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Highly efficient algorithm for percolative transport studies in two dimensions
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%'e present a fast algorithm using the F-V' transformation for calculating the conductance of
large two-dimensional random resistor lattices. The procedure can also be used to calculate other
quantities for which Y-V' transformations can be defined. As an example of the method's useful-

ness, we present extensive data on square random resistor lattices as large as 1000 bonds on a side.
Using this data, eve estimate that the conductivity exponent t =1.303+p'&&4 in two dimensions.

I. INTRODUCTION
G~ =61+62 . (2)

Since the problem was erst discussed extensively in
the early 1970s, there has been considerable interest in
the conductivity of randomly diluted resistor lattices.
Even an incomplete sampling of the literature contains
numerous papers using Monte Carlo approaches, '

analog experiments, ' and renormalization-group cal-
culations' ' and their extensions to larger cells in the
form of finite-size scaling arguments. '

In this paper, we will mostly consider a square lattice,
occupied by bonds with conductance g with probability
p, and empty with probability 1 —p. In Sec. II, an exact
algorithm for solving any given realization of a large lat-
tice is described. In Sec. III, the algorithm is applied to
square lattices at the percolation threshold p =p„' the
data obtained are used, via 6nite-size scaling, to obtain
an accurate estimate of the critical exponent t. Finally,
we conclude the paper in Sec. IV, and outline how other
problems and other lattices may be solved using this
technique.

In both cases, the resulting single conductor is complete-
ly equivalent to the two original conductors as far as any
external circuit is concerned.

Also well known is the Y-V transformation, shown
in Fig. 1(c). This transformation is defined in both direc-
tions, the conductances given as follows:

61+62+63

K~V: GB ——
G361

1+ 2+ 3

G1GzGc—
G1+G2+G3

1 1 1
G1 GBGC

G
+

G +G8 C

II. THE ALGORITHM
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In the absence of an exact solution, the bulk conduc-
tance of large random resistor lattices has been widely
studied using numerical methods. To find the bulk con-
ductance of such lattices, we have developed a method
which consists of applying a sequence of transformations
to the bonds of the lattice. The 6nal result of this se-
quence of transformations is to reduce the lattice to a
single bond that has the same conductance as the entire
lattice. First we discuss the transformations, and then
the algorithm.

The simplest two transformations of eonductances 6
are the well-known series and parallel reductions, which
are shown in Fig. l. For the series case,
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Note that, just as in the series and parallel cases, the
conductor con6gurations are completely equivalent from
the point of view of the external circuit.

%e next introduce the primary transformation used in
this paper. This transformation, which we eall the prop-
agator transformation, is illustrated in Figs. 2(a) —2(d)
and can be decomposed into three separate parts: first a
V~K transformation, then a redefinition of the lattice
point, and finally a Y~V transformation. (The middle
step is included primarily for clarity. ) In transforming
from Fig. 2(a) to Fig. 2(b), conductances 6, 7, and 8 are
determined from 1, 2, and 3 by Eq. (4). Then, in the
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(o)

(c)
FIG. 1. Transformations for conductances in (a) series, (b)

parallel, and (c) the F-V transformation. A11 three transforma-
tions have no effect on the overa11 conductance of a circuit
connected to the open circles.

transformation from Fig. 2(c) to Fig. 2(d), conductances
9, 10, and 11 are determined by Eq. (3). When the con-
ductances in Fig. 2(d) are calculated in this way from
those in Fig. 2(a), the two conductor configurations are
completely equivalent from the point of view of the
external circuit, and net topological effect is to propa-
gate the diagonal bond past the lattice point in the mid-
dle.

%hen some of the conductors are missing, as is often
the case in percolation problems, the propagator usually
becomes simpler, and often does not result in a new di-
agonal conductor being generated. An example of this is
shown in Figs. 2(e)-2(h), where one bond is missing.
(This case also corresponds to what occurs at the edges

of a lattice. } In this case, the first two parts of the prop-
agator are the same as before, but the Snal V~V is re-
duced to a simple combination of two conductors in
series. There is no longer any diagonal bond.

