do not lead to rapid convergence for large ab-
sorber thickness number, and they also do not yield a
simple and general formula for the resonance signal. The
Fourier transforms give s systematic way of truncating
the higher order integrsls so that the resulting series
representing S(x) is rapidly convergent„which allows
this representation to be used for easy curve 6tting to real
transmission data. For example, taking an absorber
thickness number of 8, twice that of s typical ME experi-
ment, taking j up to 10 yields an error in S(x) of only 20
ppm, well beyond even the most precise current experi-
ments.

The derivatives of L (x) and xL(x) are well behaved,
slowly varying functions and serve ss s highly convergent
basis set for describing saturation-broadened ME lines.
The second function of the series [xL (x))', which is the
leading function beyond the Lorentzian, is s 8"-shaped
function shown in Fig. 5(c}. It is interesting that au-
thors' who have measured interference parameters, and
who have dared to show their residual plot, do see a W
signature, having essentially an identical pattern to the
next term beyond the Lorentzian, which reveals the fun-
damental error of trying to fit data to Lorentzisn func-
tions when doing interference and precision line-shape
determinations.

In the development given here, the recursion relations
described by Eqs. (56) and (57) require partitioning into
separate groups the j even snd j odd terms. An alterna-
tive approach which leads to a single recursion relation is
the usage of the width parameter m. This leads to a rep-
resentation of the d (x) in terms of powers of Lorentzi-
ans, and this form is very convenient for programming on
the computer. From Eq. (50) it is immediately evident
that an alternative recursion relation is

(2m + 1 —j)(2m —j)+' 4m(m+1)(m+1 —j) (64}
J gtLl J

g —1

d~(0) (x ) (65)

A suitable cutoff on the ratio of A /A +& can be used or
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FIG. 5. {a)A plot of the numerically calculated S' oNv{&) for
t=4, Ro=(n /2) & 10, t„=T„=P=O; (b), (c), and (d) are com-
parison plots of S,'. '(x) for j=1, 2, and 3, respectively, showing
the composite structure of the saturation broadened line. Plot
of the difference in Scowv(x) —S&N{a) when only the contribu-
tions from j=1, 2, and 3 are added, giving a maximum error
signal at the origin of only 5%. ScoNv is a computers-generated
data base using Eq. (15), with Eq. (18) for the) source term and
Eq. (13) for the absorption term.

2L(j —))+( 1)L(j—2) (66)

and

d', '(x)=2L (x),
d(2 '(x)=L (x)—2L (x),

d' '(x)= 3L (x)+4L (x), —

(67)

which, except for the first, appear quite dilerent than the
derivatives prescribed in Eqs. (56) and (57) and displayed
in Eq. (61), although straightforward algebraic rearrange-
rnent confirms that they are equivalent. %e shall use the

where the superscript j —1 on the L terms means the
j—1 partial derivative with respect to w and the 0 sub-
script means evaluated at w= I after differentiation.
Note that the second term in the last ex~pression is not
defined for j=1. L or [x +(w+1) ] is simply the
Lorentzian generalized to include the width parameter.
When cases such as this occur the coeScient associated
with that term is always zero, and in every instance
where this occurs, that term should be taken as zero,
since an examination of these cases show that the term in
question does not in fact exist.

Evaluation of the first three of the functions expressed
in Eq. (66) leads to

second recursion approach [Eq. (65)] in subsequent devel-
opment, because the even and odd terms do not have to
be treated separately and because the 2, and cP basis
functions and the composite d functions calculated in this
way are directly expressible in a form similar to Eq. (67),
i.e., as a polynomial in powers of Lorentzians which are
readily programmable. It should be kept in mind, howev-
er, that these polynomials in L used to represent the d
functions are only alternative expressions for the smooth
slowly varying derivatives shown in Eq. (61).

In Fig. 5 we show S(x) for the separate contributions
from j= 1, 2, and 3, which reflect the basic shape of Jj(x)
or d'0'(x) for the terms shown in Eq. (67). Figure 5(a)
shows calculated S' '(x) found by numerical integration
of the convolution integral. %hen the three contribu-
tions from j=1, 2, and 3 are combined the result differs
from the ideal data base shown in Fig. 5(a) by the amount
shown in Fig. 5(e), indicating a maximum error at x=0
which is only 5% from the true line shape.

As noted earlier, the power series sums shown in Eq.
(61) can be carried out for practical purposes to infinity,
by putting a suitable criterion on the size of successive
terms. For very large t the number of terms in this sum
may be very large but it is still easily evaluated. For t=4,
summing m to 20 gives results of the accuracy shown in
Figs. 5 and 6. Of more critical importance is the conver-
gence on j. In Fig. 6 we show the difference in a carefully
numericaBy evaluated convolution with our analytic rep-
resentation for j=4, 6, 8, and 10. With only four terms
the analytic representation is within 1% of the true line
shape and is more accurate than many experiments and
with six terms in j the accuracy exceeds the best experi-
ments to date, The error with ten terms is less than 1

part in 10 and the graininess of the plot is the result of
the finite step size used in the numerical evaluation of the
convolution integral. The small negative result in the
asymptotic region (x &&1) is the result of truncation of
the numerical integration which in principle should be
summed to infinity.

