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The method of the nonequilibrium statistical operator has been generalized to study high-field

electron transport in many-valley semiconductors. For steady state, the balance equations for mo-

menta, energies, and populations of the hot electrons in various valleys are derived. Taking n-type

silicon as an example, we calculate the drift velocity, electron temperatures and repopulations of
both cold and hot valleys as functions of electric field {1-10'V/cm) at several temperatures be-

tween T=8 K and T=300 K. By applying the electric field parallel to the (111), (100), and

(110) crystallographic directions, the anisotropic efFect for the drift velocity has been investigat-

ed. Furthermore, when considering the transient repopulation effect for a given sample with cer-

tain length, a negative-difFerential-mobility region has been obtained. It is shown that our results

are not only in excellent agreement with the results of Monte Carlo method but also quantitatively

comparable with experimental data in all temperature ranges.

I. INTRODUCTION

Most important semiconductor materials have many-
valley band structures, for example, n-type Ge, Si, and
GaAs. Much progress' i has been made in the under-
standing of nonlinear transport of these systems. But so
far, most theoretical approaches to high-field electron
transport in many-valley semiconductors have been
based on either Monte Carlo simulations ' or on solving
the phenomenological Boltzmann equation in relax-
ation-time approximation. 6 The nonequilibrium sta-
tistical operator (NSO} method, developed by Zubarev, 9

seems to be a powerful tool to treat the nonequilibrium
transport problem analytically. It was previously ap-
plied to low-field, warm-electron transport in a single-
valley semiconductor. ' Recently, this method hss been
reexamined, snd extended to study the steady-state hot-
carrier transport, as well as to the transient transport
in the presence of a strong electric field. ' In this paper,
we generalize the NSO method to the case of s many-

valley semiconductor, whose nonlinear transport is very
difFerent from that of single-valley model. The carrier-
transition between difFerent valleys plays an important
role in an applied electric field. Both the anisotropic
effect on carrier transport snd the Gunn efFect' in
many-valley semiconductors are due to the intervalley
scatterings. The former will be discussed in this paper
by taking n-type Si with its six equivalent valleys as an
example, and the latter has been studied in another pa-
per' for GaAs using the Green's function approach. It
has been shown that the balance equations obtained
from NSO (Ref. 9) and the Green's-function approach'
are actually identical with each other. As pointed out

by us in Ref. 12, the steady-state balance equations used
in the practical calculation" are in fact semiclassical; the
quantum efFects are shown to be negligible in the electric
field range under our investigation.

One of the main purposes of this paper is to check the
validity of the balance-equation approach as compared
with the Monte Carlo method. It is well known that the
zero-field (E=O) resistivity obtained from the balance
equation corresponds to the result of the force-force
correlation function or the memory-function ap-
proach. ' ' When this method' is applied to the
electron-phonon interaction in a metal, the resistivity
reduces to the well-known Bloch-Gruneisen formula, '

which has been extensively used in literature to analyze
the experimental data for both metals and semiconduc-
tors. However, the zero-field resistivity obtained from
the force-force correlation has been subjected to criti-
cism ' because it does not agree with that of the
current-current correlation function or the Boltzmann
equation. Another relevant area of questioning seems to
be the difference between the results of these two
methods as compared with experimental resistivity data.
One of the present authors showed previously that
when both methods are applied to a real system like a
Si-inversion layer at low temperature, the difFerence in
mobilities is very small, and both of these results are in

agreement with the experimental data. In s finite or
high electric field (E&0), there is no other tractable nu-
merically analytic theory for the nonlinear transport ex-
cept the phenomenological Boltzrnann equation. Wheth-
er the balance-equation approach at E&0 is still subject-
ed to the same criticism of Refs. 20 and 21 at E=O is an
open question snd has never been carefully analyzed.
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The works of Vsn Kampen and Horing et al. seem

to support the 6nite 6eld balance-equation approach.
Since it is conventionally believed that the Monte Carlo
method yields the most reasonable result for high-Seld
transport, we shall calculate curves of Vd (the drift ve-

locity} versus E on the basis of balance equations for n-

type Si along the (111), (100), and (110) directions
from the lattice temperature T=8 to 300 K, using the
identical set of parameters as those in the Monte Carlo
calculation. It is shown that the obtained results are
not only in excellent agreement with those of Monte
Carlo calculation, but also quantitatively comparable
with the experimental data.

