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Polaron effective mass
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Adequacy of various de6nitions of polaron effective mass m is examined. The expression for
m obtained by using the zero-temperature kernel is compared with the zero-temperature limit of
the temperature-dependent e5'ective mass obtained by employing the finite-temperature kernel.
%'e Snd that consistent results are obtained when Saitoh's definition is employed. Our calculations
are illustrated for a simple case of weak electron-phonon interaction.

The polaron problem' has continued to attract the
attention of physicists ' since the concept was first in-
troduced by Landau' and subsequently developed by
Frohlich2 Extensive reviews on the subject are now
available. '

Briefly, a polaron is an electron in a po-
lar crystal moving together with the self-induced polar-
ization of the lattice. As a consequence of the electron-
phonon interaction (the Frohlich interaction) the pola-
ron tends to have a lower energy and higher effective
mass compared to that of a bare electron. Several
methods exist for calculating these two important pa-
rameters of the polaron, viz. , the self-energy and the
effective mass. Perhaps the best among these is the
famous path-integral theory of Feynman, which is valid

for arbitrary coupling strength a of the electron-phonon
interaction.

The Lagrangian of the total system consists of a sum
of the Lagrangian of the free phonons, the Lagrangian of
the electron, and the interaction potential between the
electron and phonons. The dynamics of this system is
described by a path integral over electron and phonon
coordinates. Moreover, the Lagrangian being quadrac-
tic in phonon coordinates, the path integration over
these coordinates can be performed exactly. Further,
eliminating the phonon end points, the problem reduces
to the path integration of a two-time (nonlocal} efFective
action functional S involving only the electron coordi-
nates and the phonon kernel G(t —s ):

rn ttd . g v 2am tt tjd d'k expjik [x(t)—x(s)]jG(t —s)s=— dt x dt ds
2 o v m o o (2~)3 k

G(t —s)= exp( —
i
t —s

i ) . (2a)

On the other hand, if the averaging is done by taking
trace of the total density matrix over the phonon coordi-
nates, one gets the finite-temperature kernel

G(t —s)= cosh[(p/2) —
~
t —s

~
]lsinh(p/2} . (2b)

G(t —s) is a function of ~=
~
t —s

~

. Since for a finite r,
kernel (2b) reduces to (2a) in the limit phoo, it is ex-
pected on physical grounds that the expressions for all
the physical quantities associated with the polaron ob-
tained using kernel (2b) should go over to the corre-

The explicit form of the kernel G(t —s) depends on how
the phonon end points are eliminated from the joint
electron-phonon density matrix. The so-called zero-
temperature kernel results if the phonon coordinates
are eliminated by averaging the density matrix with
respect to the ground state of the free phonons:

I

sponding expressions obtained by using kernel (2a) when
the suitable limit is taken. However, such a claim can-
not be rigorously justi6ed. %'e have found a curious re-
sult regarding the polaron effective mass. We believe
that this type of anomalous result is not so well known
in the context of the polaron problem. Working with
the Feynman de6nition of the efFective mass and follow-
ing Feynman's variational technique, we Snd that the ex-
pressions for the efFective mass obtained by using kernels
(2a) and (2b) turn out to be quite diFerent even in the
zero-temperature limit. One is led to similar conclusions
if one follows the de5nition of the efFective mass due to
Krivoglaz and Pekar. ' However, the de6nition given by
Saitoh' and subsequently employed by Castrigiano
et aI. ' is found to be free from the anomaly mentioned
above. We shaH illustrate these facts by considering the
case of smaB coupling strength a.

It is well known that for small a the expression for
Feynman effective mass of a polaron is given by
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m'/rn =1+a/6 . (3)

%e Snd that the above result is obtained only when one
employs the kernel (2a) (also employed by Feynman in
his work). On the other hand if one employs the finite-
temperature kernel (21), then m' diverges in the zero-
temperature limit. The Srst nondivergent correction
turns out to be a/12, and consequently

m /m = 1+a/12 . (4)

Since the zero temperature is always to be looked upon
as the limit of finite temperature, one runs into an un-
comfortable situation.