VI. INCLUSION OF INTERFERENCE
IN THE DESCRIPTION OF LINE SHAPE

The Fourier transform of the convolution of the un-
broadened Lorentzian source distribution and the absorp-
tion function in the absence of interference gives the line
shape of the transmission signal as described in Eqs. (58),
(61), and (62). The contribution from interference to or-
der p requires adding to the analysis the contributions to
the integral, Io, given in Eq. (38) the linear and quadra-
tic terms in P that result from expanding (1—4Px')
The first of these is linear in x' and p, and is

I ( ( )
(x ) cy —i

(P ( 0~) G ( ) )

4pm x dx
4 —~ [(x' —x) +1/4](x' +1/4)

From the transforms in Table I we immediately arrived
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I,".'(x) = —(4Pm) i4-+' y C,.d,'"(x), (69)

where

d'"=(j —1)d, ,(x)+cfj(x)

=x [(1 1)L—.'&;"+L.'&; "]. (70)

o~(x) is the rest of odd parity functions that represents
the inverse transform

0
PJ(x)= —I (ai2)' 'exp[iax+a(w+1)/2jda

2 oo

0

—a 2 'expiax —a ++1 2 a.
2 0

(71)

* +

.4 f+«t' «~~—-—— - -- ~~««+ 4 + +%I'
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REDUCTIO VELOCITY x

FIG. 6. (a) Computer-generated data base for t =4,
Ro ——(n'/2}X106, t„= „T=P=O. The error signal when pro-
gressively larger numbers of j terms are included; (b)

Sco» —S~& when four terms in j are included (1, 2, 3, and 4);
(c) S«» —S&N when six terms in j are included; (d)

Sco» —SAN when eight terms in j are included; (e)

S«» —S&N when ten terms in j are included. The scatter is
caused by the 6nite steps in the numerical evaluation of the con-
volution signal and the displacement from zero (1 part in 10') is
the result of the truncation of the numerical integration at large
X.

S'"(x)=f,oCoP g g ( 4m AJ t—)d'"(x)
j=l rn =j

=—I„C, g PD,'"(i)d,"i'(x) .
J=l

(72)

An important point to note is that this and all subse-
quent expressions for S(x) except for S' '(x} can be writ-
ten in a form similar to Eqs. (49) and (72) with propor-

Every d(x) function treated in this paper is directly
derivable from the two basic sets J (x) and Pj(x). Since
all of the convolution integrals that we will deal with
have a dependence on x which can be expressed in the
form shown in Eqs. (50) and (71), we give catalogs of L
L'~~ "=(lix)cPJ(x) and J" (x) in Tables II and III for

j= 1 to Io.
Again the integral has a structure that permits the use

of the recursion relation Eq. (65), although in this case
8,(x}=xL o=xL(x) in contrast to Si(x), which is
( w + 1 )L evaluated as w = 1, as shown in Eq. (51).

Substituting Eq. (69} into Eq. (36) gives the first-order
contribution to the signal from interference, i.e.,

TABLE II. A catalog of L "0 ",which is L evaluated at m = 1, and (1/x)8;(x).

L "o "——(1/x)cPJ(x)

L (x)=(1+x )
L2

—0.5L +2L
3L —6L
1.SL —18L +24L
—22. 5L"+120L ' —120L
—11.25L +270L —900L +720L'
315L —3150L +7560L —5040L
157.5L —6300L +37 800L —70 560L '+ 40 320L
—7087.5L'+113400L' —476280L'+ 725 760L' —362 880L "

Sum of
coefBcientsb

—1

1.5
—3

+7.5
—22. 5
78.25
—315
1417.5

—7087.5

'To calculate terms beyond the j=10 term we need only carry out additional derivatives of the 10
terms for L, which is L = —3543.75(m +1}L +14 175(u) + 1) L —14883.75(m + 1) L

+5670(up+1} L~ —708.75(m+1) I ' .
To avoid errors in generating these basis functions it is helpful to notice that the sum of the coeScients

of the j term is j/2 times the magnitude of the j —1 term and the sign of the sum of coeScients alter-
nate.
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TABLE III. Catalog of 2,.(x) expressed as polynomials of powers of Lorentzians. As in Table II
higher-order terms can be obtained by continuing di8'erentiations of L .(x) and substitution in Eq. (66).
Again terms can be checked by summing coeScients. In this series the sum of the coeScients of the jth
term is equal to (j —1)/2 times the sum of the coefFicients of the j —1 term, with successive sums hav-

ing alternating signs.

1

2
3

5

6
7
8
9

10

2L
L —2L
—3L +4L
—1.5L +12L —12L
15L'—60L4+48L'
7.5L —135L +360L —240L
—157.5L + 1260L —2520L + 1440L
—78.75L'+ 2520L ' —12 600L'+ 20160L ' —1008QL '
2835L —37 800L +136080L —181440L +80640L
1417.5L ' —70 875L'+ 567 000L ' —1 587 600L '+ 1 814400L ' —725 750L "

tional coeScients. %hen this is done the expressions for
dJ(x) will always be composites of the basis functions
JJ.(x ) of d"J(x ), slmllal to what ts shown ln Eq. (70). Th)s
requires making a sum of these functions, which is most
easily done using the computer.

An alternative to using Eqs. (70) and (72) is to express
each contribution to S(x) in terms of the basis functions
IJ(x) or cPJ(x), which requires taking a linear combina-
tion of coefBcients and calculating with the computer the
new set of coeScients for each case.

