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%e outline a linear-chain model which is able to simulate fully the dynamics of a three-

dimensional slab when some conditions are satisfied. This is achieved by allowing the force con-

stants to have a dispersion which is Stted to neutron-scattering data. This procedure proves to be

a useful tool for analyzing atom-scattering data of surface phonons in the framework of Snite-

chain calculations. Application to recent measurements in GaSe(001) and TaSe2(001) is made,

showing that, in spite of a common contrary opinion, relevant changes are required in the surface

force constants to account for surface-phonon anomalies.

INTRODUCTION

Recent investigations on surface phonons in layered
materials by He inelastic scattering' have proved that
the dispersion of some surface modes is unexpectedly
anomalous with respect to their bulk-band counterparts.
These results seem to be in contrast with the general
opinion that the formation of a surface by cutting weak
Van der Waals interlayer forces should affect very slight-
ly the dynamics of the atoms in the first layer.

A possible explanation for such a behavior may come
from a detailed analysis of the electronic states at the
surface. In particular, relevant changes in the charge
distribution are able to modify in-plane and interplane
force constants. However, as far as we know, there is no
such information presently available for most layered
compounds, so that a fully theoretical calculation of sur-
face phonons is unattainable.

In this situation a phenomenological approach can be
used to get some insight into which force constants are
modified at the surface and how deep is the range of
these changes. In particular a sumiciently simple model
of a dispersive linear chain (DLC) can be fitted onto bulk
phonons and then perturbed to reproduce surface modes.
In this way not only is it possible to deduce if in-plane or
interplane modi6cations have occurred, but also a
correct surface-projected total phonon density is avail-
able for further applications.

In the 6rst section of this paper we discuss how to
reproduce the exact dynamics of a bulk crystal through
a linear chain approach. Then (Sec. II) we introduce a
classification of surface perturbations and their effect on
the slab-adapted dynamical matrix simulated by a finite
linear chain. Finally (Sec. III) we discuss in this frame-
work the experimental atom-scattering data of
GaSe(001) and TaSez(001).

I. BULK DYNAMICS

For systems where two-dimensional periodicity is
retained —such as slabs, semi-in5nite crystals, or

with

D~(K
~

ll'„ss')=(M,M, .) '"P~(K ~1,1', ,ss'), (3)

and j assumes Ni &&S X 3 values, Ni being the number of
cells along the z direction and S the number of atoms in
the unit cell.

If the usual slab calculation is performed, summation
on the right side of Eq. (1) must be calculated for each
K. Moreover, for li or l~ belonging to the surface (in-

terface) domain, perfect crystal force constants become
perturbed ones, exploiting the symmetry breaking which
occurs as the surface is created.

However if the force constants of the bulk are not
available, nor the perturbation induced by the surface, a
straightforward approach can be used. Suppose that
each atom of the surface is a center of inversion with
respect to its neighbors in the plane: the dynamical ma-
trix of Eq. (2) is transformed into a real symmetric one
and the secular condition is formally (and therefore ex-
actly) equivalent to that of a finite linear chain, which
depends on K as a parameter. The summation on the
right-hand side of Eq. (1) can be truncated to a reason-

heterojunctions —the three-dimensional force constants
can be Fourier transformed along the (x,y) plane which
is parallel to the interface:

t))~p(K (1313 $$')=g P~p(L ~
1313 $$ )e'

L

where (L, l~) labels the slab-adapted unit cells and R(L)
specifies the points in the two-dimensional lattice of the
surface. K is the wave vector lying in the (x,y) plane,
s,s' and a,P are the atomic species and the Cartesian
cofnponents, respectively.

The dynamical matrix satisfies the secular condition
for the equation of motion

X D p«I 1313 $$ )Ep(KJ Il'ss')=~,'«)e.«j Ilis)
l3s', p
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P pc(K
~ I, Ii,ss ) =—

13 pl 3 is, s

(13s')~(13$)

P,p(K i Iili, ss') (5)

(hereafter the superscript LC will label strictly linear
chain diagonal elements). This constraint, valid for any
value of the parameter K, is too restrictive for the
three-dimensional case. In fact, by applying TI to the
real crystal we obtain

()=g P,p(ls, ls')
l,s'

e 'K'"'" ' g P~(K
~
I, /', ,ss')

K L' 1'3,$

= g P p(K=0
~

I&/&, ss'),
13,$'

where X is the number of surface unit cells in the
Born —Yon-Karman boundary conditions. As a conse-
quence the term

d p(K
~

1&$ )—= g P p(K+0
~

l&1&,ss')&0
13,s'

(7a)

must be added to the right side of expression (5) for a
correct behavior of the long-wavelength acoustic. modes.

