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%'e investigate the difFusion problem on random networks in two dimensions by directly calcu-
lating matrix elements of transport operators on percolating clusters with up to 440000 sites. The
mean-square displacement, difFusion coeScient, and probability of returning to the origin are cal-
culated and then analyzed in the context of dynamical scaling theory. From these results, we del-

ineate the time and density regimes over which scaling arguments are quantitative. %e also show
the relative fluctuations in the random walk and present evidence that the eigenvalues and eigen-
vectors of the transfer rate matrix become Euclidean at difFerent points in spectral space.

I. INTRODUCTION

The dynamics of many disordered condensed phase
systems can be pro6tably modeled by random stalks on
networks generated by percolation processes. Examples
include the transport of localized excitations in mixed
organic crystals' and glasses, and the conductivity
of composites and dispersed ionic conductors. In these
systems, transfer occurs via a short-ranged hopping
mechanism so that percolative behavior may be seen.

A wide array of theoretical approaches have been
developed in an effort to understand and characterize
such systems: efFective medium theories,
continuous-time random walks, ' ' series expan-
sions, renormalization-group techniques, ' and
scahng arguments. ~ o These methods have provided a
qualitative and, in some cases, a quantitative description
of the behavior of transport observables. For the most
part, however, these approaches are strictly valid for
only limited density or time regimes. For instance, in re-
cent years scaling approaches in conjunction with fractal
concepts have provided a detailed picture of transport
near the percolation threshold, p, . As shown here, how-
ever, this picture is quantitatively accurate only for ei-
ther asymptotically long times or densities p such that
(pip, ) —1 & 0.012 (p &p, ).

Monte Carlo experiments ' ' ' have also shed con-
siderable insight on transport in disordered systems,
often complementing the above analytical techniques.
For example, computer simulations have provided accu-
rate estimates of critical exponents, and have con6rmed
and clari6ed the basic conclusions of scaling theory. A
primary consideration in Monte Carlo studies of random
walks is the computational effort required to collect
sui5cient statistics for the determination of a particular
observable. This is especially important for walks on
percolating systems due to the presence of both spatial
and temporal Suctuations. Thus, averages must be per-
formed over not only cluster con6gurations consistent
with a speci6ed density, but also over many walks on a
given cluster. If the major contributions to an observ-
able depend on a smaB percentage of the total number of
possible walks, as in the case of the long-time behavior

of Po(t), the probability of returning to the initial posi-
tion at time t, then the computation cost may be prohi-
bitive.

In this paper, we investigate diffusion on percolating
networks by directly calculating matrix elements of
transport operators far systems large enough to yield
physically meaningful results. This strategy is made
feasible by recent advances in numerical analysis and the
development of the recursive residue generation method
by %'yatt and co-workers. The main advantages of
this approach are the following.

(1) It can provide quantitative results for any time or
density regime.

(2) The temporal statistics are exact, and hence only
configurational averages and, in some cases, averages
over starting positions are required.

(3) The method is sufficiently general to handle not
only the canonical percolation transport problem, but
also related roblems involving traps, anisotropic
diffusion, 46-4 non-nearest-neighbor transfer, so and poly-
mers. ""

We have used the procedure here to determine Po(t),
R (t) (the mean-square displacement of the walker at
time t), and D (t) (the associated diff'usion coefftcient) for
the site percolation problem on the two-dimensional
square lattice with diffusion governed by the Pauli mas-
ter equation. In Secs. II and III, the methods are dis-
cussed in detail. The results of calculations on the per-
colating cluster for densities in the range p=0.60-0.70
are presented in Sec. IV and then analyzed in the frame-
work of dynamical scaling theory. %'e also shaw the
variance of R (t), and present evidence suggesting that
the density of states and eigenvectors of the transition
rate matrix become Euclidean-like at different points in
the spectrum of the matrix. In Sec. V, we summarize
our results and compare the relative merits of Monte
Carlo simulations ta the algorithms discussed here.

II. Po(t)

The specific model considered is site percolation on
the two-dimensional square lattice. For an isolated clus-
ter of open sites, the transport properties are assumed to
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be governed by the Pauli master equation

dp„(t}
dt

S
g w „p (t) w—„p„(t), n =I, . . . , N .

Here p„(t) is the probability that site n is occupied by
the walker at time t, m „ is the transfer rate from site m

to site n, and N is the number of open sites comprising
the cluster. Eq. (1) may be rewritten in matrix form as

where the nth element of the vector P(t) is p„(t), and the
transfer rate matrix 8' is the XgX array consisting of
the elements

[W] „=(1—5 „)w „—5 „g w„
j=i

(3)

with 5 „ the Kronecker delta. The formal solution of
Eqs. (1) and (2) is

P(t}=e~'P(t =0)=G(t)P(t =0), (4)

where P(t =0) is the initial probability distribution of
occupied sites. The matrix elements of the Green's func-
tion G(t), G „(f)=(m

~

G(t)
~

n ), give the conditional
probability that site m is occupied at time t, if site n is
occupied at t =0.