The algorithm for reducing a two-dimensional (2D}
square lattice using this transformation is illustrated in
Fig. 3 for a b =3 cell at p =1, where p is the probability
that a bond is present and 6 is the length of a cell in the
x direction. Starting with a full lattice in Fig. 3(a), the
trvo conductors attached to the top node of the left-hand
column are combined in series to form a diagonal bond.
This bond is then propagated through the lattice, as in-
dicated in Fig. 3(b), until there is no longer a diagonal
bond. In this case, the diagonal bond terminated at an
edge, following the example given in Figs. 2(e)—2(h). (In
a larger cell with @+1,it would be more likely that the
diagonal bond would terminate somewhere inside the
lattice due to missing bonds. ) The same procedure is
again followed in Figs. 3(c)—3(g); the uppermost node of
the leftmost column is removed by a series reduction and
the resulting diagonal conductor is propagated until it
terminates. After the last node is eliminated, the
remaining series string of conductors in Fig. 3(h) is easily
reduced to a single conductor, as shown in Fig. 3(i). The
conductance of this single conductor is equal to the con-
ductance of the original lattice.

The procedure outlined above was implemented in
FoRTRAN for general b and was run first on a DEC LSI
11/2, and then, later, for the larger lattices, on a
VAX11-780. More recently, it has been adapted to run
on an IBM 3081 mainframe computer. Proper operation
of the program and its algorithm were verified by having
it solve lattices with known conductances. We were able
to evaluate accurately the conductance of any size lattice
that rvould fit in the memory of the machine being used.
The program is a straightforward reduction of the algo-
rithm to program statements. [The only subtlety not
mentioned above is that after all nodes are removed
from a column, the program checks to see if the single

(c)

FIG. 2. The propagator transformation, which moves a di-
agonal bond through the lattice. The general case is illustrated
in (a)-(d). When some bonds are missing, as they are at the
boundary of a lattice, the propagator becomes simpler, as in
(e)-(h).

FIG. 3. Reduction of a small cell to a single conductance,
using the bond propagator and series transformations. Arrows
indicate direction in which bonds are moved.
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remaining conductance for that column is zero. If it is,
then the conductance of the entire lattice must be zero
(i.e., the lattice is not connected from left to right), and
the reduction of the rest of the lattice is not necessary. ]

The e%ciency of the algorithm has been analyzed in
two ways. The 6rst is related to the total number of
operations that must be performed to reduce a lattice,
which is proportional to the amount of computer time
used. It is easiest to do this analysis in terms of the
number of propagations required, since we do not have

any direct way of counting the operations. The algo-
rithm is fastest for p near p„and for smaller lattices, as
expected. Empirically, the average number of propaga-
tions per realization is approximately given by
0.42b ln(b/1. 6) for p =p, = —,', and is exactly
b(b+1)(b —1)/3 for p =1. The amount of computer
time was found to be nearly linearly dependent on the
number of propagations required, the constant of pro-
portionality being about 4 sec/1000 propagations for the
LSI-11, about 0.14 sec/1000 propagations for the VAX,
and about 0.013 sec/1000 propagations on the IBM
3081. Thus, for example, a b =1000 lattice at p =p„
which contains, on the average, 10 conductors, typically
takes 31 sec per realization on the IBM 3081.

The b ln(b) dependence near p, can be semiquantita-
tively understood from the following considerations.
There are three distinct types of conductances for the
bonds in the lattice: normal conductors, opens, and
shorts. The conductors and the opens are the usual per-
colation elements, and the shorts are used to define equi-
potentials at the edges, and are also generated in the in-
terior of the lattice by the propagator transformations
[e.g., when conductor 2 or 3 in Fig. 2(a) is open]. Thus,
there are 2&3 =162 possible combinations of elements
in Fig. 2(a). Of these 162, only 32 actually propagate the
diagonal; the rest all terminate it. When p is near unity,
the combinations that result in a propagated diagonal
predominate, while when p is near p„ the nonpropagat-
ing combinations are much more common. Thus, when

p is near p„ the diagonal will not be propagated very
many times before terminating. Since the data in this re-
gime indicates that the total number of propagations is
of order b in(b), it must be that on average the diagonal
is propagated In(b) times before it terminates.