The explicit form of d p(K ~
/is) can be obtained by

evaluating the difference

able shell of values for I„aslong as Coulomb contribu-
tions are not dominant. By selecting a suitable set t K)
of points in the surface Brillouin Zone (SBZ), the
coefficients P p(L

~

li/'i, ss') of the expression (1) can be
fitted onto P p(K

~
lil&, ss'). In order to determine the

unperturbed set P p(K
~

/i —I i,ss') for the bulk, we must

solve the implicit system of equations

co, (P p(K i
E„ss'))=m (K,IC, ) (4.)

for each K, where the left side is calculated in a linear
chain framework and the right one has been fitted to ex-
perimental dispersion curves.

In this way all nondiagonal terms t)),p(K
~

/3/3 $$ ) caii
obtained and the real symmetric matrix

D p(K
~

lil'i, ss') is constructed as a continuous function
of K. However there are still some points which ought
to be discussed before treating the appearance of surface
modes.

First, in a strictly linear chain model the diagonal ele-
ments of the force-constant matrix are determined by
one-dimensional translational invariance (TI) conditions:

P p(K
~
/, I„ss)—P,p(K

~
l, l, ,ss)

=0' p(L=o
I /i/3, »)+ y. y.p(L

~
/i/, ,ss)e'""'"'

L (~0)

13,s'

(13s
')~( 13s)

(L
~

I I' ss')e' 'R'"' (7b)

and by using the three-dimensional TI for the first term
in (7b),

d p(K i l,s)=
L, 13,s'

(L,13,s')~(0, 13,$)

y.p(L
~
l, l,',ss')

)((eiK R(L) 1)

which becomes zero as K~O, according to Eq. (6).
If we exploit the /3 periodicity which is retained for

bulk crystal, P p(K ~
ls —/3, ss') has to be substituted in

Eq. (g) so that d p(K ~
s) will be equal for any layer in

the infinite-chain case. This term can be fitted as an ad-
ditional "diagonal force constant" to the neutron
scattering experimental data. In particular this term in-

corporates the effects of the dynamics along the planes
of atoms perpendicular to the linear chain.

When experimental bulk bands display little intermix-
ing between different polarizations, which is usually the
case for layered crystals, the DLC procedure can be ap-
plied separately for each of them. However, it may hap-
pen that the surface creation requires mixed components
of the force constant matrix to be introduced. They can
be taken into account a posteriori in the framework of a
perturbative approach in the eigenvalue problem. In
this case rotational invariance (RI) conditions are impor-
tant to obtain P p(K ~/i/&, ss)' with a+P. Moreover,
they represent a way to account for the difference be-
tween strictly axial linear chains and "three-
dimensional" linear chains (i.e., when not all the atoms
lie on the same axis). In Appendix A we show how to
take account of the RI condition in a DI.C approach
and how to obtain in a perturbative way the new eigen-
values of the mixed polarization system.

II. SURFACE'PKRTURBATIONS

We introduce now a set of different perturbations
which produce the appearance of surface modes. Obvi-
ously they are not mutually excluding, but a qualitative
analysis of experimental dispersion relation for surface
phonons can indicate which is the dominant one.

The geometrical cut of interlayer forces that produces
a slab formed by N3 layers can be obtained by imposing
new values P~ Pp+hP p on th——e force constants as
follows:

P p( K
i
Ii ) 1, I i ( 1, ss '

)=0, (9a)

P~(K ~
I& & X&, I

& & N&, ss') =0, (9b)
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bi)))~(K
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( l &s')~(l3s)
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s I'
3

(l3 )X3, l3 (1)

i)) t)(K=0
~
l3l s,ss'), (9c)

where 1 & I3 &N3 and we have assumed that no change
for the in-plane force constants has occurred.

Conditions (9) do not provide relevant modifications of
the phonon modes in layered crystals as the cut of Van
der %aals forces correspond to a very weak perturba-
tion. However, in other crystals, such as alkali halides,
this perturbation turns out to be the leading one.

If a rigid relaxation of the first plane of atoms occurs
to restore equilibrium conditions after the surface is
created, in addition to the geometrical cut we have to
change interplanar force constants in the first layer
l3=l3=1,%3 as follows:

kljk p(K
~
l313 $$ ) hald ti(K

~
l3$)

hiI) t)(L
~
l3I3 $$}

L (~0)

)((e iK.R) L)
1 )

4(()~p(K
~
I3I3 $$ ) g 4(t»(gp(L

~
I3I3 ss')e (12a)

Modifications between atoms of different planes in the
first layer are also possible so that this contribution must
be added to the perturbation of Eq. (11) to obtain

hi)) ti(K ~
l313,ss')

4ij() gK ~

I I„ss)=—g
L 13,s'

( l3$ )Q( l3$)

biI)~(K=O
~
13I3,ss')

=g[P (ss') —1]$,&(L
~
l313,ss')e'

L

=[P(ss') —1]iI) &(K
~

1313,ss') (10a)

+ g hp~(L
~
l313,ss )
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bi)))~p(K
~
I, „Is)s=g[1 P(ss')]P p—(K=O

~
i, l, ,ss'),

(10b)

where P is a prefactor which describes either a stiffening
(P & 1) or a softening (P g 1) of the interplane, short-
range force constants.