In particular, the diagonal elements of g(t) give the
probability the walker returns to its original position.
Therefore, assuming a uniform initial probability distri-
bution of occupied sites [that is, p„(t =0)=(1jjE) for all

n], Po(t) is given by the expression

P,(t)= —y (j
~
G(t)

~j ) =—Tr[G(t)]=—Tr(e —') .
1 . ~ 1 1

E

Recalling that the trace of a matrix is equal to the sutn
of its eigenvalues,

Po(t)= —g e '
j=1

(6)

Pj+ lvj+ 1
= Wvj Qjvj —Pjvj 1,—j = 1, . . . , m

a, =(WV, , V ),

where [A. I i is the spectrum of the transfer rate ma-
trix $V. The problem of calculating Po(t) is thereby re-
duced to determining the density of states of 8'.

The eigenvalues of 8' are found by first using the
Lanczos algorithm, as modified by Paige ' and Cullum
and %illoughby, to generate a symmetric, tridiagonal
matrix T which is related to 8'by a similarity transfor-
mation; the bisection method is then employed to
determine T 's spectrum. Briefly, the Lanczos algorithm
tridiagonalizes 8' by constructing a sequence of ortho-
normal vectors [v, J from an initial vector v, according
to the recursion formula

vo ——0 and Pi ——0. The a and P form, respectively, the
diagonal and off-diagonal of the m &m matrix T. The
procedure is well-suited for the present problem since
the storage requirements are between 6X and 8X: 3N
for the Lanczos vectors v,-, 1X—2X for T as explained
below, and by structuring the sparsity, approximately
2N-3S for performing the matrix multiplication 8'v,
depending on the density; thus clusters on the order of
10 sites may easily be handled on a Cray X-MP or
Cyber 205 supercomputer. Moreover, by exploiting the
sparsity of 8', the number of arithmetic operations re-
quired by the Lanczos procedure is 0 (N ), in contrast to
other tridiagonalization routines which cannot take full
advantage of 8"s sparsity and therefore typically scale
as%.

In exact arithmetic, the Lanczos algorithm would ter-
minate at the mth recursion (P +,——0, m &N) with the
m eigenvalues of T corresponding to the m distinct ei-
genvalues of W whose eigenvectors have a nonzero pro-
jection on v&. The use of finite-precision arithmetic,
however, introduces roundoff error which in turn leads
to a I'oss in the global orthogonality of the t vj Ij,. This
numerical instability has two important consequences.
First, the requisite number of Lanczos steps is no longer
bounded by N, but depends on the structure of 8"s
spectrum and the location of the desired eigenvalues
within the spectrum. Numerical experiments by Cullum
and %illoughby show that well-separated, eztremal ei-
genvalues typically require the fewest number of recur-
sions with m &N, ~hereas clustered eigenvalues in the
interior of the spectrum may require m te be as large as10¹These general observations were found to hold
here. If the time is scaled so that the transfer rate be-
tween any two open, nearest neighbors is 1 (w „=1),
then the spectrum of W by Gerschgorin's theorem lies in
the closed interval [—8,0]. For intermediate to long
times (t ~ 100), only eigenvalues in the range [—0. 1,0.0]
make a significant contribution to the sum in Eq. (6). By
systematically varying the number of Lanczos recursions
for several 6xed clusters, it was found that m =0.7N to
0.8N was suScient to secure the convergence of most of
these eigenvalues for a random initial Lanczos vector,
v&. By choosing v& to be the sum of the low-k eigenvec-
tors for the corresponding problem on the regular square
lattice, we were able to reduce m to between 50-60% of
¹ These observations are corroborated by Fig. 1, which
shows the variation of Po(t) with the number of recur-
sions for a cluster of X =57 500 sites (density of 0.66 on
a lattice of linear dimension 300) using a low-k eigenvec-
tor of the foll lattice as an initial Lanczos vector. As
seen in the figure, the results for recursion numbers
greater than 0.5X essentially agree for all times greater
than t = 100, whereas for m =0.32%, the calculated
Po(t) does not agree with the higher recursion numbers
until times greater than 600.

A second manifestation of the Lanczos numerical in-
stability is the breakdown of the isomorphism between
the spectra of T and W which is present in exact arith-
rnetic. There are two distinct aspects associated with
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This is an important feature since, as pointed out earlier,
the sum in Eq. (6) depends only on the distribution of ei-
genvalues near the front of the spectrum for the time
scales of interest here. Finally, the spurious eigenvalues
of T may be identi6ed by one application of the Sturm-
sequencing procedure to T', thereby eliminating the
need to diagonalize T'. These advantages taken together
lead to dramatic reductions in the times required to di-
agonalize T. Indeed, prior to our adoption of the bisec-
tion method, this part of the program completely dom-
inated the computational time.