In Sec. II the Hamiltonian of a semiconductor with
many-valley band structure is described. Intravalley
scatterings, intervalley electron-impurity, electron-
phonon, and electron-electron interactions are con-
sidered. In terms of introducing 3n+ 1 thermodynamic
variables and their conjugates, the method of NSO is ex-
tended to study nonequihbrium transport for a semicon-
ductor with n valleys. A perturbative but useful expres-
sion of the NSO is given to proceed to the analytical cal-
culation of nonlinear transport with a many-valley mod-
el. In Sec. III we discuss steady-state hot-electron trans-
port and set up 3n balance equations for moments, ener-
gies, and carrier numbers of n valleys by using NSO.
Some detailed expressions are given in Appendix B. In
Sec. IV our formulation is applied to steady-state trans-
port for n-type silicon, and the intravalley acoustic-
phonon scattering and six phonon models of intervalley
scattering are considered. Numerical results for the
(

ill�

), (100), and (110) directions of applied electric
field in a wide temperature range are reported, and the
comparison between theory and experiments is dis-
cussed. In Sec. V, the size efFect of the sample at low
temperature is studied. Considering that the repopula-
tion relaxation time may be very long at low tempera-
ture and the steady-state repopulation cannot be estab-
lished in a small sample at low Seld, we set up transient
evolution equations of carrier numbers in both hot and
cold valleys, from which, without any adjustable param-
eter, the results of microscopic calculation are in reason-
able agreement with experiments. Sec. VI contains a
summary and discussion of results obtained in this pa-
per.

D. METHOD OF THE NONEQUII. ISRIUM
STATISTICAL OPERATOR

Let us consider a semiconductor system with n-valley
band structure in s strong electric field E. The electrons
distributed in n valleys of the semiconductor are both
accelerated by the applied 6eld and scattered by phonons
and impurities, 6nally forming a steady flow of current,
which is called stationary nonequilibrium. The total
Hamilionian of the system may be written as

H= gH + g H»+H»,
a, y=1
(a+y)

H =H, +H,f +8,(

and

H„»=,' g v, (q)—p,«p»
q

where H, &y stands for the intervalley electron-phonon
and electron-impurity interactions, and H„y is the
Coulomb interaction between electrons of the ath and
yth valleys. M „(q,A, ) is matrix element for intervalley
electron-phonon scattering, u, »(q) is the intervalley
electron-impurity potential, R, is the position of the ath
impurity, v, (q) is the intervalley Coulomb potential, and

p+ «
= gp c+ k+«c+ k is the electron density operator of

the ttth valley.
In order to apply the method of the nonequilibrium

statistical operator (NSO) to the present case, the none-
quilibrium macroscopic state of the system as a whole
needs to be described by the average values of the fol-
lowing set of operators P

{P J= gH«, gP,„,gN„H»
a=l a=1

where P „=gk k„c„c,k is operator of total momen-

turn of electrons for the ath valley along the direction of
electric field, N = gk c kc k being the corresponding
electron number operator. The next step is to introduce
a set of time-dependent macroscopic parameters F (t)
constructed to be the thermodynamic conjugate of the
P as

[P (t)J = g P (t), —g 0 (t) V (t),
a=1

—g P (t)[p (t)—m V (t)2/2], P . ,
a=1

where P, m, V, and p are the inverse of eff'ective

temperature, effective mass, average velocity along the
direction of electric 6eld, and nonequilibriurn chemical
potential of the hot carriers in the ath valley, and P is

Here 0 denotes the electron Hsmiltonisn of the ath
valley, which is composed of three parts: H, , the free-
electron Hamiltonisn included the intravalley Coulomb
interaction; H,f, the interaction of electrons with a con-
stant uniform external electric 6eld E along s given
direction; and H,&, the intravaHey interactions of elec-
trons with phonons snd n; randomly distributed impuri-
ties. H h is the phonon Hamiltonian. The expressions
of Ha and Hph are well known, " snd therefore we omit
listing them here. In Eq. (1), H is the intervalley

scattering term between o;th and yth valleys; it can be
written as

H.,=aay+H, ,y,

with

(q, g)(b«i+& «g )c k+«c» k
k, q, A,

+ g u, »(q)exp(iq R, )c~ k+«c» i, ,
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the inverse of temperature T of the lattice. Here we ex-
clude H, &

and H
„

from the dynamical quantities in Eq.
(6). The justification of such exclusion has been dis-
cussed in Ref. 11 in detail. For a system with n valleys,
there will be 3n+ 1 parameters for each of the sets
IP J and tF (t}J according to Eqs. (6) and (7). The sit-
uation studied in Refs. 10 and 11 only corresponds to
the case of n = 1.

