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Fractal model for disordered magnets
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Experimental results suggest that magnetic domains in disordered magnets have a topological
fractal structure. Following Mandelbrot we build up a random fractal with properties consistent
with neutron diffraction experiments. %'e show that the structure factor of the fractal provides all
the forms used in the St of experimental data.

I. INTRGDUCTION

We are concerned with disordered magnetic systems
in which the correlations are those of a pure magnetic
phase over a length scale much larger than the inter-
atomic distance. These systems are characterized, in
neutron diffraction experiments, by the appearance of
strong scattering around the points of the reciprocal
magnetic lattice of the pure phase. Such systems have
been known for a long time. One may mention the coex-
istence of antiferromagnetism of the first and second
kind in Mnoscro &S (Ref. 1) or the coexistence of fer-
romagnetism and antiferromagnetism in mixed valency
manganites. However, there has been a recent spate of
interest in such systems with the study of reentrant spin
glass, random or competing anisotropy models, and
random-field systems. Despite the very difFerent nature
of the disorder, all the systems have common features.
In neutron scattering experiments the structure factor
near the reciprocal-lattice vector G is always well fitted
by the form

S(Q)= AL +BL,

where L is the I,orentzian form

belong to the same magnetic domain will give a notice-
able contribution to the neutron scattering structure fac-
tor. The latter is then the sum of partial contributions,
each related to a magnetic domain. Equivalently, the
neutron-di8'raction pattern is the superposition of
diferent patterns, each obtained by keeping only those
spins that belong to a given magnetic domain. In other
words, the neutron-di8'raction pattern is that of a porous
medium. If the degeneracy of the ground state results
from a random process, we shall consider that each
domain will yield the same neutron-di8'raction pattern.
The 6t of the tail of the structure factor by a power law
with an arbitrary power suggests a fractal dimension of
the medium. Fractal structures, such as Sierpinski gas-
kets, have been previously proposed to the study of per-
colation. We shall, however, use a fractal proposed by
Mandelbrot. Both fractals are obtained by drilling
holes in matter (Fig. 1), but in the first case the holes are
obtained from a regular process, while in the second case
the holes are randomly distributed. As we are interested
in systems where the disoder results from a random pro-
cess, the second model seems more suitable. For those
readers interested in the shape of that fractal, planar
fractals of diferent fractal dimensions are given in Ref.
7.

I.= 1

K +q

with

q= IQ-GI .

A power-law fit q (Ref. 3) or Lorentzian form at an
arbitrary power L "~ (Ref. 4) are also well suited. We
shall show that the previous forms may be deduced from
topological considerations only.

Thc ground state of a pure Hlagnetlc phase ls always
degenerated. Besides the trivial degeneracy related to
spin reversals, additional degeneracies may arise related
to propagation vector degeneracy (E domains) or to spin
direction degeneracy (S domains). Only those spins that

FIG. 1. Planar fractals obtained by drilling holes (in black)
in the matter. (a) Schematic drawing of the fractal used in that
paper. (b} Sierpinski's fractal.
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II. FRACTAL MODKI.

%'e use a model proposed by Mandelbrot, whose
basic idea consists of drilling holes of a random size at
random locations in the medium. Originally proposed
for three-dimensional (3D) Euclidian space, the model

may be easily extended to an arbitrary Euclidian dimen-
sion. %e restrict ourself to an isotropic medium and
consider spherical holes. The hypothesis of the model is
the following: the number of holes that center are in a
given volume V, and those whose radii lie between p and

p+ 8p, obey a Poisson distribution with the mean

(3)

where Sd is the unit sphere area and d& the fractal di-

mension. The radius p lie between a lower bound e and
an upper bound R. The following results are then easily
obtained. The probability that a point belongs to the
medium M or the concentration c of the occupied
volume is given by

—(d —dI )

R

The Fourier transforms of Z, (r) are listed in the fol-
lowing. Irrelevant factors have been deleted.

cos(dI tan 'q /K )d=l
d /2(+2+q2) f

(10a)

L

f e "r ~ Jo(qr)gr
I 3/2

I 1/2

1 sin[(dI —1)tan 'q/K j
q i i (dI —i)/2

L 2

I.

(10b)

(1 la)

(1 lb)
(1 lc)

(12a)

(12b)
(12c)

One first notices that Z, (q) reduces to a power of I.
for all integer values of dI. For d=3 one finds L2 for
d& ——3 and L for dI ——2. This suggests the interpolation
equation (1). As

Z, (r)=e " for 1&——3

(13)

(r,d, d&, ) for 2e&r &2R,Zi(r)=

The condition probability Pr[PFM
~

OEM I, or the

Porod function Z(r} (Ref. 8) is given by
—(d —d~ )

r

—Kr

Z, (r)=

the minimum of

fol lI =2

Zz(r)=c for r &2R .