III Rz(&)

I I I S I I I
1$0~

I I l I r%1 I I' t I I

&b& &0&

FIG. 1. Double-logarithmic graphs of Po(t) on a sample
cluster of X =57500 sites (density of 0.66, linear dimension of
lattice of 300) for a range of recursion numbers. From top to
bottom, the curves correspond to the recursion numbers
m =0.8%, 0.64N, 0.48K, and 0,32¹

In addition to Po(t), R (t), and D(t) were also calcu-
lated for the two-dimensional site percolation problem.
Using the nomenclature established in Sec. II, R (t) for
an isolated cluster of N open sites is

&R (t))= Tr(R—e ')= ——g &j ~R e '~ j), (8)

where the (k, l) element of the XXN matrix R is the
squared distance between sites k and I, and the

( ~ j ) JJ, are the basis vectors in the site representation.
Inserting a complete set of site states,

&R'(t))= —y. y &1 ~R'~t &&t ~.~'~J &

N

this breakdown: (1) the multiplicities of the eigenvalues
of T, in general, are not in accord with the eigenvalue
multiplicities of W, and (2) some eigenvalues of T are
spurious, i.e., they are not eigenvalues of W. This prob-
lem is easily circumvented by applying the following
empirically based rules: (1) multiple eigenvalues of T are
always eigenvalues of 8', and (2) nondegenerate eigenval-
ues of T are eigenvalues of 8'only if they are not eigen-
values of T', the tridiagonal matrix obtained by deleting
the first row and column of T. Thus, spurious eigenval-
ues are identified by their presence in both the spectrum
of T and T

Although no rigorous proof exists which validates
these rules, they have been shown to be reliable for a
variety of matrices. We should stress that this pro-
cedure for extracting the eigenvalues of 8' from T is
only feasible if the spectrum of 8'is known to be nonde-
generate or the multiplicities of 8"s eigenvalues are not
needed. For the current W'„diagonalizations using algo-
rithms which yield the correct eigenvalue multiplicity
show that for densities less than one, 8' is degenerate
only for integer eigenvalues less than zero. Since these
eigenvalues lie outside the relevant portion of the spec-
trum, the method as described is applicable.

As mentioned above, the eigenvalues of T are found
using the bisection method. For the present problem,
this algorithm possesses three important advantages over
other algorithms for tridiagonal matrices, such as the ra-
tional QR transformation. First, it is straightforward to
vectorize the Sturm-sequencing portion of the algorithm
which dominates the central processing unit (CPU) time.
Second, only the required eigenvalues are calculated, and
these may be determined to a specified error tolerance.

g (R 2) & )
~

e Iv)
~ j )

J

=—„'x&k, i
-"ij&1

=—gR'(t)-N (9)
J

with
~

k ) =g, ~i )(R ),". The matrix element
& k, ~

e —'
~ j ) =RJ (t) represents the mean-square dis-

placement of a walker at time t with its initial position
at site j.

These matrix elements are determined by utilizing the
recursive residue generation method (RRGM) developed
by Wyatt and co-workers. Following the presentation
in Ref. 42,

&k, ~e~'~ j)= y &k, ~a&&aj&e"

The residue & k, ~

a ) & a
~ j ) &s then seen to be

&k, ]a)&a [ j&=-,'(&t (a)' —&U [a&') . (12)

where A, , and
~

a ) are the ath eigenvalue and eigenvec-
tor of 8', respectively. The important advantage o6'ered

by the RRGM is that the product of the projections of
the eigenvectors onto

~ kj ) and
~ j ) can be determined

without resorting to an explicit calculation of the eigen-
vectors. Let

(~kJ&+
~
j&),

—(/k, ) —
f
j)) .
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The quantities &u
~
a) (the calculation of the &u

~ Iz)
proceeds along similar lines) are the residues of the diag-
onal Green's function

2

G„(z)=&u
i
(zI —W)-'iu &= y

a

with the spectrum of 8 excluded from the domain of
G„. In a representation in which

~
u ) is the first basis

vector, Cramer's rule gives

det(zI W—)

where (zI W} —is the matrix obtained by deleting the
first row and column of (zI /Y }. F—inally, using the re-
lation

N

det(zI W)=—ff (z —A,,),
the residue

&u
~

a) = lim (z —iL )G„(z)z-~

det(zI W—)= hm z-
z-z, det(zI —W)

W —1 N

g (A,~
—A,p) ff (A,~ —A,r) (15)

P=1 y=1
@~a

where IAg&, ' are the eigenvalues of W .
Thus, in lieu of calculating the eigenvectors,

~
a), the

three sets of eigenvalues t A, I „I A,ttI tt, ', and t A~)g,
'

are used to determine the matrix element &kj
~

e—'
~ j ).