This "rigid" perturbation does not affect qualitatively
the dispersion of the surface modes created by the
geometrical cut. In particular, it just produces a sensible

gap between surface modes and bulk projected band
edges, while the two dispersion laws remain quite similar
as strong intralayer force constants have not been
changed but only rescaled.

%hen the electronic charge rearrangements in the sur-
face region modify the interactions between the atoms in
the first layer, the dispersions along K for the DLC
force constants are deeply affected. This is the most
common situation in semiconductor surfaces where a
reconstruction process may also occur; however this
problem is out of the present analysis. In the case of
first-sheet in-plane changes this contribution to the per-
turbation is restricted only to the diagonal elements:

Equations (12) require a detailed knowledge of a sur-
face force-constant changes, which can be evaluated only
if electronic ab initio calculations are performed. In
most of the cases, however, this information is not avail-
able and a good approach is to fit the new
it) p( K

~

I 3 I 3 ss '
) to experimental surface phonons from

atom scattering data along the borders of the irreducible
SBZ. This procedure allows us to back transform to real
space the DLC force constants for a physical interpreta-
tion to be performed. Obviously, this fitting has to be
done by changing only a few force constants a time, to
find out which are the most important ones. A prelimi-
nary distinction between in-plane and interplane changes
is suggested.

III. APPLICATIONS TO GaSe(00&}
AND TaSez(001)

GaSe and TaSez layered crystals are characterized by
the sandwiching of a gallium dimer and a tantulum unit,
respectively, betweeo selenium atoms, forming a trigonal
prismatic configuration. By applying two-dimensional
periodicity this structure constitutes the layers of both
crystals. DiFerent ways of stacking these layers, which
include plane displacements and rotations around the c
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axis, give rise to several polytypes, such as e-, P-, y-, and
5-GaSe- and 2H, -, 4H, , -4H, , -3R-, and 6R-TaSez.
However, as long as no transition to another
configuration takes place (such as to octahedral TaSez)
the main dynamical features of these solids are rather in-
dependent of the stacking order. The unit cells of e-
GaSe and 2H, -TaSez are shown in Figs. j. and 2, respec-
tively, along with their lattice parameters.

In Fig. 3 we display the structure of the (001) surface
for both crystals, showing the surface unit cell and the
SBZ. The two-dimensional Gai (Ta) array of atoms is
ordered in hexagonal network like the one of Se units.
However, with respect to the Se units a rigid translation
occurs so that the surface does not possess the inversion
symmetry with respect to the e-axis that we required in
Sec. I. Still, the very poor intermixing between x, y, and
z components in the experimental dispersion curves on
the basal plane allo~s us to disregard this rigid
translation and to consider a strictly axial linear chain
for our model.

This ansatz not only puts us in the position to apply
the DLC formalism for each Cartesian component sepa-
rately, as a first-order approximation, but also makes the
calculation suitable for any polytype. The a posteriori
confirmation of our starting point comes from the very
good fitting of surface-projected bulk dispersion relations

2H TgSe

a= 3.437A

C = 12.720 A

FIG. 2. The same as Fig. 1 for 2H, -TaSe2.

that we have obtained.
In Appendix B are listed the IR(L)I vectors relative

to four shells of neighboring cells in the (001) plane. If
we truncate the summation in Eq. (1) to that set of
IR(L)I, we have to solve a linear system in thirty vari-
ables to fit a,&(L

~
lil'i, ss') onto P~(K

~
lil~, ss'). This,

in turn, would require a huge number of nonlinear sys-
tems to be solved in order to fit P &(K

~
i&I&,ss') onto

co~(K,E, ) according to Eq. (4). However, in a qualita-
tive approach for nonionic materials, a much smaller
range of interaction may be chosen. Moreover, if the set
I K j along the borders of the irreducible part of the SBZ
has only an x or y component, an extensive grouping of

z'ri" '+

a= 3743A

C= 15.91 9A

FIG. 1. Crystal structure of e-GaSe. Unit cell and lattice
parameters are displayed.

FIG. 3. Surface structure for (001) GaSe and TaSe2. Two-
dimensional unit vectors and the surface Brillouin zone are
displayed.
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P &(I.
~

1&1&,ss') is allowed and the problem is greatly re-
duced. In Appendix C we show how to take into ac-
count this simplification for GaSe and Tase2 separately.