Based on the use of kernel (2a) in the action (1},Feyn-
man conjectured that for small polaron velocities (i.e.,
in the limit of [

x"—x'
~
~0 and P~00}, the polaron

density matrix (PDM) K(x",P
~

x', 0) would have essen-
tially the free-particle form

where K0 is the well-known free-particle density matrix

Eo(x",P ~

x', 0)= (m /2mP) r exp( rn
~

x"—x'
~

—/2P)

corresponding to the trial action S0 obtained from S of
Eq. (1} by setting a=0 and ((S—So))s has its usual

meaning. Thus the task of Snding It. within this ap-
proximation reduces to that of finding ((S—So) )s .

To obtain the polaron effective mass we need evaluate
the asymptotic form (P~ ce ) of ((S—So) )s . Using the

E(x",P ~

x', 0)= A exp[ —(m «/2P)
~

x"—x'
~

i] . (5)

The coefficient of =
~

x"—x'
~

/2P, expected to be a
finite constant in the limit P~ ao, in the asymptotic ex-
pression for K is then identified as the efFective mass of
the polaron. Although Feynman did not employ this
definition but resorted to somewhat intuitive considera-
tions to obtain m', he used kernel (2a) and obtained ex-
pression (3), which was in agreement with the then-
available i perturbation-theory estimate. Subsequently,
Sa-yakanit ' studied the problem using the polaron ker-
nel (21). He adopted the Feynman definition (5) of m'
and has derived an expression for it which is in complete
agreement with the one derived by Feynman. In partic-
ular, his expression for m' [with the use of kernel (21)]
for small a agrees with the expression (3). This gives the
impression that the Feynman effective mass is insensitive
to kernels (2a) and (21}and apparently agrees with one' s
physical intuition. We demonstrate below that this is fax
from the truth.

Following Feynman we shall evaluate the PDM corre-
sponding to the action (1) within the so-called first-
cumulant approximation. Since we want to demonstrate
the difFerence between the results for m ' for kernels (2a}
and (2b) we shall restrict attention to the case of small a.
For this case, a free-particle trial density matrix is ade-
quate. Hence we shall approximate the PDM as

K(x",P ~

x', 0)=K,(x",P
~

x', 0) exp[ —
& (S—S, ) & ],

where a=
~

x"—x'
~
u/P and b=u(P —u)/2rnl3. The

explicit form of G has thus far not been used. To ex-
press It in the form of (5) we write

—&S—So&s,——(a/~)(2/m)'"[Z, +Z,
~

x"—x'
~

'

+0(
~

x"—x'
~

)],

where

and

~n Pd (P—u )G(u)
2 0 Vb(u)

(10)

rr Ird (P—u)u G(u)
24P o [b(u)] r

The first term in the expression for (S—So)s, which is

independent of
~

x"—x' ~, contributes to the polaron
ground state energy. The second term involving Zz con-
tributes to the effective mass. Adopting the Feynman
definition of m' and using the explicit form of b(u) we

gei

m'/rn =1+(a/3)(P/n )'

X f [u /(p —u )]'r G(u)du . (12)
0

With kernel (2a) we have G(u)= exp( —u) and we have
the following closed-form expression for the integral in
Eq. (12)

f [u /(p —u )' e "du

= (Pm /2)[IO(P/2) —I,(P/2)]e ~r, (13)

where I0 and I, are the modi5ed Bessel functions. Em-
ploying the formulas for the asymptotic expansion for
Bessel functions me Snd that the dominant contribution
to the integral in expression (12) as p~ ao is (m. /4p)'r~.
This shows that Feynman's conjecture regarding the
asymptotic form of the PDM is valid for kernel (2a) and
expression (3) for m ' results, in agreement with
Feyman's estimate. Next consider kernel (21). In this
case the dominant contribution to the integral in Eq. (12)
is no longer proportional to 1/v'p. In fact it is readily
seen that