These three sets are generated in two separate, modified
implementations of the procedure sketched in Sec. II. In
the first, the tridiagonal matrix T„ is constructed with a
starting vector v, =

~
u ) =(I/~2)I

~

k )+
~
j) I, and in

the second v, =
~

U ) =(1/v'2) I ~

k ) —
~ j ) ) is used to

generate T, , The dimension m of T„and T„„ i,e., the
number of required iterations, is 1-5% of N for the sys-
tems considered here. The relatively small size of m
compared to N reflects the rapid convergence of the sub-
space spanned by the Lanczos vectors v; to the subspace
spanned by the eigenvectors which are strongly coupled
to

~

u ) and
~

u ). Thus, most of the physics of W at in-
termediate to long times is confined to a small subspace
of the full space spanned by 8' and the Lanczos method
is able to home in on this subspace.

After T„and T„are generated, they and T„' and T„',
the matrices obtained by deleting the first row and
column of T„and T„, are diagonalized using the bisec-
tion method. Because the product & kj ~

a & & a
~ j & is cal-

culated as the ditference of two residues [Eq. (12)], the
accuracy to which these residues, and hence eigenvalues,
are required is significantly higher (relative tolerance of
10 ) than that needed for Po(t) or observables depen-
dent on a single Green's function matrix element (rela-
tive tolerance of 10 ), particularly for very large sys-
tems. Also, in contrast to the calculation of Po(t), the
full spectra of the four matrices are needed, since the
residues depend on the global distribution of the eigen-

values [Eq. (15)]. This is not a serious drawback, howev-
er, due to the small size of m.

The numerical instabilities associated with the Lanc-
zos procedure are, of course, still present. Since the ei-
genvalues of both T„and T„' are available here, the re-
moval of the spurious and multiple eigenvalues is accom-
plished by applying a linear algebra theorem which
states that the spectra of T„and T,' must form a Sturm
sequence, i.e., A,„&k„' ~A,„+&~A, „'+& & . . Using this
constraint, if

~

(A,„—A,„'+,)/A, „~ &5 where 5 is a
specified error tolerance, then A,„and I,„'+& are both
spurious and are deleted from their respective spectra.
In practice it was found that the spectra were fairly in-
sensitive to the precise choice of 5. Thus identical re-
sults were obtained for values of 5 ranging from 5 to 100
times the relative tolerance to which the eigenvalues
were obtained; in practice we took 5 to be 10 times the
eigenvalue tolerance. Once the four sets of eigenvalues
have been purged of the unwanted eigenvalues, the resi-
dues [Eq. (15)] are calculated, and Eq. (10) is evaluated.

The diffusion coefFicient, defined here to be
D(t)=[M (t)/Bt], is calculated by taking the time
derivative of Eq. (10),

D, (t)= y ~.&k,
~

a &&a
~ J )e . . (16)

Thus, D (t) is easily evaluated using the quantities from
which R (t) was calculated.

IV. RESULTS

Po(t}, R (t), and D (t) were evaluated for the percolat-
ing cluster on lattices of linear dimension I. =300 and
500, and in the cases of It. (t) and D(t) at L =800, for
concentrations in the interval [0.60,0.70]. At these den-
sities, the clusters ranged in size from X =40000-60000
for I. =300, to N =300000-440000 for I. =800. In or-
der to minimize finite-size effects, periodic boundary
conditions were imposed; the metric in the calculation of
R (t) and D (t) was taken to be the minimum distance
between two sites in the resulting toroidal topology. At
each density, the observables were averaged over
dim'erent cluster configurations and, for R (t) and D(t),
over different initial positions for a given cluster. By
comparing two independent sets of ca1culations, we es-
timated that approximately 10 and 4 cluster configura-
tions were required to secure convergence in determining
Po(t} for L =300 and 500, where convergence is arbi-
trarily defined here and below to be a relative difference
less than 5% between the two sets. For R (t), 15 clus-
ters with two initial points per cluster at L =300, 8 clus-
ters with two starting points for each cluster at L =500,
and at I. =800, 8 clusters with only one initial site per
cluster were needed to obtain agreement between two
sets of calculations. At p=0. 60 and p=0. 62„ the num-
ber of required configurations was significantly higher
than those stated above (up to 15 clusters at L =800)
due to the presence of relatively large spatial fluctuations
in the clusters. The calculations for Po(t) at L =300
were made on a Cyber 205 and took approximately 1000
CPUsec, per cluster. The remaining calculations were
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performed on a Cray X-MP; the evaluation of Po(t) re-

quired 3600 CPU sec per cluster, and for 8 (t) at
I. =800, QM-1400 CPU sec per starting point were
needed, depending on the density.