The b ln(b) dependence also has implications for the
amount of memory needed for the algorithm, which is
the second measure of CSciency we have considered.
Since for @&1 the propagations do not occur to the full
depth of the lattice, it is not necessary to store the entire
lattice in the computer's memory. If the maximum
depth to which a propagation can be expected to go is n,
then only the leftmost n columns need be available in
memory. When the leftmost column is transformed
away, a new column on the right can be added, thus
keeping the number of columns in memory constant un-
til the right-hand side is reached. (This makes the algo-
rithm useful for the long-strip geometry used in
transfer-matrix calculations. )

This approach was actually used to solve our largest
lattices. Thc peak memory rcqullcd (Iloatlng polllt Iluiii-
bers) never exceeds 2bi —1, the memory required to

store a p =1 cell. The average memory needed at p =p,
is given approximately by 5 2b. ln(b/1. 8); the worst-case
cells that we encountered required that an additional 16b
of memory be added.

The literature contains several other methods that
have been used to solve for the conductance of square
20 resistor lattices, including the relaxation ap-
proach, ' ' Fogelholm's generalized F-V approach, "
a Gaussian elimination method ' which involves the
simultaneous solutions of the node voltages as given by
Kirchhots laws, and the related transfer-matrix ap-
proach. The method used in our earliest work2 ' ' is
essentially a very restricted form of the approach later
developed by Fogelholm; our later work used the
method outlined in this paper.

In comparing with these other methods, it appears
that the present approach is the inost well-behaved for
problems where the conductivity must be calculated for
the entire range of p values, from 1 to p, . The relaxa-
tion method is better near p =1, provided one does not
need exact answers, since it only requires of order b
operations. Near p =1, the Fogelholm, Gaussian, and
transfer-matrix methods are much more costly than our
method, since they require at least of order b opera-
tions. (Lb operations are required for the transfer-
matrix approach for a strip of length L.) Near p„we
would expect that the Fogelholm method might have a b
dependence similar to ours, but it may be more compu-
tationally costly because of the linked data structure that
is necessary. The minimum number of operations re-
quired for the Gaussian approach near p, is unknown to
us, but seems likely to be more than for our algorithm.

In addition to the above sperifj[c considerations, there
are three general comparisons among the algorithms
which can be made. First, the algorithm we have
developed is restricted to certain well-behaved 2D lat-
tices, while the other methods can be applied to any net-
work in any number of dimensions. Second, our algo-
rithm, the Gaussian, and the Fogelholm methods are ex-
act, while the relaxation approach is approximate.
Third, the algorithm we have used is not restricted to
resistor lattices, but can be used on any 2D system in
which there are well-defined Y-V and V-F transforma-
tions, ' as will be discussed in Sec. V. The other algo-
rithms are not, in general, extendable in this way.

III. THK CRITICAL EXPONENT s

The exponent t can be determined most accurately
from our data by using a large-cell renorrnalization-
group approach or, in what amounts to the same thing
for this problem, 6nite-size scaling. ' ' For an
in6rute sample, it is expected that the bulk conductance
6 varies as

where g is the conductance of a bond which is present
with probability p, and where Eq. (5) is true for a small
range of p &p, . It can then be argued that the average
conductance (G) of large finite samples at p =p, is

given by
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&G&=b ' "[,+ f,(b)+ ], (6)

where fz(b)~0 as b, the sample size measured in units
of the lattice constant, approaches infinity, and where e,
and e2 are constants. 2 The exponent v is the per-
colation correlation-length exponent. '

A considerable saving of computer time can be real-
ized by carefully choosing the shape and boundary con-
ditions used on the lattice. Figure 3(a} shows the type of
cell we used for b =3. As has been shown, zz's cells of
this type correctly predict that p, =-,' for all b. In addi-

tion, rapid convergence to the in6nite-sample limit
occurs for the "thermal" percolation exponentsz4 z' and
for transport properties.

We used Eq. (6} to determine t numerically. & G ) was
calculated for b =2 to b =1000 by generating difFerent
realizations at the various sizes and keeping track of
arithmetic, geometric, and harmonic means. To give
some examples of the statistics of our data, we solved
every distinct realization for b =2 and b =3, 2 & 10 ran-
domly generated realizations for b =4, 106 for b =9, 10»

for b =30, 14400 for b = 100, and 5000, 1000, and 400
for b =200, 500, and 1000. The data for b )4 are plot-
ted in Fig. 4.