Following this alternative approach, Eq. (72) is then
given by

S'"( )x=f OCop g g [ 4)n(jA—,+) +A, )]
j=l m=j

Xt PJ(x) . (73)

where

1' '(x)=(j —1)(j—2)I 2+2(j —1)JJ )+&, . (75)

Substituting of Eq. (74} into Eq. (33) gives the p con-
tribution to the resonance signal, i.e.,

S' '(x)=f,oCop2 g g [—2(m —1)mA ]r 1' '(x),
j=l m =j

(76}

Equations (72) and (73) are equivalent, and while the
second approach has a formal elegance and reduces each
expression to the minimum basis set of functions, it is
more tedious to algebraically reduce the combined
coeScients to their simplest form and we recommend let-
ting the computer 6nd these coeScients.

The second-order contribution from interference is
found from the 8m (m —1)p term in the expansion of
(1—4Px') in Eq. (38}.

Here we find for the inverse transform

m
1)2) P—1(F(0)G(2) )

~ (~ } ~ C y)2)(x)0+ Pyg + ~ ~ Jag
J=&

(74)

where d'")(x) is given by Eq. (7S).
In terms of the 2, basis Eq. (76}can be rewritten as

S' ( )}x=f, Pog g [ —2m(m —1)]
J =1 to,J

(m =j)

X[j(j+1)&,+2,

+2jAJ+) + A2 ]

X& JJ(x) ~

Here we see an advantage of expressing the resonance
signal in the form of Eq. (77) rather than (76). As we not-
ed earlier, only S)(x) will contribute to area under the
resonance absorption curve. From Eq. (77) this area is
immediately apparent as only the j= 1 term contributes,
and since the integral of 21. (x) is 2', we find the contri-
bution to the area under the absorption associated with
S' '(x) is

Ar )=f,oCOP (2m) g ( —2m)(m —1)A)
m=1

X[ A22+232 + A) ]t

(78)

%'ith some algebraic manipulation this can be shown
to reduce to

where A is given by Eq. (60) with j= 1. It is
noteworthy that this contribution to the area is negative,
i.e., interference reduces the area under the resonance
signal curve. For p=0. 1 as in ' 'Ta and Ge this can
give a signi6cant contribution, especially at large t.

VII. INCLUSION OF SOURCE SELF-ABSORPTION
IN THK CONVOLUTION PROBLEM

As we show in Eqs. (18}and (26) and illustrate in Fig.
4, the spectral distribution of source emission is notice-
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ably Aattened for even modest source resonance self-
absorption (SRSA). Such SRSA noticeably broadens and
diminishes the height of the convoluted pattern that is
observed in an ME experiment. It Aattens the convoluted
spectral distribution and usually a correction for this
broadening is essential if correct t values (cross sections)
and accurate width parameters are to be determined from
ME data.

We can calculate most of the effect of SRSA by
evaluating the second integral in Eq. (33), which is accu-
rate to linear terms in t„as depicted in Eq. (28). Refer-
ring to this first source broadening integral as I, , in

keeping with the notation of Eq. (38), the contribution to
the mth term, when g (x') is expanded as previously [Eq.
(35)], is given by

1 ~ ( 1 —4({})X)(1 4m P—x ' )dx '

4lfl +2 (g 2+ 1 /4)2( &2+ 1 /4 )ITI

S" '(x)=f, 0C0r, t g g ( —,'A) )t dj" '(x) .
j=l m =j

(85)

The corresponding results for the (11) and (10) terms
are

S""(x)=f„c,~,t„g y (2PA, )t-d,'"'(x),
j=l m =j

(86)

S" '(x) =f,0C0~(t„g g [( 2p)—m A ]t d". 0'(x),
j=l m=j

When this result is substituted into Eq. (33) to get the
(1S) contribution to the resonance signal, we find

If we multiply the factors in the numerator and neglect
terms of order P t„r(, then this integral can be parti-
tioned as follows:

with

d,'"'(x)=(t(, +,(x), (88)

I(ls)+I{11)+I(10)
lm (81) and

where the superscript (1S) refers to the symmetric part of
I, , (11) refers to the antisymmetric part of I, due to
the linear P term in the source distribution and (10) the
antisymmetric part due to the linear P term in the ab-
sorption function.

In our notation all terms with double index super-
scripts are terms referring to corrections due to SRSA.
The 6rst index, in this case I, gives the value of k, which
is the order of the correction. The second index S, 1, or 0
means the symmetric term, the 1 and 0 refer to the source
terms which are linear in P and independent of |(3, respec-
tively; i.e., the three contributions to the integrals may be
written as

I" '=9' '[F',z(a)G' ~(a)] (k =1, symmetric part),
I(1l} P—l[F(l}(a)G(0}(a)]

(k =1, Ii ", antisymmetry part),

and

d,'"'(x)=(j —1)4, ,(x)+(2 j)o",(x—) (it+ (i—x) . (89)

If we use Eqs. (85) to (87) to include the linear t„, repre-
sentation of the resonance signal, we find that the error
for t„,=0.5, T„=1 drops from 12% to 2%, as is illustrat-
ed in Figs. 7(b) and 7(c), where Fig. 7(a) shows the com-
puter generated data base. As the quadratic and cubic
terms in t are included the difference with our "ideal"
data base drops rapidly as seen in Figs. 7(d) and 7(e).
After inclusion of the cubic terms SAN [Eq. (87)] agrees
with S~oNv to nearly one part in 10 .