In Fig. 2, the graphs of lnPO(t) versus lnt for the den-
sities p =0.68, 0.66, and 0.64 at I. =500 and p =0.60 at
I. =300 are shown. Figures 3 and 4 are plots of R (t)
and D(t), respectively, at l. =800 for six evenly spaced
densities ranging from p=0.60-0.70. In the remainder
of this section, the results for R (t) and Po(t) are ana-
lyzed in the context of scaling theory. For both observ-
ables, estimates are made of the following quantities: (1)
the effective time exponent as a function of time, (2) the
scaling exponent associated with the diffusion coeScient
in the Euclidean regime, and (3) the appropriate scaling
function.

According to scahng arguments, the dependence of Po
on t and p for walks restricted to the percolating cluster
is given by

Pu(t, p)-(t/r) (p p, )
" ~—f&(t/r), (17)

where d is the Euclidean dimension, r —(p—p, )
' ' ~+"' is the mean time taken to diffuse the

correlation length g-(p —p, ) ", P is the percolation
, probability exponent, p is the conductivity exponent,
and p, is the critical density. For d =2, the expression
reduces to

Po(t,p)-t '(p p, ) "f,—(tA) .

The functional form of f, (x) is particularly simple in
the limits x ««1 and x ~g1:

x" ' " ~+"' for x ««1f)(x)-
const for x ~~1 .

~

~gggga 45++e™
~g~gya OH&~+'

~W++

%.10 50. DO
103 t

75.10 'l OD. 00

FIG. 3. R~(t) vs t for six densities on a lattice of length
I. =800. From top to bottom p=0. 70, 0.68, 0.66, 0.64, 0.62,
and 0.60.

—d, /2
Pu(t, p)-t (20)

where d, is the spectral dimension, d, =2(2u —P)/(2u
—P+p, ). At long times t gyes or R (t) ~~(~,

Po(t p)-(p p, ) "t '=—[Di(p)t] ' (21)

with D&(p)-(p —p, )" the diffusion coefftcient of po.

Therefore, for times such that 1 ««t ««~ or, equivalent-

ly, on length scales a «8 (t) «g with a the lattice
spacing,

l I I I I I l t I I 1 I I I I

)Q2 10~ 10~

FIG. 2. Plot of lnPo(t) vs lnt for four densities. From top
to bottom, @=0.60 for a lattice of length L =300, and p=0. 64,
0.66, and 0.68 at L =500.

50. 00
103 t

FIG. 4. Plot of D(t)=BR (t}/8t for six densities on a lat-
tice of length I. =800. From top to bottom p=0. 70, 0.68,
0.66, 0.64, 0.62, and 0.60.



37 DIRECT NUMERICAL SOLUTION OF THE MASTER-EQUATION. . . 313

The arguments used to derive the above asymptotic
forms are based on the observation that for length scales
less than g, the percolating cluster is statisticaBy self-
similar, whereas for length scales much greater than g,
the percolating cluster is homogeneous. As a conse-
quence, the random-walk observables undergo a cross-
over from behavior characteristic of transport on fractal
lattices to behavior typical of regular lattices, i.e., the
Euclidean regime.

The functional dependence of R on t and p is, again
from scaling arguments,

R 2(t } r2u/(2v 0+p)f—[(p p )r i/(2u —p+p)] (22)

~pe W
~8 ~

Ia r

~aagg

lim fz(x) —const
x~O

(23)

lim f2(x)-x"

Consequently, in the fractal regime a «R (t}«g,
R 2(r, } r2U/(2u p+g) t

s/6'
(24)

where dF is the Hausdorff or fractal dimension, dF=d
—(P/U). In the Euclidean limit R (t)»g,

b. 00 75. 0025. 00 50. 00
103 t

FIG. 6. Plots of the effective time exponent of E. '(t), a2(t),
a2(t)

where 8 (t)-t on lattices of length I- =800. a2 at time t
was estimated by performing a linear least squares 6t to the
graphs 1nR 2(t) vs lnt for time points near t; the slope of the re-
sulting line was taken to be a,(t). The six densities shown are
p=0.70 ( -), p=0.68 ( - ), p=0.66 (—-—),
p=0.64 (——), p=0.62 (--), and p=0.60 (---).