Following Ref. 9, we can write the nonequilibrium sta-
tistical operator in the following form:

r

p(t)=exp —s(t, 0)+ f dt'e" s(t+t', t'), (8)

with

H,' =H„V,P— +N, m.,V /2,

such that Eq. (17) can be rewritten as

(18)

P, (t) =exP —P —g P, (H,'~ P~N,—) PHr„—, (19)

to the isolated carrier distribution without electron-

phonon, electron-impurity, and intervalley Coulomb in-

teractions. We wish to emphasize here that p, (t) is actu-

ally defined in the relative or moving system rather than

the laboratory system. To make this point clearer, by
means of the canonical transformation (Ref. 9, p. 275}
we transform H, to the relative system moving with ve-

locity V, where the Hamiltonian of the o,th valley is

8,':

s(t, O)=P+ gF (t)P

(()=in Tr exp —gF (t}P

(9)

(10)

a=l

which is just the quasiequilibrium density matrix in the
moving systems. Therefore, the average of operator

(( ) &I =Tr[( )pl(&)]

s(t, t') =exp(iHt')s(t, O)exp( iHt')—, (12)

s(&,0)= gF (&)(P —(P &I)+ gF (&}P, (11)
should be performed in the moving systems. It is impor-
tant to notice that the true density matrix is stin defined
by NSO in Eq. (8). Only from p(t) should the correct
carrier distribution function in each valley be obtained.

(P &I
—Tr|P exp[ —s(t, O)]j, (13)

III. BALANCE EQUATIONS FOR MOMENTA,
ENERGIES, AND PARTICLE NUMBERS

which satis6es Liouville s equation in the limit of c~O,
and can be used to describe nonequilibrium transport
process. In this paper we shall focus our attention on
steady-state transport, such that F (t)=0. Equation
(11)can then be written as

To construct the balance equations up to second order
in H, &

and H r, we use the perturbative density matrix
of NSO in Eq. (16} to calculate the statistical average of
the time derivatives of the operator P

s(t, O)= gF P
&'=Tr[P~ p(t)] . (21)

=g[PH, PVP—
Substituting Eqs. (Al)-(AS) into (16) and (21), and using
a similar procedure outlined in Ref. 11, after lengthy
algebra, we obtain

—p~(p~ —m~V~i2)N~]+pH&h, (14)
n n

(p~„&'=eEN~+ g F~~r+ y F r+ . y F r

(y+a)

(22)

P = i [P,H]—.

The calculation of P and s(r, O) is standard;" their ex-
pressions are given in Appendix A. It can be easily seen
that s(t, O) is of the first order in H „orH, &

. There-
fore, to obtain the balance equations to second order in
the electron-phonon, electron-impurity interactions, or
the electron-electron interaction between valleys, we use
the following expansion of NSO:

p(r)=p, (r) 1+ f dh'e"

f d rs(t, o)—

&H,.& =.E~.V. y IV;;
y=&

(y&a)

(23)

(24)

(H,„&'=y g W;,r, (25)

where F y, W y, and N y are functions of V, V „T,
Ty, p, and py, their expressions are given in Appendix
B. It can be easily shown that

where

+s(t +r', t')e ' ' (16) IV„r=0,
a, y=l
(a~y)

(26)

pi(r) =exp[ —s (t, O)] (17)

is the quasiequilibrium statistical operator corresponding

N,~r =0,
a, y=1
(a~y)

(27)



3000 M. LIU, D. Y. XING, C. S. TING, AND%. T. XU

so that VI. APPLICATION TO n-TYPE Si

and

y. &a,.&'+(I,„&'=cEgw. v. ,

y &x.&'=0,
a=]

For n-type Si, the electrons which contribute to trans-
port are those in the six equivalent valleys which are
around the six minima of the conduction band along the
(100) directions. With each valley, the constant energy
surface is near an ellipsoid, and the relationship between
the energy c. and the wave vector k may be written as

(P.„&'=o,
(a,.&'=o,

(30)

(31)

which correspond the conservations of energy and car-
rier number of the whole system.