After the data were generated, they were fit to Eq. (6)
with a variety of choices for fz(b). Our first choice was
fz(b)=b /"; that is, the correction is a power law, by
analogy to the standard percolation case. A least-
squares fitting was done, varying t/v, b, /v, and the
number of points included in the fit to minimize X'.

[The number of points was varied by omitting data for
small b because it is not known how large b must be for
Eq. (6) to be valid. ] We obtained the best fits when the
b =2 and b =3 data were not included; excluding points
beyond b =6 did not improve the St. This suggests that
the scaling assumption is reasonable for 6 & 4 or,
perhaps, b & 5 for this system and, indeed, the shape of
the distribution of conductances is qualitatively scale in-
variant for larger sample sizes. Our its to arithmetic,
geometric, and harmonic means gave values which are
included in the estimates r /v =0 977.20 002. and
b /v = 1.820.5.

Another form for the correction which we considered
explicitly was fz(b)=1/lnb, which corresponds to the
limit b, ~0. Contrary to our earlier findings, which
were based on smaller cells with fewer realizations, this
procedure does not give as satisfactory a 6t as the
power-law corrections. Although the best log-correction
6ts work reasonably well, they do not fit as well overall,

1.00
1000 100 30 16 10 7

I I I t I I

HARMONIC

0.96

h.
0.94

0.92

0.90 (c)

0.4

FIG. 4. Plot of In((G } ')/Inb against I/Inb. According to
(6), the y intercept of these curves should be t/v. The curves
are three independent fits to (6) for b &4 using the power-law
correction described in the text. Error bars correspond to one
standard deviation from the mean; points without error bars
have uncertainties which are less than the size of their circles.

FIG. 5. Other common two-dimensional lattices which can
be reduced to a single conductance using algorithms described
in the text. Part (a) is a hexagonal lattice, drawn to clarify the
transformations described in the text, (b) is a honeycomb lat-
tice, and (c) is a Kagome lattice.
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and they deviate systematically from the larger cell data.
The log-correction 6ts give values that fall in the range
t /v =0.970+0.014.

Based on our preference for the power-law correction,
our preferred value and subjective estimate of uncertain-
ty is

t lv =O 97.7+,'~„' .

The uncertainty is asymmetric in order to enclose the
log-correction value. Using the value v=~4, (Refs. 31,
32, 34, 35, 38, and 39}we obtain

t =1 303+'~'

IV. MSCUSSION

We have shown that an algorithm using F—+V,
V~ F, series, and parallel transformations, makes it pos-
sible to reduce a square lattice of conductors to a single
equivalent conductor. Using similar algorithms, the oth-
er common 20 lattices can also be reduced. Assuming
propagation from the upper left to the lower right, as
above, the hexagonal lattice, Fig. 5(a), can be reduced by
first propagating out the diagonals, starting at the lower
right and working to the upper left. For the honeycomb
lattice, Fig. 5(b), there are two approaches: create the
dual lattice, which is hexagonal, and solve it as above, or
perform Y-V transformations on alternate rows of nodes,
and then solve the resulting hexagonal lattice as above.
As another example, the Kagome lattice, Fig. 5(c), can
be solved by performing V I' trans-formations on all of

the small triangles, and then solving the resulting honey-
comb lattice by either of the two methods outlined
above.

A number of other physical quantities have K~V,
V'~ F, series, and parallel transformations, and can thus
be studied using our method. In an earlier publication, '

we developed the necessary transformations for a model
superconductor to Snd the critical current of percolative
superconducting systems; the dual of this problem is a
model for dielectric breakdown in a metal-dielectric mix-
ture. This approach is currently being used to study
breakdown in systems where a broad distribution of
bond strengths are present.

A novel application of this technique is to two-
dimensional Ising models. Ising spins have a "star-
triangle" transformation which is topologic ally
equivalent to the 1'-V transformation used here. This al-
gorithm should allow the study of randomly diluted Is-
ing lattices or Ising spin glasses. (There are some
diSculties in the latter case because combinations of
positive and negative coupling energies can lead to
complex-valued coupling energies after a transformation.
Whether this leads to a breakdown of the method, or
whether fully solved lattices will always have real cou-
plings, is currently being studied. }
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