f [u /(P —u )]'r
t cosh[(P/2) —u ]/sinh(P/2 I du

=PmIO(P/2)/2 sinh(P/2), (14)

definition of ( ) and exploiting the symmetry of ker-
nels (2a) and (21) with respect to the interchange of t and
s, a straightforward calculation leads to the following ex-
pression for ((S—S ))S:
—(S —So)s —— f du(P —u)G(u)

m n'
~

dk
sin(ka)

dk e
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where I0 is the modified Bessel function of order zero.
Again from standard formulas for the asymptotic expan-
sion for Bessel functions we see that the right-hand side
of the above equation reduces to (mp)' +(tt/16p)'
+O(P ). Thus, in the case of kernel (2b), the PDM
does not have the requisite asymptotic form conjectured
by Feynman, because m' diverges with p. If we retain
the first nondivergent term we get the result (4). We
may mention here that Sa-yakanit, " who also dealt with
the polaron efFective mass using the finite-temperature
kernel (2b), inadvertently suppressed the above diver-
gence by making a simplifying assumption. More
specificall, the large-p approximation suggested by Eq.
(16) of Ref. 11, viz. ,

—(S—So )s

f dt f ds G(t —s)
tn 21T 0 0

i. "dk»n(k I
~

I f), k'h-
"o kiA If

where 3 =(t s)(P—t ——s)/2m and b is defined as be-
fore. We can write (S—So )s in the form

0

—(S—S ) =( / )(2/ )' '[Z, + f fZ,'

+0(( f f )')j, (18)

f dr f dog(ir tri)—
0 0

=2 f dx(P x)g—(x)=2P f dx q(x),
0 0

where after some simplification we get

t3d (P—u) u G(u)
288P' o [b (u)]

(19}

K(O,P I
0,0)=Cexp( —P'f f/24m*) . (16)

To employ this definition one must modify the polaron
action (1) and also the corresponding trial action to in-
clude a force term. A straightforward calculation leads
to an expression for (S—So)s, which upon setting

0x"=x'=0 reads as

is valid only if g (x) does not depend on p. It turns out
that if one uses the correct dependence of g (x) on p, Eq.
(18}of Ref. 11 gets modified, indeed leading to a diver-
gent m'.

Apparently there seems to be no way of removing the
divergent character and we may surmise that the
definition of effective mass m" portrayed by Eq. (5) is
inadequate. In this context, it may be imperative to ex-
amine other definitions of m' available in the litera-
ture. ' ' ' Employing similar methodology as above,
we find that the discrepancy between the two expressions
for m' persists for other definitions' ' as well, except
the one given by Saitoh. ' He considered the polaron
under the infiuence of a vamshingly small force f and
defined the efFective mass in terms of the diagonal ele-
ment of PDM as

This leads to an effective-mass formula

m/m'=I —(a/3&m. )(P) ~ f &u (P—u) ~ G(u)du .

(20)

The integral appearing in Eq. (20) can be evaluated in a
closed form. It is equal to (n p /4)e ~ [I,(p/2)
+I2(P/2) j for kernel (2a) and [ttP /4 sinh(P/2)]I, (P/2)
for kernel (2b). Noting the asymptotic expansion of
Bessel functions we see that the resulting expressions for
ttt /m" reduce to the correct limiting value (1 —a/6) as
p~ Do.

Thus we see that the effective mass defined by Saitoh
gives consistent results with regard to kernels (2a) and
(2b). We may also add that the definition used by
Peeters and Devreese for the temperature-dependent
effective mass is also adequate in the above sense. The
reason why these two apparently different definitions' '

of the effective mass yield the correct value for m' is
probably due to the fact they are directly based on the
response of the system under a small perturbative force.
In contrast, the other definitions of the effective
mass ' ' are ad hac and have no precise operational
meaning.
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