R (t,p)-(p —p, )" ~t=Dt(p)t (25)

I~

i/

s

D. 00 25. 00 50. 00 75.00 )CO. DD

102 t

FIG. 5. Graph of the effective time exponent of I'o(t), al(t),—
a( (I')

where Po(t)-t ' . al at t was found by performing a linear
least-squares 5t to the curve lnPo(t) vs lnt for time grid points
in the immediate neighborhood of t; the slope of the resulting
line ~as taken to be a, (t). The upper three curves mere de-
rived from calculations on a lattice of length I.=500 at the
concentrations p =0.68 (—-—), p =0.66 (———), and
p=0. 64 (—-), and the lover curve from calculations on lattices
with I. =300 and p=0.60 (--—).

with Dz(p) the diffusion coefficient of R .
Figures 5 and 6 show the elective time exponents

ai(t) and a2(t) of Po(t) and R (r), respectively, where

—a&(t) o.&(f)Po(t)-t and R (t)-t . These functions were
obtained by performing a linear least-squares fit to the
graphs of lnPo(t) versus lnt, and lnR (t) versus lnt for
time points in the immediate neighborhood of t; the
slope of the resulting line was taken to be the value of a,
or a2 at time t.

At p=0.60, the correlation length is relatively large so
that on the time scales over which the calculations were
made, the transport observables should exhibit the
anomalous behavior characteristic of the fractal regime.
Hence, Po(t) should vary as Po(t)-t o~„and R2(t) as
R (t)-r ' . The numbers 0.66 and 0.70 are derived
from the two-dimensional values of the critical ex-
ponents P=0. 1388, u =—'„and)u=1. 298. As seen in Fig.
5, a, (t) at p =0.60 is within 3% of 0.66 from
t =200—3000. For R (r) at p=0. 60, the efFective time
exponent is essentially constant for t in the range
t =30000-70000 with a magnitude approximately 5%%uo

greater than 0.70. This small, but marked deviation
demonstrates that even for densities within 1.2% of p„
the quantitative behavior of 8 is already intermediate
to the fractal and Euclidean limits. For t p 70000, the
gradual increase in az(t} signals the incipient crossover
to the Euclidean regime. The nonconstant time depen-
dence of R for t g 30000 shows that finite-time erat'ects

are signi6cant on this time scale. Therefore, as discussed
in Refs. 31 and 35, an accurate scahng description of 8
for these times requires the inclusion of correction-to-
scaling terms which vanish as t goes to in6nity.

For densities greater than 0.62, the correlation length
is small enough to preclude simultaneously satisfying the
inequalities a «R (r) «g . Consequently, the observ-
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ables do not exhibit a fractal time dependence, but rath-
er a continuous transition from the short-time behavior
to the Euclidean limit. a, (t} and a2(t) both illustrate
this point: from their initial, intermediate values, they
rapidly increase to relatively constant values near 1.0.
The density 0.62 is borderline, as seen in Fig. 6. For t
up to approximately 5000, a2(t) is apparently decreasing
toward the fractal value; however, at this time it abrupt-
ly changes direction and begins a slow crossover to the
Euclidean limit.

The departure of ai(t) and az(t) from 1.0 in the long-
time limit for densities greater than 0.62 may be attri-
buted to the finite size of the systems we considered.
Thus, because 8' is finite dimensional, the density of
states for the algebraically smallest eigenvalues, which
governs the long-time behavior, is either zero or deplet-
ed. The effect of finite size is especially prominent at
larger densities since the diffusion coe%cient is large,
rejecting the high degree of connectivity present in the
clusters; the walker thus sees the boundaries at a much
earlier time than when on a cluster at a lower density,
where the walks are much more convoluted. At
I. =800„ the effective time exponent begins to rapidly de-
crease from its Euclidean value when R (r)-20000-
25000 for the four densities p=0.64-0.70. Therefore,
assuming this decrease is a manifestation of the presence
of finite-size effects, the results for R (r) and D(t) at

p =0.60 and 0.62 should be valid up to the times shown
in Figs. 3, 4, and 6.

Although a, (t) and az(t) are qualitatively similar for
densities greater than 0.62, the times for the onset of Eu-
clidean behavior di8'er dramatically. For example, at
p=0. 68, a, (t) first equals 1.0 at r -600, while az(r)-1.0
at t -10000. Because Po(t) depends only on the density
of states, whereas R (r) depends on both the eigenvalues
and eigenvectors of 8', this observation suggests that in
spectral space the point at which the eigenvalue distribu-
tion becomes similar to that of a regular lattice
[g ( A, ) —iP where g (A, ) is the density of states] is
significantly smaller than the point at which the eigen-
vectors become Euclidean-like (Bloch functions).