In Figs. 4(a) and 4(b) we display the dynamical model
of the DLC that we have used for our calculations.
f, (K) is the dispersive force constant that represents the
covalent binding between a rigid dimer of Ga (or the Ta
atom) and the Se shells; f&(K) stands for the electrostat-
ic interaction between Se atoms, and fz(K) for the Van
der %'aals coupling between layers. g accounts for the
electronic polarizability of Se atoms: In the TaSe2 calcu-
lation we have set it equal to infinity (rigid-shell limit),
since we have seen it play only a minor role in the GaSe
case. The terms d~(K ~13s), which are used as addi-
tional force constants to be fitted, here are labeled d, (K)
and d2(K) [for Se atoms and Ga (Ta) atoms, respective-

ly], since the li dependence is present only near the sur-
face.

Turning now to the problem of obtaining the relation
between the frequency and the force constants [expres-
sion (4)], we derive from the equations of motion the
eigenfrequencies of definite parity. First, we do this for
the gerade vibration, characterized by the following
values of the displacements coordinates:

u2 ——0,

When the rigid shell limit (g 00) is performed in Eq.
(14) and (16), we have

cps —— [f, +2f&+f2(cosK, a + 1)—d, ]
1

~,
~,
~,
~ I

f,
~,
~,
~,

u3= —u)

U3 = —U)

where u& 23 and U& 3 stand for core and shell coordi-
nates, respectively of Se (1,3) and Gai or Ta (2). By us-

ing Eq. (13) we obtain

fi +2f 3+f z[I+cos«, a)l

M, g +f, +2f, +f2[1+cos(K,a] M,
'

(14)

~here M
&

is the mass of Se atom, K, is the wave vector
along the chain and a is the lattice constant.

In the case of ungerade vibration, we have

uz+0,

u3 ——u),
U3 =Ul

In this symmetry, we obtain
'2

8 A 8
N +

2 2 2 2

1/2

2M)M2A~
(16)

where M, and Mz are the Se and Gai (Ta) masses, re-
spectively, and

diA= — + 1—
Mq M2 A j-

Gfg 8 ) g
M, M,

~x =f i+g + f&(1 cosEia ) . —

(17b)

(17c)
FIG. 4. Dynamical linear-chain models for TaSe2 {a) and

GaSe {b) used in the present calculations.
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8 A 8
ct)g = + + +

2 2 2 MiM2
(19)

H T' K
I

with

2fi
(20a)

(20b)

A',

-5

Now, for each K selected in the SBZ, Eqs. (14) and (16)
or (18) and (19) for K,a =O, n can be used to obtain

fi(K), fz(K), fi(K), d, (K), and di(K) (g has a disper-
sionless large value). This step usually requires a numer-
ical least-squares fitting procedure. However, some
simplifications may be achieved by assuming a fixed
value for some variables as a first-order approximation
and improving the fitting subsequently. In the case of
GaSe, for example, the ansatz d, (K)lM, =d2(K)lM2
still allows a very good fit of projected bulk bands in the
SBZ, while in the case of TaSe2 we obtain a satisfactory
description of the lattice dynamics even for dispersion-
less f2 and f3.

Appendix C shows how to use the set f, (K), f2(K),
f I(K), d, (K), and dz(K), fitted to experimental data of
Refs. 7 and 8, to determine the dispersion law for each
polarization.

In the following we will analyze separately the disper-
sion relations of surface phonons in GaSe(001) and
TaSe2(001). Figure 5 shows surface-projected bulk bands
for x and z polarization (shaded areas) along the borders
of the irreducible part of the SBZ for e-GaSe(001). They
are obtained with the force constants f, (K), fz (K),
fi (K), and d, (K) (where a=x or z) calculated ac-
cording to Appendix C. Despite the fact that the DLC
model is fitted only on a few points of the SBZ, a quite
good agreement with the bulk dispersion curves of Jandl
et a/. is found all over the zone. Obviously our calcula-
tion is not able to reproduce the eigenfrequencies of the
Ga dimer, which is taken to be rigid, but their values lie
much higher in the energy scale and are of little impor-
tance for the present analysis. Solid dots represent
atom-scattering data for surface phonons and a detailed
description of the experimental results can be found in
Ref. l. The labels S„follow standard surface modes no-
tation, while E' and A„' describe the optical character
of bulk bands. By analysis of He scattering data we find
that relevant anomalies are present all over the SBZ.
Why are the surface optical branches farther from their
respective bulk bands than the bandwidth? For the
branch Ss it is even dificult to determine which bulk
band it comes from. The simplest interpretation could
be based on what has been already observed on the (111)
surface of noble metals: The Ss mode is associated with
the x-polarized E' acoustic band, and is greatly softened
towards the zone boundary. At about K =0.8 L ', SI
cuts the Rayleigh branch in both directions, so that we
can interpret the soft branch in the TT' direction above
0.8 A ' as a continuation of the S8 branch, rather than
the conventional S, mode. According to this interpreta-

N

A
h ~ I%1 d Er

~(Fili,"~"
i & I

111 1 ~

I
I %I ~ ~ P

I I

0.5 0.967
1.675

I
T
I
I
I
I
I
I
a I

1.0 0.5
[ega)