—Krf" ae- "+b' I —Er 2y
d —3

The function A, is slowly varying with r and will be re-
placed in the following by A,(2R,d, d&)=1. The fractal
structure of the medium is easily shown by the occupied
volume V in a sphere of radius r & 2R, which reads as

V(r)= (2e) ~ r ~ .
(d —d ) d

GfI

We shall use the Fourier transform of Zi(r) in the fol-
lowing. Simple analytical forms may be obtained by re-
placing the sharp cutoff at 2R by a soft exponential
cutoff, such that

V(2R) =S&(2e) ~ f r I e "r" 'dr „(7)

with respect to a and b, yields the following ratio be-
tween the coefficients of Eq. (1):

BK l 3—~y

4 d~ —2

At large q values, Z, (q) is equivalent to q
~ for odd

Euclidian space dimensions.
The porous medium built up by the random process

described above has fractal correlations up to a cutoff
2R. The Fourier transforms of the fractal correlations
yield all the analytical forms used in the fit of the data of
neutron-diffraction experiments. %e shall now consider
some experimental results in order to check the reliabili-

ty of the model.

where V(2R) is given by Eq. (6). The soft cutoffis n' ot
expected to strongly modify the Fourier transform since
the small q values are dominated by the occupied
volume and the large q' arise from the small r'. The re-
ciprocal correlation length K is given form Eq. 4,

'7) as

ER = ,'[dgI (d~)]—

III. RANDOM-FIELD SYSTEMS

Random-field systems are Ising antiferr

orna

g

nets,
which behave in an uniform field as an Ising ferrornagnet
in a random field. ' %e shall consider the latter, which
is split into domains. The porous medium is considered
to be formed by the up (down} spins and, consequently,
Eq. (4) becomes

and Z, (r) now reads as
' —(d —d~ }

(16)
—(d —dI )

—Ar

26'
R and e are, respectively, the largest and the smallest

radius of curvature of the boundary of the medium, i.e.,
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of the domain walls. e may be taken as the domain-wall
width, and it has been shown that 8 scales as 0 in
field-cooled experiments. ""' %e then expect dI to be
very near d [from Eq. (16)] in very low fields. As the
spin correlations have a cutoff at r=28, the structure
factor is the Fourier transform of Z, (r). L and L ~

forms have been, respectively, obtained in the 30
Fe„Zn, „Fz(Ref. 13) and the 2D Rbzcoo 7Mgo zF4 (Ref.
4) compounds, in agreement with Eqs. (12b) and (lib).
An interesting feature has been observed in
KzNi„Zni „F4(Ref. 14), where the interplanar interac-
tion is much smaller than the in-plane interaction. The
30 order breaks up in very low fields, while higher fields
are needed to brcak up the 20 order. For scans along
the c axis the system behaves as 10 system in low fields
and the correlations have an exponential decay, implying
d&

——1. In higher fields, the tail of S(q) has a q depen-
dence for scans in the plane. This is consistent with a
2D systeiil witll df ——2 [Eq. (1 lb)]. In very high fields,

d& should be different from d if Eq. (16) is satisfied. It
has been observed in the 30 Co03jn07F2 compound
that S(Q) changes from a dominant Lz form in low
fields to a L form as the field increases. At 8,4 kG a
good fit is obtained with I.', suggesting dI ——2.4 from
Eq. (12a). The experimental data considered here seem
to be consistent with the model; it would be, however,
interesting to check if Eq. (16}holds; namely, if

and (15). The sinall-angle structure factor of
(Feo 7~Mno z5)7sP, 686Alz has been fitted by the power law

q
' and by the form (1). The data have been recorded

for q ~~K and the best fit is obtained with the power-law
form. The experimental parameters of the form (1), to-
gether with Eq. (1S), yield d& ——2.66; this is consistent
with the value given by the power law fit. Qn the other
hand, we have obtained a good fit of the data for q ~ 3K
with Eq. (12a). The fractal dimension is 2.59 and the re-
ciprocal correlation length 0.026 A, while Eq. (1) gives
0.015 A . The agreement is satisfactory if we consider
that the latter fit is better at low q than at large q values.

In reentrant spin glass in decreasing temperatures the
correlation length increases up to a maximum at TG and
decreases as the temperature further decreases. The
latter behavior is usually interpreted as the breakdown
of the long-range ferromagnetic order. The power-law
fit of the structure factor of (Feo.70Mno. so)7sPi6B6A13
(Ref. 3) shows an increase of the exponent up to 2.4 at
TG and then a decrease up to a=2.1. With Eqs. (8) and
(4) we may conclude that the volume of the fractal
strongly decreases below TG, in agreement with the pic-
ture of the breakdown of the ferromagnetic phase into
domains. As for the random-field systems, R -E ' is
the largest radius of curvature of the domain wall. The
domain walls are pinned and E scales as the smallest
pinning force. '

v(d —d~ )lnH = —1n2+ A, (d —dI ),

where A, is a constant.

IV. FRUSTRATED SYSTEMS

c for all r,Z
[Z, (r) —c] for r &2R .

(18)

%e restrict ourself to frustrated ferromagnets, which
undergo a ferromagnetic to spin-glass transition as the
concentration in magnetic species decreases. %e shall
first consider a single ferromagnetic domain with spin-
glass inclusions. This corresponds to the semi-spin-glass
phase considered by Villain. ' The fractal to be con-
sidered consists of the ferromagnetic phase, for which
Porod function may be written as

V. CONCLUSION

%e hope that new experimental data considered along
the lines developed in this paper will appear and confirm
the reliability of the model. The main result is that mag-
netic domains may be fractal. From a topological point
of view, a fractal dimension near 2 in a 30 system corre-
sponds to a gasket in which the largest radius of curva-
ture of the boundary is given by E '. This picture
strongly divers from that of spherical domains of radius
K '. %e have considered a fractal whose occupied part
of the space has an uniform density. Near a phase tran-
sition the thermodynamic fluctuations become relevant,
the density is no longer uniform, and the model breaks
down in a nontrivial way. However, at low tempera-
tures, thermal variations of K and dI may be related to a
temperature-dependent topology of the system. Magnet-
ic systems of interest are diluted and care must be taken
of percolation, since the infinite cluster near p, is fractal
itself.

The first term in Eq. (18} yields Bragg scattering,
while the second one, which gives the dimuse scattering,
may be reduced to Z, (r) for q &~1/R. For 3D systems
we then expect S(Q) to be given by Eq. (12a) or (1)
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