The second component of our analysis consisted in
verifying the scaling behavior of the diffusion coeScients
in the Euclidean regime. According to the arguments
presented above, Po(t) should scale as [(p —p, )&t]
= [D, (p)t] ' in the long-time limit, and R (t) as
(p —p, )" ~t =D2(p)t. D, (p) was estimated as Po(t)t at
the time point for which Po(t)t was "most" Euclidean,
that is, the time r such that

~
a, (t)—1.0

~

was a
minimum. Similarly, D2(p) was taken to be the value of
M (t)/dr=D(t, p) at the time t where

~
a2(t) —1.0

~

was a minimum. These procedures, although plausible,
are admittedly ad ho@ and lacking in rigor. However, in
practice, both approaches yielded well-defined and
unique time points; moreover, the diffusion coeScients
in this time regime were observed (see Fig. 4) to vary by
only a few percent over fairly long time intervals, so that
any inaccuracy associated with the procedures would
most likely be masked by the statistical Auctuations
present. This claim is supported by the observation that

values of D, (p) and D2(p) obtained by splitting the aver-
ages over lattices into two separate sets yielded diffusion
coefficients which differed from each other and the full
average for the same t by at most a few percent.

Table I lists the estimates of D, (p) at p=0. 64, 0.66,
and 0.68 on lattices of length I. =300 and 500. Table II
presents the Di(p) data for l. =300, 500, and 800. The
values of p and p —P in Tables I and II, respectively,
were obtained by performing a linear least-squares
fit through the points ln(p —p, ), lnD, (p ) and
1n(p —p, ), lnD2(p) and taking p and Iu —P to be the
slopes of the resulting lines. The last column in Table II
is the sum of the calculated p —P and the accepted value
of P=0. 1388. The estimates of the conductivity ex-
ponents shown in Tables I and II are, with the exception
of the L =300 entry in Table II, in quantitative agree-
ment with the currently accepted value of
@=1.296. ' The error in the I. =300 entry for
Dz(p) reflects the onset of finite-size effects prior to the
times at which R (t) has reached the Euclidean regime.
This problem does not occur for Po(t) at L =300 since,
as discussed above, Po( t) reaches the Euclidean limit on
a much shorter time scale than R (r). We should note
at this point that we have excluded data at p =0.70 from
Table II on the grounds that at this density, scaling
theory is only marginally valid; graphic support for this
claim is presented in Fig. 8 below.

In Figs. 7 and 8, the scaling functions f i(x) and f&(x)
are represented by plotting Po(t)(p —p, )"t against—ds /dF
i(p —p, )~' ~+", and R (t)t ' versus (p
—p, )'~'2' ~+"'t The .two graphs reinforce the con-
clusions previously stated. For densities in the range
p=0. 62 to 0.68, the near coincidence of both the f ~

(x)'s
for x ~0.05 and the fz(x)'s for 1.0&x &2.0 demon-
strate that scaling theory provides an accurate descrip-
tion of transport in the long-time limit. The noticeable
shift of f2 (x ) at p =0.70 in the interval 1.0 & x & 2.0 in-
dicates scaling arguments are only strictly valid up to
p-0. 68. At p=0. 60 and 0.62, f&(x) appears to be ap-
proaching a constant value in the limit as x goes to zero,
as expected; the evidence presented here, however, does
not conclusively show that scaling theory is quantitative-
ly accurate for these densities in the fractal regime.

In Fig. 9 we plot the relative fluctuations in R (t) as a
function of time at I =800. These graphs were obtained
by calculating the standard deviation of R (r) from the
available data and then normalizing the result by R (t}.
The curves shown are in complete accord with physical
intuition. At the smaller densities, the large relative
variance in R (t) is a direct manifestation of the pres-
ence of large spatial Auctuations in the cluster

300
500

1.4129
1.4576

0.9077
0.9260

0.6405
0.6528

1.289+0.020
1.309+0.014

TABLE I. Euclidean di6'usion coefticient Dl (p) and conduc-
tivity exponent p for Po(t).

D 1(P)
p=0. 64 p=0. 66 p=0. 68
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TABLE II. Euclidean dilusion coeScient D&(p) and conductivity exponent p for 8 (t).

0.4558
0.4233
0.4242

0.6520
0.6370
0.638¹

0.8631
0.8518
0.8710

1.04
1.142
1.173

1.179+0.015
1.283+0.010
1.311+0.008

configurations; at higher densities, the percolating clus-
ter is much more homogeneous. With the exception of
p=0. 60 in the time interval [15000,30000}, the graphs
in Fig. 9 are all monotonically decreasing; this again is
intuitively obvious, since the observables should at long
times lose their memory of the local geometry of the
cluster at their initial position.