-0

FIG. 5, Dispersion relations for bulk (shaded areas) and sur-
face (solid lines) modes of e-GaSe calculated along the borders
of the Surface Brillouin Zone. Solid circles are experimental
atom-scattering data from Ref. 1.

tion, Ss has to be classified as an acoustic quasilongitudi-
nal surface mode. Another interpretation of SI is based
on the observation that it appears only at short wave-
lengths (IC p0. 4 A '), where S2 starts to fade out, and
disappears. %'e could imagine that Sz is originally
strongly softened in the zone-boundary region, down
below the Rayleigh wave. However, such an anomalous
dispersion curve cannot cross the pair of x bands (E"
and E') because of the intrinsic x-z coupling occurring
at the surface, and therefore a large anticrossing behav-
ior pushes apart the short- and long-wavelength sections
of the S2 branch. Of course, the supposed strong mixing
with the E' band would finally give S2 a strong x-
polarized acoustic character, so that S8 has more or less
the sane nature in both interpretations. In any case, it
is clear that the observed dispersion curves imply large
changes of force constants in the surface region. Such
changes require, in turn, an extensive redistribution of
the electron density, at the static and/or the dynamic
level, in order to produce changes in bond strengths and
polarizabilities.

In our DLC model, geometrical cut and rigid relaxa-
tion of interplane force constants have proved not to in-
duce any substantial change in the dispersion of surface
modes with respect to the buL bands. Nor is it possible
to reproduce the experimental curves of Fig. 5. with a
first-neighbor perturbation in the topmost sheet of Se
atoms [d (K, 1, 1) Stting].
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It turns out that the f&„(K),which in the bulk is neg-
ative at the zone center and positive at the zone bound-
ary, must be softened at the zone boundary to such an
extent that it becomes strongly negative (attractive}
everywhere. Moreover, a mixed isotropic contribution

f,„,(K) must be added to that implied by the RI condi-
tion to take into account a new oblique Ga-Se interac-
tion in the first layer. This term yields the mixing be-
tween x- and z-polarized modes at the surface, with the
anticrossing mechanism mentioned above.

Quantitatively, if we get back to the leading
coeScients of the Fourier expression

f (K)=f(L )+f (L')cos[R(L').K]

+f(L }cos[R(L ) K]+
which corresponds to the force constants for the first
shell of neighbors, we obtain the fitted bulk force con-
stants and their change at the surface. Remembering
that, according to Appendix C,

b f3(L')/2=6 f3(L )/4

represent the change in the Se-Se oblique intralayer in-

teraction, while

&ft(L )=hf, (L')=bf, (Li)

is the Se-Ga perturbation, we have (in kg s 2)

f,(L')=+2.49, &f „(L')=+65.40,

f3 (L')= —24. 90, bf3„(L')=+40.67,

f3 (L )= —8.30, hf„,(L')=+20.25,

f i ( L ) = + 192.89,

&f)„,(L ) =&f)„,(L') =bf(„,(L') =41.37,

f, (L )=207. 16 .

Calculated surface modes are shown in Fig. 5 (solid
lines}.

%e note that the large softening of the Se-Se vertical
interaction almost equals the stifFening of the total Se-Se
oblique interaction, leading to a very modest relative
softening of interplane force constant f3„(K=O).
Moverover there is a negligible change of interactions
with further neighbors in the layer and an appreciable
growth of the nearest-neighbor Se-Se nondiagonal force
constant f&„,', this change, however, is a small quantity
compared to diagonal force constants f,„„orf„,.

The softening of the vertical Se-Se radial interaction,
the stiffening of the oblique interactions between Se ions
in adjacent ceBs (passing through the Se-Ga xz force
constant) suggest, altogether, a complex modification of
the bond-charge distribution within the surface layer.
Strictly speaking, it is the susceptibility of bonding elec-
trons with respect to lattice vibrations that is to be
changed: Thus, the existence of localized excited states
at the surface would be required. Recent inverse-
photoemission experiments and band-structure calcula-
tions have proved that localized excited surface states do
occur even in a layered crystal as weakly bound as

graphite. ' Since also in GaSe there is much electronic
change between the layers in the excited states, " we ex-
pect surface excited states in the crystal as well.

%e turn now to the case of 20-TaSe&. A charge den-
sity wave (CDW) instability at 122.2 K is found which
maintains the incommensurate superstructure down to
90 K. The electron-phonon coupling driving the C%D
behavior is also responsible for the appearance of strong
phonon anomalies in the longitudinal acoustic (LA) bulk
dispersion curve at a wave vector equal to 2k&. neutron
scattering data by Moncton are available for the lower
part of the phonon spectrum. On this basis, a model cal-
culation has been performed by Feldman which agrees
quite well with experimental data for acoustic phonons
and which reproduces the dramatic softening of the lon-
gitudinal mode driven by the CD%'. However, high-
frequency optical modes can be compared only to Ra-
man measurements at the I point ' and their disper-
sion cannot be confirmed by neutron scattering data.
Although atom-scattering information is presently avail-
able, mostly for the Rayleigh wave (RW) along the I -M
direction, some points are detected also for surface opti-
cal phonons, so that within the hypothesis that no sur-
face perturbation affects this frequency region they can
be used to fix an experimental frame for bulk band
dispersion. Anyway, our analysis will be confined to un-
derstanding the behavior of the RW with respect to the
transverse acoustical (TA) bulk band edge.