In steady state (stationary nonequilibrium}, the time
derivatives of the variables (I' „)',(H, )', and (N )'
should vanish. So we have 3n balance equations:

«—ko }~ +
2 Pl I

«—ko }i

mr
(36)

where 1/m& and I/rn, are the longitudinal and trans-
verse components of the inverse effective-mass tensor, re-
spectively, and ko indicates the position in the Brillouin
zone of the center of the ath valley. The efFective mass
of the electrons in an ellipsoid valley is anisotropic, and
its inverse for a given direction is determined by

&x.&'=o, (32) (1/m)~~ ——

2
&a

$2
(37)

p[P ( .' —p.}]+I I
k

(33)

where s'
k is the single electron energy of the ath valley

in the moving system with the velocity V, .
(N )& ——Tr[c zc kpi(t)] is the local equilibrium distri-
bution function. Finally, the total drift velocity Vz can
be obtained:

(34)

with n =(N )I/N, and N as the total carrier number.
Here we wish to emphasize again that the experimental-
ly measured distribution function for the ath valley
should be Tr[c kc kp(I)] aIidp(I) is giveIlby Eq (8).

Recently the authors and collaborators' applied the
Green's function approach to obtain the transport bal-
ance equations of a semiconductor system including two
types of valleys. By means of the transformation rela-
tion

with a = 1,2, . . . , n. They form a complete set of equa-
tions to determine the 3n steady-state values of V, T,
and N, at a given electric field E and lattice temperature
T. The chemical potential p (a=1,2, . . . , n} of n val-

leys, which appear in those functions of Eqs. (22)-(24),
are determined by the following relation:

For an applied electric 6eld, the conductivity effective
mass m' for the ath valley depends on the angle be-
tween its major axis and the direction of the applied
field. For an applied field oriented along the (100) crys-
tallographic direction, the m ' of the carriers in the two
valleys whose major axes are along (100) is mr, and

that of the other four valleys is mr. For the electric Seld
applied parallel to the (110) axis, the III' of two val-

leys, whose major axes are along (001), is III„that of
the other four valleys is 2(1/m, +1/IIII) '. When the
applied field is (111) oriented, it is a special case that
the m ' of six valleys has the same value,
3(2/m, + I/mI ) '. Since the effective masses of various
valleys may be different except for the (111) applied
field, electrons are heated by the electric field E at a
difFerent rate. So in the valleys (hot valleys) whose
effective masses are smaller, the electron temperature is
higher than in the other valleys (cold valleys). The
transfer rate of carriers from hot valleys to cool valleys
is larger than in the reverse direction. Therefore the
equilibrium population of a hot valley is smaller than
that of a cool valley. This is the well-known valley repo-
pulation effect, which results the anisotropy of the drift
velocity in many-valley semiconductors.

By performing the Herring-Vogt transformation, the
energy-wave-vector relationship in each valley of n-type
Si becomes of a spherical type:

&I,'. ) =&a,.&' —V.&i )'+(m. v.'/2)&X. &', (35)
e =(k') /2mo, (38)

it can be easily shown that the present result for n=2
reduces to that of the Green's function approach, ' ex-
cept that the iatervalley impurity scattering is not con-
sidered in Ref. 14. Recently, we have shown the
equivalency between these two methods for a single-
valley semiconductor.

In next section we apply our formulas to study the
hot-electron transport for n-type Si with six equivalent
valleys.

where a=1,2, . . . , n, k' is the transformed wave vector
of the ath valley, and mo is the mass of the free elec-
tron. After this transformation, it is straightforward to
apply the method of NSO and balance equations to the
semiconductor system with elhpsoid constant energy sur-
face. One needs to note that, while the density-of-state
efFective mass is mD (rn, mi }'——, the conductivity
effective mass m* depends on the direction of the ap-
plied Geld.