V. CONCLUSIONS

In the foregoing, we have presented a novel procedure
for determining transport observables on random net-
works. Our results confirm that dynamical scaling
theory is quantitative in the Euclidean limit for concen-
trations up to p=0. 68 and only marginally so for
p=0. 70. The calculation of R (t) at p=0.60 is in only
qualitative agreement with scahng theory, thereby
demonstrating that scaling arguments are strictly valid
in the fractsl regime only for densities p such that
p/p, —1 & 0.012. Finally, comparisons of Pc(t) and
8 (t) in the long-time limit suggest the distribution of
eigenvalues and the eigenvectors of the transfer rate ma-
trix become Euclidean at difFerent points in spectral
space.

Because convergence of R (t) to the Euclidean limit is
relatively slow, many experiments on disordered systems
will require time-dependent calculations in the crossover
regime. For p &0.60, this is not rigorously described by
a self-similar approxiination; instead, the e(Fective time
exponent ai(t) gradually approaches 1. Our nuinerical
calculations produce accurate values of ai(t) [or,
equivalently, of D(t)] and thus can be used to interpret
such experiments.

The results presented here demonstrate that accurate
solution of the master equation via the Lanczos algo-
rithm is computationally feasible, even for very large
disordered clusters. %e now compare our numerical
methods with conventional Monte Carlo simulations.

For a large class of problems, the I.anczos procedure
provides qualitatively superior statistics (and hence com-
putational eficiency) as compared to random-walk algo-
rithms. An example of this given here is the calculation
of Pc(t), particularly at long times where the infrequen-
cy of return to the origin makes collection of accurate
statistics prohibitive in alternative approaches. Other
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0. 40

FIG. 7. Graphs of the scaling function f, (x) where
Po(t) =[t (p —p, )"] 'f, [t (p p, )

" a+"] with p, —the percola-
tion threshold, p the conductivity exponent, u the correlation
length exponent, and P the percolation probability exponent.
The graphs mere made by plotting I'0(t)t (p —p, )" vs

t(p —p, )'" ~+". The three densities shown are p=0.68 (---),
p=0.66 (——), and p=0.64 (—-), and are derived from. calcu-
lations on a lattice of length I.=500.

0. 00 2. 00
X

3.00 4. 00

FIG. 8. Plots of the scaling function f2(x) where
Rt(t)=t " ' ' s+"'f [(p—p )t'~'~' a+"'] with U the correla-
tion length exponent, P the percolation probability exponent, )Lt

the conductivity exponent, and p, the critical density. The
graphs mere obtained by plotting R2(t)t "~( " ~+") against
(p —p, )t ' ' " +"'. The six densities shown are p=0.70
( -), p=0. 68 ( - ), p=0.66 (—-—), p=0.64 (——), p=0.62 (—-), and p=0.60 (-—-), and mere derived from
calculations on a lattice of length I =800.
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FIG. 9. Graphs depicting the relative fluctuations in R {t).
The curves were obtained by calculating for each density the
standard deviation 4 of R ~(t) and then normalizing the result

by R'(t)[S(t)/R' t()]. The plots are, from top to bottom, for
the densities p =0.60, 0.62, 0.64, 0.66, 0.68„and 0.70 on lattices
of I.=800. At p=0. 60, 25 cluster configurations were used in

determining the standard deviation, and for the remaining den-
sities 15 cluster configurations were available.

tems, thus definitively avoiding finite-size effects. For
densities near the percolation edge, this advantage
outweighs the automatic averaging over all walks in the
Lanczos procedure. %bile it is di%cult to make direct
comparisons (due to differences in the specific systems
studied and computers employed), we estimate that the
Monte Carlo studies of Refs. 31 and 40 require about an
order of magnitude less time to achieve a converged set
of results for a roughly equivalent large simulation near
the percolation threshold.

To overcome this problem, some sort of coarse-
graining procedure (which should be accurate at long
times) will be required. We are currently pursuing a
synthesis of renormalization group techniques with our
numerical methods. Because we will still in the end ex-
actly analyze a very large system, the demands on the
coarse-graining approximation are much less severe than

in methods which utilize the procedure recursively to
reduce the problem to a small set of coupled equations.
Thus„ it should be possible to retain quantitative accura-
cy while eliminating 6nite-size e6'ects and reducing the
transfer rate matrix dimensionality to an acceptable
magnitude.

A final area which we are investigating is the compu™
tation of eigenvectors of quantum systems. This work
will attempt to directly compute long-time transport
properties for disordered quantum systems (e.g., the An-
derson Hamiltonian) and to determine the localization
properties of the eigenvectors as a function of energy.

such cases, including trapping problems and finite inho-
mogeneous systems, will be discussed elsewhere.

On the other hand, conventional Monte Carlo
methods are well-suited to evaluation of (R (t) ), where
every step contributes eS'ectively to the averaging pro-
cedure. The principal disadvantage of our approach as
currently constituted is the N scaling of computation
time as the system size X increases. Consequently,
Monte Carlo simulations can utilize much larger sys-
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