Figure 6 displays, along the (100) direction, surface-
projected bulk modes (shaded areas) for nearly-x and
nearly-y polarization, as deduced from a fitting of the
DLC model on neutron scattering data, atom scattering
data, and Raman measurements. ' T=140 K experi-
mental He-scattering measurements are represented by
black circles. A strongly localized Rayleigh mode
branch is found for two different surface temperatures
above and below the CD% transition. 2 Furthermore,
the Rayleigh branch is found to have an anomaly at ap-
proximately one-half of the I M direction. Such an
anomaly appears to be displaced with respect to the LA
bulk anomaly (occurring at about two-thirds of that
direction}, but shows a similar temperature-dependent
softening. A careful study of the temperature depen-
dence of the anomaly will be presented else~here. Here
we want to point out only that a remarkable gap appears
at the zone boundary between the bulk band edge and
the RW.

A good fit for the bulk experimental (neutron and He)
data for z polarization is obtained with the following
interplanar and intraplanar force constants (all in units
of kgs )

f„,(K)=20.91+3.42cos[R(1. ')K],
f2„(K}=0.895,

f3„(K)= —0.089,

1„,(K)=4.30I 1 —cos[R(L ')K]I,
dz„(K)=0.94t 1 —cos[R(L '}K]] .

In the fitting procedure the dispersion of the weak force
constants fz and f3 has been neglected. Actually the in-
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boundary, is concentrated in the Ta sheet. Here an ap-
preciable attraction is s~itched on at the surface, which
gives a negative d2 . This is consistent with the oc-
currence of a charge density wave instability in the gas
of conduction electrons provided by the tantalum sheet.
A similar situation is found in the fitting of the +-
polarized dispersion curves, even if we do not consider
surface modes in this case. The presence of the anomaly
in the bulk LA dispersion curve implies at least three
Fourier components in the representation of the bulk
modes. Those depicted by shaded areas in Fig. 6 are
based on the fit (in kg s ):
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f~»»(K)=7 03+3 1Qcos[R(L'}K]

+0 27 cos[R(L }K]+Q 13cos[R(L 3)K]

f~..(K)=0.261,

f3„„(K)= —1.09,
'f»»(K) =7 41 —5.75 cos[R(L ')K]

—1.49cos[R(L )K]—0. 17cos[R(L3)K],

(K)= —1 55+1.63 cos[R(L ')K]
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FIG. 6. Dispersion relations for bulk (shaded areas) and sur-

face (solid line) modes of ZH, -TaSe2, calculated along the I M
direction. Dotted bands display nearly-x polarization and the
other ones have nearly-z displacements. Solid circles (T=140
K) and solid squares (T=60 K) represent experimental atom-
scattering data from Ref. 2.

teraction between the two Se sheets within the layer is
very weak and slightly attractive, presumably because of
the large screening of the Ta sheet with its free elec-
trons.

In order to fit the Rayleigh wave dispersion (instead of
edge of the bulk TA branch} different values of f, , the
intraplanar force constants, are required:

f i„(K)=21.07+3.26cos[R(L')K],

d'„,(K)=4.15 I 1 —cos[R(L ')K]j,
d2„(K)=—0.30I1—cos[R(L')K]j .

Thus the surface perturbation amounts to

b1 „,(K)= —hf, (K)= —0. 16I 1 —eos[R(L ')K]j,
hd2„(K)= —1.25[ 1 —cos[R(L ')K] j .

%'e see that most of the surface perturbation, which
yields a softening of the Rayleigh wave at the zone

+1.01 cos[R(L 3)K ]—1.09 cos[R(L 3)K]

QONCI. USIA N

In conclusion we have shown that our DLC approach
can be used as a flexible tool in analyzing atom scatter-
ing data for surface phonons. Here we have not treated
the calculation of surface projected total phonon density

Again we have assumed f~. and f3„„to be disper
o less. As expected the shear component f„„'

y smaller than the norma& component f
is much more negative than f

might simply mean that the prismatic stack of the seleni-
um sheets in the layer would be highly unstable (with
respect to the close-packed arrangements) if the short-
range Ta-Se interaction would not provide the necessary
stabilizing forces.