The scattering mechanisms which have been con-
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sidered in our method may include acoustic- and optic-
phonon intravalley scattering, the intravalley scattering
due to ionized or neutral impurities, electron-phonon in-
tervalley scattering (acoustic and optic), and electron-
electron interaction. But for high pure n-type Si, the
main contribution for carrier transport comes from
phonon-assisted transitions: acoustic intravalley scatter-
ing, f scattering (between perpendicular valleys) with
LA and TO phonons„and g scattering (between parallel
valleys) with LO phonons, which are allowed by the
selection rules. ' In our numerical calculations, we
shall consider three f and three g intervalley scatterings.
Their equivalent phonon frequencies Q~& and coupling
constant D~z are taken from the same values as those in

the Monte Carlo calculation. The squared matrix ele-
ments of the acoustic intravalley scattering and the in-

tervalley scattering between the ath and yth vaHeys are

M«(q, A, ) =E ~q /(2d V, )

and

M r (q, k) =D2„/(2d Q,r ),
respectively. The set of physical parameters used in the
present calculations is listed in Table I. ' For compar-
ison, these parameters are entirely identical with those
used in the Monte Carlo simulations, and there are no
adjustable parameters in our calculation. For a silicon

sample with high purity, we expect the carrier concen-
tration N ( &2X10' cm ) to be small. Even at T=S
K, the carrier distribution function is Boltzmann-like.
The influence due to both electron-impurity and
electron-electron interactions as pointed out by Ref. 4,
can be neglected. However their effect may show up
only at very low temperatures where the carrier distribu-
tion becomes Fermi-Dirac.

Figures 1-4 report the calculated results for a wide
temperature range in an electric field applied parallel to
different crystallographic directions. In order to display
the anisotropic e8ect, the drift velocities obtained at the
different lattice temperatures with the electric 6eld ap-
plied parallel to the (111)and (100) axes are shown in

Figs. 1(a) and l(b), together with experimental results.
In these figures it is easy to see that the calculated re-
sults (solid lines) for the (111) direction are in good
agreement with experimental data (solid circles) almost
over the entire temperature and electric Geld ranges.
Only at T=8 K, for fields below about 10 V/cm, the
theoretical values are slightly higher in comparison with
experimental ones but are still better than those obtained
in the Monte Carlo calculation.

The calculated results (dashed lines) for the (100)
direction show a better agreement with experimental
data (open circles) at high temperatures (T ~45 K) than
at low temperature (T ~45 K), and some discrepancies
occur as Tg45 K. However, if one compares our re-
sults for the (100) direction with those of the Monte
Carlo calculation, one should find that they are in good
agreement with each other over the whole temperature
range, which supports the reliability of our method since
all the parameters used in our calculation are the same
as those in the Monte Carlo simulation. The main
discrepancy for theoretical results with E parallel to the
(100) direction is that they do not reproduce a negative
differential mobility (NDM), which is found in experi-
ments at low temperatures and low electric Selds. This
is because our results are obtained from those steady-
state balance equations for momenta, energies, and car-
rier numbers of the hot and cold valleys. However, at
low temperatures and low fields, the effect due to the in-

tervalley electron-phonon interaction is much smaller
than that of intravalley electron-phonon interaction.
The time duration for the carrier populations in different

valleys to reach steady state is very long, and transient
repopulation is very important for determining the drift
velocity of a small sample. This effect is going to im-

prove greatly the agreement between theory and experi-
ment, which we will discuss in detailed in the next sec-
tion.

The drift velocities obtained for the (110) direction
lie always between those of the (111) and (100) direc-
tions over entire temperature and electric Aeld ranges.
So only the calculated results (dot-dashed lines) at low

temperatures are plotted as in Fig. 1(a); those at high

TABLE I. Set of physical parameters used in the present calculation.