The successive k values give integrals similar to those
displayed in Eq. (82) and the resonance signal contribu-
tion is similar to Eqs. {83) through (85). All of the in-
tegrals and signal functions have the same basic struc-
ture, with the even parity contributions expressed in
terms of the l, (x) basis and the odd parity contributions
expressed in terms of the (P, (x) functions.

In general we can write each contribution to I and S in
the form

I(lo} cy—[P(0}( )G(l}( )]

{k=1, I" ', antisymmetric part) .
I(~}(x)=re. 4 (-+(}y C, d,'-~}(x),

j=l
(90)

I(ls} }4—(m+1} ~ C d(ls}(x)
2 jm jj=l

where

d,'"'(x)=SJ(x)—S, ,(x) .

(83)

Again we write these integrals and their corresponding
resonance signals, S'1' ', S'1"', and S'1' ' by inspection us-

ing the transform catalog in Table I. For each k there
will be three terms similar to Eq. (82), but the first super-
script will be changed to the value of k (order in t ) being
COnSIdered.

For each value of k there will be three integrals similar
to the above. For the k= 1 terms we have

and

S' '(k)=f,0C0rkt„, g g I(' A t d,' '(x),
g =1 m =g

where E are constant coeScients which generally have
a dependence on the index m and where d' '(x) is a
linear combination of the SJ(x) functions for the even
parity contributions and a linear combination of the
d"J(x) functions for the odd parity states. The superscript
(M) labels the order of the contribution. When (M) is
only one index (0,1,2) then we are referring to the k=0
contributions from P,I})',P, respectively. All of the con-
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through k=3. %'e also give a set of coei5cients A&

which is related to d' '(x), which is the set of coefficients
that expresses the solution of S' '(x) in terms of the basis
functions 2 (x ) and 8 (x ) and permits area evaluation by
inspection.

As noted earlier the computation of areas under the
resonance curve is most easily evaluated by expressing
S(x) in terms of the basis Fourier transforms JJ(x) and
otj(x). When this is done the signal can always be writ-
ten in the form

x10~

12"-
x103

(c)

S' '(x)=f,oCorkt„" g g K AJ' 't S,(x)
j=l m =j

for the even parity terms, and

S'"'(x)=f„C,~„t." y„y I(..~,'."'t-a, (x)
J =1 m =g

(92)

(93)

x10~
-12—
80—

T(d}
+

40-

-15 -12 -9 -6 -3 0 3 6
I

9 12 15

tribuiions associated with source broadening
k = 1,2, 3. . . have two indices and the first is the k value
that labels explicitly the order, i.e., t„.

In Table IV we give the values of k and d,' '(x)

REDUCED VELOCITY x

FIG. 7. (a) Plot of the computer generated Sco„v(x) for
t=4, p=0 01, t„,=0.5, T,', =1, and f OCo (n I2) X 10——(b) Pl.ot
of Sconv(x) —SA&(x) setting t equal to zero. (c) Same as {b)
but with t„=0.5, T„=1, evaluating only to the linear term in

t; (d) same as (b) but with the quadratic term t included, and
(e) same as (c) but with the t3 term added. In each case no pa-
rameters are varied.

for the odd parity terms. Since A» is fundamentally re-
lated to the d' '(x) functions, the A' ' coefficients are
obtained by the appropriate raising or lowering of the
basis functions. Thus, we give the A,'

' coe%cients for
all contributions considered in this paper in the same
column of Table IV as the d,' '(x) functions, which clear-
ly reveals this interrelation.

If curve fitting is the primary goal, either form of S(x)
is acceptable. In the data that we display in Fig. 7, we
wrote the program using the dj '(x) function to evaluate
the contributions to S(x), and the curves shown were
evaluated using that approach. The curves in Fig. 7 show
the effect of adding on successive orders of t . Figure
7(a) is a display of the computer-generated data base with
t„=0.5 and T'„=1. Plots 7(b)-7(e) show, respectively,
the error resulting from the analytic forms of S(x) when
all terms in t„are omitted, when the linear term alone is
included, when the linear and quartic terms are included,
and finally, when all terms through cubic are included. It
is seen that the inclusion of terms through cubic is
sufficient to describe the true resonance signal curve to
about one part in 10 for source thickness number up to
0.5.

TABLE IV. K coeScients, d functions, and matrix coe%cients for order M.

d(N)( ) A
(M)

Jttl

(0)
(1)
(2)
(1S)
(11)
(10)
(2S)

(21)
(20)

(3S)

(31)
(30)

1

( —4p)m
P~[2m (m —1)—]

1

2

2P
( —2P)m

1

( —p)
( —P/2)m

2i(x)
(j —1)gi &+9'i
(j —1)(j—2)S, 2+2(j —1)J", &+2,
~i ~i+ I

~i+1
(j —1)d", 1+(2—j)d,. —Pi+1
32, —3/J+)+ J",+,

+/+I+ J+2
3(j—1

Qadi &+ 3(2—j)d";
+(j —4)+ +1+4" +Z

152, —15$) +I,+62) +2 —2) +3
—3/J+, +38,+,—4, +,
15(j 1)~i —&+ 15(2 j)+i+(6j 21)~J+
+(7—j)4.+2—4 +3

Ai
jAi+, + Ai
j(j+1)Ai+ +2jA, +, + Ai
A —A

Ai
jAi+I +(2—j)Ai —A;
3Ai —3Ai ) + Ai
—A-, +Ai
jAi+I. + (2 j)Ai
+(j —5)Ai I + Ai

15Ai —15Ai I +6Ai 2
—Ai

—3Ai I +3A» 2
—Ai

15jAi ) +15(2—j)Ai +(6j —27)Ai
+(9—j)A,. g

—A,
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Although almost all the authors reporting interference
and line-shape parameters in the literature have used a
Lorentzian fit [Eq. (5)], we see in Table V, by comparing
with column b, just how unsatisfactory this is for a data
base such as shown in Fig. 7{a}.The parameters are com-
pletely wrong and the chi-square value is 14. A compar-
ison of the computer-generated data base [Fig. 7(a)] with
a Lorentzian fit is given in Fig. 8(a).