For f,„„andd,
„„

the dominant term in the dispersion
is still the one proportional to cos[R(L )K] which is in-
dicative of a "normal" behavior, whereas d2„,shows the
anomaly due to the relatively large contribution of the
other components. Thus in f,„„andd,„„,as for z po-
larization, the nearest-neighbor interaction is dominant,
whereas in dz„ there are longer-range contributions.
This fit, despite its simplicity, permits us to conclude
that all the anomalous behavior in 2H-, TaSe2 comes
from the long-range longitudinal interactions in the tan-
talum plane, which are responsible for the CDW insta-
bility, in agreement with recent microscopic calcula-
tions. ' Furthermore the anomalous behavior of the
Reyleigh wave, notably the localization at the zone
boundary, is also due to a change of interaction in the
tantalum sheet at the surface layer. The temperature
dependent anomaly of the Rayleigh wave appearing at
one-half of the zone around the COW transition temper-
ature should also be attributed to the same rnechanisrn.
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(SPTPD), which can be readily evaluated by weighting

the eigenvalues with the displacement of the atoms at
the surface. This SPTPD can be used not only to calcu-
late the relative intensities in atom-surface inelastic
scattering, but also to evaluate inelastic-electron-
tunneling probabilities from surfaces and interfaces.
Comparison to experimental spectra, although still semi-

quantitative, may provide, in turn, additional
confirmation to atom-scattering information. This pro-
cedure has been adopted for the case of GaSe(001).i

Finally we point out that the applications here
presented are only a qualitative approach to systems

which do not strictly display the appropriate symmetry.
Nevertheless, we think that our DLC approach can be
used with major bene6ts, mostly in crystals which pos-
sess such a complex structure as to discourage direct
slab or Green's function calculations.
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APPENDIX A

If short-range behavior of P p(L f 1&l&,ss') is assumed,
we can define a set [SI of values for L where the P's will
be nonvanishing. Therefore the RI condition will be

L', 13,s'
[$(gp(L f 1313 ss')r, (L'

f
13s')—P y(L'

f I,I'„ss')rp(L'
f
lis')]

IS) ISI
g g [P p(L'

f 1313,ss')r (L
f
13s')—P p(L'

f lsl&, ss')rp(L
f
13s')]g e'

L L' K

PQK f l, l,', ss') g [L„+x(I',s')]e
K 1', ,s' L

—y.,(K f
l, l,',ss') y [L. +x (I. ',I ')]e

where I-y and Lp are different from zero only if a,PG(x,y). We consider now K as a continuous variable and we

transform the summation on K into a two-dimensional integral:

IS)

f f dK dK g P~(K f
I I', ,ss') i +x (lss') g e

13,s' y L

R[L]—P~y(K f 1313ass ) i +xp(13s') g e
p L

(A2}

Taking account that

f f P p(K f131',ss') (e ' ' ')dK„dK = f dK„e " " [P p(K f
1313,ss')e ' '

f x', ]
()K

—f f dK„dK P p(K f
131'„ss') e (A3}

where a and b are the extreme values of K at the SBZ for a given K„.The first term in the right side of Eq. (A3)
vanishes for symmetry reasons, so that extending this relation to K =K„orK and Kp K„orK in (A2) w—e—obtain,
getting back to a discrete K space,
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g [P g K
~
1313,ss')x (1's') P—~(K ~

1 1',ss')xIi(1's')]
K L 3,$

i— g P p(K ~/, 13,ss')
az,

I3,S'
[P p(K~1313,ss')] e ' ' ' '=0. (A4)

BKp

Now because of the arbitrariness of the set IS [, which was supposed to be only larger than IS J, the double summa-
tion of expression (A4) is zero only if each term of the sum is zero and we obtain

g [i))~&(K
~

l 133s s')x {13s')—P~~(K (1313,ss')x&(13s')]=i d~&(K ~13s)— d, r(K ~13s)
13,S y ii

(AS)

where we have used definition (7a). Equation (AS) difFers
from a strictly linear-chain RI condition on the right
side, which is not zero. In some cases it is quite small
and can be ignored in a first-order approximation. At
least, d (K ~13s), which is the leading term, is known

by the fitting procedure.
If the surface-phonon analysis require xz coupling,

and mixed force constants are obtained via RI condition
or by ad hoc perturbation [as in the case of GaSe(001)],
we can take into account a posteriori this coupling by
solving the eigenvalue problem for

where co„and m, are the diagonal matrices of eigenval-
ues for the uncoupled system, D„,and D,„are the
blocks of mass-scaled mixed force constants. The eigen-
vectors of the coupled problem are obtained byE„e,0 8'„

(A7)

where e, and e, are the matrices formed by all the eigen-
vectors of the uncoupled system and E„,E» are column
eigenvectors of Eq. (A6) for a particular K.