Another semiempirical fit to the ME line proposed by
Mullen et a/. ' is based on an exponential Lorentzian.
Here the agreement for width is much better, although
the error in the interference parameter is 35% as com-
pared to 92% for the Lorentzian fit. The chi-square
value of this 6t is better than the chi-square value for the
analytic At with only linear terms in t, even though this
latter case gives much more accurate line-shape parame-
ters, as can be seen in Table V. A comparison of the
computer-generated data base [Fig. 7(a)] with the
exponential-Lorentzian function (ELF) is shown in Fig.
8(b). Some of the parameters like interference are not in
good harmony with the true values, but others like width
agree very well. The computer time for the ELF fit and
the Lorentzian fit is orders of magnitude less than the full
analytic function, although it is certainly not prohibitive
for the analytic form.

In Fig. 8 we 6nd a remarkable fact about our solution.
If we curve fit with the r linear term included to the
data base shown in Fig. 7(a), we find that the chi-square
fit is better without including the t„ term [Fig. 8(c)] than
it is with the linear t„corr ceti onincluded [Figs. 8(d) and
8(e)]. When r„ is allowed to vary it gives a better fit [Fig.
8(d)] as expected than when it is not [Fig. 8(e)]. The im-
portant point to note, however, is that the accuracy of
the fitted parameters is in an inverse relation with the
chi-square value given for the fit. This is clearly revealed

in Table V, where we display the fitted parameters for the
three cases. In columns c, d, and e the chi-square values
get progressively worse while the accuracy of the parame-
ters get progressively better, completely at variance with
the conventional wisdom in the 6eld that a good chi-
square value means a good St, which implies correct pa-
rameters.

%'hile this at 6rst glance appears to be a paradox, the
origin of the result is clear when we look at Eqs.
(38)-(43). We see that the functional forms of the source
and absorber transforms are the same except for step-up
factors. Thus it is extremely diScult for a computer 6t to
give the correct line-shape parameters unless t is known

by an independent determination.
Notice that the "best fit" for the computer-generated

data base shows only 50 ppm maximum deviation from
the true S{x}when r is taken as zero instead of the
correct input value of 0.5, which is well beyond experi-
mental detection.

When the analytic form of S(x) is extended to include
terms, it then gives both a better chi-square value and

the correct parameters. In this case the deviation from
the true S(x) is less than 10 ppm and the output parame-
ters are almost exact. It must be emphasized, however,
that even if cubic terms are included when real data are
analyzed, it is not possible for the computer to get reli-
able t values with data of even relatively good precision,
since no one yet has been able to accumulate count statis-
tics of such precision that the standard deviation of the
resonance signal is of order 10 ppm.

In Sec. VII we discuss ways of independently determin-
ing t„, so that it can be 6xed in the data analysis and the
correct line-shape parameters found from the experimen-
tal data. It should be mentioned here, however, that the
biggest errors in line-shape parameters that occur, as can

TABLE V. Mossbauer parameters determined by a least-squares At to a computer-generated data base. Columns c through h cor-
respond to the results shown in Figs. 8(a) through 8(f) compared to the computer-generated data base shown in Fig. 7(a).

Up

h'

&rs

res
12
S(x)

0
1.0
4.0
1.0

10
0.5
1.0

1.20x 10'
1.55

1.92 x 10-'

14.5
1.32 x 10-'

1.86x 10-'
1.06

1.35 x 10-'

4.9x 10-'
1.56x 10-'

9X10 "
1.052
3.77
0.94
1.02 x 10-'
0 fixed
1.0 Axed

2.96x 10-'
0

—1.4x10-'
1.008
3.93
0.99
1.01 x 10
0.403
1.0 fixed
2.04x 10-'
0

—7.3 x 10-'
0.999
3.95
1.02
1.00x 10-'
0.5 fixed
1.0 Axed

2.42 x 10-'
0

—2.5x 10-'
0.9998
4.001
0.998
1.00x 10-'
0.500
1.0 fixed
1.50x 10-'
0

'Parameter label.
Input value for parameter in determining the computer-generated data base.

'Comparison of a Lorentzian fit [Eq. (5)) with "ideal" data base.
Comparison of an exponential-Lorentzian At (Ref. 18) to the ideal data base.
Parameters determined by fit of S&N(x) with t„, taken as zero in analytic form with all parameters except T„and t„, varied. S„N(x)
is the analytic form given in Eq. (91).

Parameters determined by At of S&N(x) with only linear t„, terms included to ideal data base, with all parameters except T„varied.
~Same as d, but with t Axed at the correct value of 0.5, with all parameters except T„and t varied.
Same as d, but including quadratic and cubic t terms in analytic representation.
Ii is a height factor reflecting the error in f,oCO, i.e., Ii = 1 would correspond to the fitted value being the same as the input value used
to generate the "ideal" data base.
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be seen by examining Table V, are the errors in t (or cross
section) and height gauge, f,oCo. If t is determined in-

dependently by 6rst using a source with negligible SRSA,
then the least-squares 6t procedure will give much more
reliable values of t„. The reason is again that SRSA leads
to the same functions in the convolution integrals [Eq.
(38)] as resonance absorption in the absorber.

VIII. AREAS AND PEAK HEIGHTS
OF TRANSMISSION SPECTRA

Bykov and Hien have shown that for a single line res-
onance the area and peak height are functions of the ab-
sorption thickness, expressing their results in terms of
modified Bessel functions. With the present analysis we
can make an important generalization of their result, in-
cluding the e6'ects of interference and source self-
absorption. Their result is equivalent to our Eq. (63) for
the area under the resonance transmission curve when

=t„,=0.
Since S"'(x) contains only odd functions of x, i.e.,

d'"(x) = —d'. ( —x), the linear terms in P rejected
in 5'"(x) will not contribute to the area. The terms in
S' ' are even, however, and they will contribute to the
area terms of order P . Only terms which cannot be ex-
pressed as derivatives with regard to x contribute to the
area, and these are most easily identified when S™(x)is
written in the form of Eqs. (92) and (93), i.e., in terms of
the basis functions 2 (x) and 8 (x). When this is done
the only term which contributes to the area is the j= 1

term. Since the cP (x) terms are of odd parity none of
these terms contribute and only Si(x) makes a contribu-
tion of 2m. An examination of Table IV reveals the terms
in (M) which contribute are (0), (2), (Is), (2s), and (3s).

Combining (M) =(Is), (2s), and (3s) contributions from
SRSA with the results in Eqs. (63) and (79), and further
noting that each of these contributions would have the
same P reduction had we expanded the absorption terms
to order P and included them in the calculation of S(x),
we have for the area under the absorption curve

Ar =pf. oCo(2')

X g 3 i,„t t I+[2m (m —I )/(2tn —3)]P2],
m=1

-10-

-15 -12 -Q -6 -3 0 3 6
1 1

Q 12 15

REQUQED VELOCITY x

FIG. 8. Error signals for various orders of refinement of the
analytic representation of the convolution integral when the pa-
rameters are set by least-squares fitting to the "perfect" data
base displayed ln Fig. 7{a). (a) Sgpgv —SLpR' (b) Scpgy —SFLF
(c) Sgowv —SAN with t set equal to zero; (d) ScpNv —Sgw with

t„,=0.5 including k=0, 1 (up to linear t terms), with all param-
eters allowed to vary, " {e) same as (d) but t„ fixed at correct
value (f} SgpNv —Sg~ with t„ terms through t„ included and
allowed to vary as independent parameters. In this analysis for
(h)-(e) all parameters, including I ~, t, f,cCc, and u&&, are varied
to give the best possible St to the "ideal" data base determined
by a numerical integration of the convolution integral with the
parameters t=4, @=001t„=0.5, .T„=1, and

f,cCO=(m/2)X 10 . The one exception was T„,which was al-
ways set equal to 1, as this parameter is usually extremely easy
to obtain by an independent thickness measurement.

(94)

where p is the same reduction factor encounted in Eq.
(31), written there to all orders in k, and where A, is
given by Eq. (60) with j= l. This is not surprising as the
origin of these terms arises from the reduction in area un-
der the source spectral distribution when there is
significant SRSA.

We have not been able to find any case where the term

p has been taken into account in area measurements of
recoilless fraction. Thus, these measurements are deter-
mining pf, o although they are always treated as though
the measurement was of f,o, which is the quantity dis-
cussed in theory.

To give some idea of the magnitude and importance of
the p correction, consider a 100-rnCi carrier-free Co
source, which has decayed for one year. It will have built
up Fe in this time suScient to increase t„, from zero to
0.3. If T„=1, ~I ———0.418, ~z ——0.127 and AT for the
same source absorber combination will have reduced 6%
during the one year of usage, yet this correction has nev-
er been included in measurements of recoilless fraction
based on area determination.

In Fig. 9 we show the area under the resonance signal
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0
0.355
0.534
0.632
0.691
0.757
0.793

0
0.330
0.498
0.591
0.648
0.710
0.745

0
0.307
0.465
0.553
0.606
0.667
0.702

TABLE VI. Relative peak height at resonance, S(O)If,OCO,

as a function of t and t.

S(0}If,OCD

=0.25

perimentally inaccessible. The near asymptotic region
where x 1 is of much greater interest as experiments are
easily carried out with the velocity range x =+6. The
exact analytic representation of the line shape means that
a systematic truncation of center data can be carried out
and the analytic S(x}fitted to the asymptotic region con-
sidered.

For fitting of data in the asymptotic region a somewhat
more eScient fitting to the line can be achieved by ex-
pressing our results as a power series of Lorentzians.
Since the d (x) are linear combinations of powers of
Lorentzians this reconstruction is straightforward and
can be expanded as

be confused with the change in peak height at the peak
maximum, which as we show in the next section actually
increases in the thin absorber limit, when interference is
present.