APPENDIX B

We give the surface lattice points (in units of a). For
the first shell,

L =(0,0),
L' = ( &3/2, 1/2), L'= —L',
L =(01), L = —L

L —( —&3/2, 1/2), L = —L

For the second shell,

L'=(&3,0), r."=—r.',
L =(&3/2, 3/2), L"= —L

L =( —&3/2, 3/2), L' = —L

For the third shell,

L"=(&3,1), r, "=—r.",
L"=(0 2), L"= L'4

L"=(—&3, 1), r."= L».

For the fourth shell,

L' =(3&3/2, 1/2), L = —L'

L20 (Q3 2) L26 L20

L '=(&3/2, S/2), L = —L ',
L =( —&3/2 S/2), L = —L

I 23 (g3 2) L29 L23

L =( —3&3/2 1/2), L = —L" .

APPENDIX C

If we label {(t &(L"
~
1313,ss') by i))(n ), where L" refers

to the points in Appendix 8, Eq. (1) can be expanded as
follows:

30

y(K) y y(n)eiK R(L )

n =1

=P(0)+[/(1)+P(4) cos K„a+A—a + [/(2)+$(S)] cos(K»a )+[/(3)+P(6)] cos E„a+@»—a—
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+ [P(7)+P(10)]cos(K„v'3a)+[P(8)+P(11)]cos K„aK»—a
— &3 —3

2 ~2

+[/(9)+P(12)]cos K—„a+K» a—+[/(13)+$(16)]cos(K„v'3a+K~a )
—&3 —3

X

+[/(14)+P(17)]cos(K„2a)+[/(15)+$(18}]cos( K„—&3a+K~a )

+[/(19)+P(25)]cos K„&—3a+K» a+—[P(20)+P(26)]cos(K„&3aK2a )

+[/(21)+P(27)]cos K, a+K» —a +[/(22)+P(28)]cos K„—a+K a——5 —5

+[/{23)+/{29)]cos( K„~3—a +K„2a)+[P(24)+P(30))cos —K„&3a—+K»— (Cl)

However if K is taken with only an x or y component, as is possible by exploiting the SBZ symmetry, Eq. (Cl) can be
regrouped and generalized:

P(K) =P(0)+[$(1)+P(4)+P(3)+P(6)]cos[KpR p(L ')]+[P(2)+P(5)]cos(KpL p )

+[/(7)+P(10)]cos[KpR p(L }]+[/(8)+P(11)+(t}(9)+P(12)]cos[KpR p(L ))

+ [P(13)+P(16)]cos(KpL p )+[$(14)+$(17)]cos[KpR p(L ' )]+[$(15)+$(18)] cos[KpR p(L ' ))

+[/(19)+P(25)+$(24)+P(30)]cos[Kp(L ' )]+[/(20)+P(26)+P(23)+P(29)] cos[KpR p(L )]

+[4(21)+P(27)+$(22)+P(28)]cos[KpR p(L ')], (C2)

where P=x or y. It is clear that each coefficient in the cosine expansion takes account of several P(n) The re. lative
weight of these terms depends on the crystal geometry and on the range of the force constant which is expanded. In
the case of GaSe we have selected for K the values at the I', X, M, K, and T' points of the SBZ (see Fig. 3) and we
have restricted our Stting to the second shell of I.":

P(K) =P(0)+[P(1)+P(4)+P(3)+P(6)]cos[KpR p(L ') ]+[P(2)+P(5)]cos[KpR p(L )]

+[/(7)+$(10)]cos[KpR p(L )]+[/(8)+P(11)+P(9)+$(12)]cos[KpR p(L )] . (C3)

Thus the expansion coefficients are found by solving the linear system in the unknown variables [groups of P(n)] en-
closed in square brackets of Eq. (C3).

For the case of TaSez we have made the Stting only along the x direction by selecting for K the values at the I, M,
X', and X" points of the SBZ (see Fig. 3) and by regrouping Eq. (C2) up to the 30th term (see Appendix B) as follows:

f(K„)= [$(0)+$(2)+$(5)+$(14)+P(17)]+[$(1)+P(3)+P(4)+P(6)+P(8)+P(9)+P(11)

+P(12)+P(21)+$(22)+P(27)+P(28) ] cos[K ( &3/2)a ]

+[/( )7+/(10) P+(1 )3P+(1 5}P+(1 )6P+(1 8}$+(2 )0P+( 2)3P+( 62) P+(2 )9] cos(K„&3a)

+ [/(19)+P(24)+P(25)+P(30)]cos(K„,'&3a ) . —

Solutions of the 4X4 linear system are obtained in the same way as the GaSe case.
Special consideration is given to d p which, according to expression (8) has to be fitted with a separate procedure:

d p(k i
13s)=

l3,s'

(l ~s')~[ I3s )

[f p(K
~

1313 ss } $ p(K 0
~

131,',ss')]+
L (~0)

(C5)

so that the second term in the right side can be 6tted as long as the first term has been subtracted from the value of
d p(K

~
13s ). This procedure will give us straight forwardly the in-plane force constants of the crystal,

d, (1.}=/ (I.
~
131„ss).
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