S(x)=f,oCO g [A,
' '(t}LJ(x)+pA,'"(t)xLJ(x)

j=1

+p'A, '"(t)LJ(x)] (100)

IX. LINE-SHAPE ASYMPTOTICS AND SHIFT
IN THE SPECj.QAL MAXIMUM

The analyses that have been given here have been for
single unsplit lines, although they can be extended to in-

clude hyperfine split spectra. The question naturally
arises, "%'hat if it is not possible to produce an unsplit
line?" In nature all crystals have impurities and vacan-
cies and dislocations which can produce a variety of elec-
tric field gradients, broadening what would otherwise be
an unsplit line.

Actually, broadening functions which have a Gaussian
structure could be folded nicely into the above theory and
the broadening function itself extracted from the data.
Here we merely want to point out that for short-ranged
broadening functions it is possible to extract the line-

shape by a systematic truncation of center data and
thereby extract the correct line-shape parameters such as
width, interference parameter, and cross section.

A simple argument can be used to show that small
hyper6ne broadening does not alter the line shape in the
asymptotic region. Suppose we consider two unresolved
peaks whose positions are at x =Re in the absorption
term. The absorption function g (x') will then be

g (x') =1—exp( —,'t [X[2(x'+e)+2[2(—x'—e)] ] ) .

When this exponent is expanded in a power series in
e/x', all linear terms cancel and one is left with the same
result as given in Eq. (13).

Thus when

(e/x)L ~&1 or x ~&e,

the line shape will be the same as given in the above
analysis even in the presence of unknown hyperfine or in-
strumental broadening. This argument can be general-
ized, but the bottom line result is that the asymptotic
form is the same.

It should be noted that the far asymptotic region,
where S(x) is proportional to 1/x, is too far removed to
be of much consequence, as it is for practical purposes ex-

where we have taken the source broadening terms to be
negligible, and LJ(x)=(1+x ) J, i.e., superscript j's in

Eq. (100) refer to powers of Lorentzians.
The A, 's are linear combinations of the D 's and can

readily be found by expressing the D 's as powers of
Lorentzians. The lowest-order terms are

A,
' '=2D' '+D' '= —'t+ ~

—,'3 t
m=2

(101)

Ol

g(1) D(1) +D(1) (103)

where D~ (x) is given in Eq. (59) and DJ (x) by the
parenthetical term in Eq. (72) summed on m.

If x& 3, only 4 terms (N, =4) are needed to represent
the line shape to better than l%%uo. It is interesting to note
that Eq. 4103) does not have any quadratic or higher
powers of t, which is the result of a perfect cancellation of
these terms.

It should be mentioned that Eq. (100) is not the best
way to fit the total pattern as its convergence in j is less
optimal than the expressions found directly from the
Fourier transforms, i.e., the dj(x) arising from the trans-
forrns are a much better set of basis functions for describ-
ing the line shape than the power series of Lorentzians.
In fact once the general S(x) is entered into the comput-
er it is quite adequate to handle the asymptotic region, al-
though the computer time for fitting may be slightly in-
creased.

Equation (100) is useful for representing the shift in the
resonance maximum relative to the true position, x=0.
Since the thin limit value of this shift is x = —p, which is
only 0.1 for the largest known ME transition, we may
take

L'(x)= 1 —jx, x ~&1—

,'t + ~t—+—gA ) 3(m —1)/[2(2m —3)]t
m=4

(102)
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leading to the first-order result in x and p of

Equation (105) indicates that the maximum is at —p in
the t ~~1 limit and increases as the thickness number in-
creases. Equation (105) is very poorly convergent for
large I at small x. In this region Eqs. (91)-(93) are a
much more rapidly convergent representation of the
transmission signal S(x).

For the very thin limit (t «1), we can use Eqs. (105)
and (100) to show that at the maximum in S (x) the effect
of interference is to increase the resonance signal at the
resonance maximum, even though S(0}decreases. Thus,
from Eq. (105}, we find for I «1 that x,„=—p, and
from Eq. (100), we find $(x,„)=,'f,oC—ot(1+pl),while

in this same thin limit $ (0)= —,
' f,oCOI (1—p ). Thus if we

think of the interference term as being switched on then
the effect is to increase the peak height of the resonance
signal at the maximum by the same amount that S(0) is
decreased at the true peak position. For very large t
(p 10) this maximum in the peak height is actually less
than the interference-free height. The most important
point of note is that $(0) and S (xm,„)change only slight-

ly as a function of p, although they are extremely sensi-
tive to changes in t

%e have derived an analytic expression for the reso-
nance signal observed in a saturation-broadened ME
transmission experiment which is easily put into a com-
puter and allows the calculation of line-shape parameters
to arbitrary accuracy, including interference, width, posi-
tion, and cross section. We have found this procedure al-
lows accurate fits to transmission spectra for ISIW and

W and gives true line-shape parameters rather than
limits, when a systematic truncation of center data is car-
ried out and fits made to the asymptotic region (@~1).
The transmission resonance signal, $(x), is described by
a highly convergent series given by Eq. (91) or alterna-
tively by Eqs. (92) and (93). Our description is accurate
to p in interference and I in source self-absorption, and
can be easily expanded to still higher orders if required.

The procedure also gives analytic forms for the Fourier
transforms of the source and absorption terms in the
transmission function (see Table I) and allows an im-

proved deconvolution of the source and absorption spec-
tra, which has been discussed from a strictly numerical
approach by Dibar, Ure, and Flinn. '

In the experimental determination of line-shape param-
eters, much of which is summarized in Refs. 11 and 12,
most of the measurements have been done using a thin
11IIllt cxpl cssioll for tllc rcsoIlallcc slgllal [scc Eq. (5)],
even though accurate transmission experiments can never
be done in the thin limits. Some hilarious comments on

this point are given in Ref. 12, giving a rather candid cri-
tique of the experimental situation. A much better
empirical representation of line shape is the exponential-
Lorentzian function (ELF) put forward in a recent paper
by Mullen eI, aI. ,

' although this approach is also only an
approximate form for the line resonance signal S (x ).

%'e have sho~n that the area under the resonance
curve depends on both the resonance self-absorption in
the source and the interference parameter and we have
given an explicit formula [Eq. (94)] for this dependence.
It is shown that when t„=0.5 the recoilless fraction leav-

ing the source is about 10% less the value when I =0.
Similarly, we derived a formula [Eq. (97)] for the

dependence of the resonance peak height on the source
line broadening and the interference parameter. In this
case the peak height is extremely sensitive to the source
self-absorption, so much so that on-off experiments of
resonance scattering generally need to be corrected for
this term, even though it has never been considered in
analyzing experimental data to date.

%e have shown that the line shape in the asymptotic
region will not be affected by short-range hyperfine
broadening or source broadening. A special relation for
the asymptotic region is given in Eq. (100) which allows a
good representation in the region x~3 w'ith only four
terms. The general formula for $(x) [Eqs. (91), or (92)
and (93}]can also be used to fit data in the asymptotic re-
gion by a systematic truncation of center data and there-
by eliminate short-range broadening functions which can
modify the true line-shape parameters.¹teadded in proof. There is a simple recursion rela-
tion for generating the S and &PI integrals displayed in
Tables III and II, respectively. Is The jth integral of ei-
ther 2 or 8 can be expressed in terms of the two previous
integrals through the relations

and

Thus all 2~(x) and cP (x) to any order can be calculated
directly by the computer with these simple recursion rela-
tions, which ehminates the need to program into the
computer the explicit funtional forms for S and cP,
beyond the j= 1 and j=2 values, which are given in the
first two rows of Tables III and II, respectively. 0ACKNOW%'LEDGMENTS
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This appendix consists of a compendium of definitions used in this paper and frequently used formulas.
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Definition

I ~=26/w
x =(E—E, )v/fi

Mean nuclear lifetime for the ME transition

being investigated

Transition energy of ME gamma transition

Relative shift of absorber compared to source due to
chemical and temperature differences in source and absorber

Doppler shift in energy of source with regard

to absorber

Ideal ME width in thin absorption limit

Dimensionless gauge of velocity or energy relative to

the resonance center

Dimensionless gauge of velocity, or energy, used to sum

the source to absorber overlap and determine the convolution

of the source to absorber for a particular x
I

Rb f,Cb-—
Nb ——(1 f,)Cb-
A {x)
A o ———[1—exp( —T„)]R»
A„=[1—exp( —T„)]N»
C(x)

R(x)
N = [exp( —T„)]N»

S(x)= W (x)—W

b

I.
Ig

ei

0

o.„,(x)
0.„(x)

Si

Recoilless fraction emitted from a source having no
source resonance self-absorption

Recoilless fraction emitted from an absorber

Actual fraction of recoilless photons emitted from a source

in the beam direction including source resonance self-absorption

Source resonance self-absorption

f.~f.o
Count rate at detector before absorber is inserted in beam

(see Fig. 2)

Count rate at detector due to recoilless radiation

Count rate at detector due to radiation with recoil

Resonance absorption as a function of x
Off-resonance absorption of resonance radiation

Off-resonance absorption of nonresonance radiation

Count rate at detector when absorber is in the beam moving

at reduced velocity x with regard to source

Transmitted resonance count rate through absorber

Transmitted nonresonance count rate through absorber registered

at the detector

Resonance signal registered at the detector

Branching ratio

Nuclear spin of excited state

Nuclear spin of ground state

Internal conversion coeScient
%avelength of the resonance radiation

Interference parameter

Photoelectric plus Compton cross section for ith type atoms
S

0 e~&si
i =]

+Si Ql

i=1
Resonance cross section

A.2(2I, + l)b/[2m(2I +1)(1+a)]
f,croa„X(2x)

f,o oa„X(2x)
Total number of atoms of all types in source per unit area

Total number of atoms of a11 types in absorber per unit area

Fraction of atoms in source of type i
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Fraction of atoms

Fraction of atoms

Fraction of atoms

in source of the ME type causing self-absorption

in absorber of type i
in absorber of the ME type causing resonance

tss =fs&OPslBs

& =fa~(Pai "a
~es =&es&s

L{x)
X(x)
I. (x)

EI, ( T„)

rk( T„)

absorption

Thickness number

Thickness number

for source

for absorber

Thickness number for electronic absorption in source (1/e

transmission length in dimensionless form)

Thickness number for electronic absorption in the absorber

(x +1)
(1 2I3x)—I.(x)
[x +(w/2)']

00

( 1)tm+])( )) I m —1 y(m —1 —k)
km=k+1

Eg( T„)/Eo( T„)

2m( —2)' '(2m —j —1 }!
{m —1)f(m —j)t(j —1)f

( —1) +'2' '(2m —j—1)f

4 m &(m —1)1{m—j)t(j—1)I

(2m + 1 —j)(2m —j)
4m (m +1)(m +1 j}
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OInterested readers may obtain from us the functions which we
have used for the resonance signal, with accompanying docu-
mentation to our program, on either magnetic tape or Soppy
disc.