Density
Longitudinal sound velocity
Longitudinal efFective mass
Transverse e8ective mass
Acoustic-deformation-potential parameter

d =2.329 g/cm'
V, =9.037X 10 cm/s
mI ——0.9163m o

mi =0.1905m 0

E1 ——9 eV

Type

Intervalley scattering
Equivalent temperature Q

„

{K)

210

630

Coupling constant D ~
(eV/cm)

1.5~ 10'
3.4X 10'

4~10'

5~10'
SX 10'
3 X10'
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PIG. 1. Electron drift velocity as function of electric Seld E at the difFerent indicated temperatures. Solid circles and solid lines
refer to the experimental and calculated results for the field parallel to (111) directions, respectively. Open circles and dashed
hnes refer to the experimental and calculated results for the Seld parallel to (100) directions, respectively. Dot-dashed lines refer
to the calculated results for the Seld parallel to (110) directions at T= 8 and 20 K. Dotted lines refer to the calculated results con-
sidering the transient repopulation effect for the Seld parallel to ( 100) directions at lower temperature and lower field, for a sample
with length 1050 pm.
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FIG. 2. Temperature ratio T, /T as a function of electric
field E parallel to ( Ill) directions at diff'erent indicated tem-
peratures.

FIG. 3. Temperature ratio T, /T (solid lines for hot valleys,
dashed lines for cold valleys) as a function of electric field E
parallel to (100) directions at dift'erent indicated temperatures.
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temperature are very close to the solid lines with E
parallel to the (111)direction and therefore were omit-
ted in the plot. Figures 2 and 3 show the electron
effective temperatures as a function of the applied 6eld
at different lattice temperatures for the ( 111) and
(100) directions, respectively. For the electric field ap-

plied parallel to the (111) axis, since all the six valleys
of silicon lie the same symmetrical position, only one
efFective temperature of electrons needs to be introduced.
However, for E along the (100) direction, there are two
cold valleys whose major axes are along the direction
(100), and four hot valleys whose major axes are per-
pendicular to (100), so we introduce two electron tem-
peratures T, and T„for the cold and the hot valleys, re-

spectively. In Fig. 3, the ratios Tz/T and T, /T are
plotted as solid and dashed curves. The higher the lat-
tice temperature T, the smaBer the difFerence between
Tz/T and T, /T, and at a given temperature T, the ra-
tios Tz /T and T, /T begin to separate from each other
with an increasing electric 6eld, then tend to join togeth-
er when the field becomes strong. This give a clear ex-
planation of the experimental results that the anisotropic
efFect increases at decreasing lattice temperature, and it
tends to vanish at very low electric fields or very high
ones, because the anisotropy of the drift velocity in sil-
icon is due to a repopulation of the hot and cold valleys
which depends on the temperature difFerence between
these valleys. The population of a cold valley obtained
in the steady-state case is shown in Fig. 4 as a function
of field strength (E parallel to the (100) direction) at
various temperatures. At each given lattice temperature,
there is a peak for the population value of the cold val-

ley at a certain electric 6eld, at which the maximum an-
isotropic efFect in drift velocity occurs. It is easily seen
that the population peak of the cold valley lowers and
moves towards right as the lattice temperature increases.

The behavior of the cold valley population at 8 K is
unusual. It may be shown that at such a low tempera-
ture, the steady-state condition can hardly have been
reached in those samples used for drift-velocity measure-
ment.

V. TRANSIENT RKPGPUI. ATION EFFECT

In the previous section, the steady-state hot electron
transport of n-type Si has been calculated and discussed.
A basic assumption there is that the sample length is
large enough so that the transit time of electrons across
the sample is much longer than their relaxation time,
and steady state is established. In many-valley semicon-
ductors there are three types of relaxation time:
momentum, energy, and valley repopulation relaxation
times. The first two are much shorter than the last one
at low temperatures and low electric fields, because the
repopulation time depends on the intervalley f transi-
tions (between perpendicular valleys), which require pho-
nons with equivalent temperatures of several hundred K.
But at low temperatures and low fields, the average elec-
tron energies within both cold and hot valleys are much
smaller than the f-phonon energy, and emission process-
es are also very rare. In such conditions, the repopula-
tion relaxation time is very long, so thai the steady-state
repopulation cannot be established for small samples
used in drift-velocity measurements or calculations.
Therefore, we must consider the transient repopulation
efFect. The drift velocity Vd of electrons is experimental-
ly obtained by measuring the transit time Tz and sam-
ple length W and using the simple relationship
Vd

——IVv/Ttt. In our calculation, for a small sample in
which the steady-state repopulation cannot be reached,
we define a transient drift velocity Vd(t) as

n

Vd(t) = g n (t) V (41)

hc

o.5

I I I i I il ~I l I $ f IlIII

where n (t) is t dependent, and V is assumed to reach
its intermediate steady™state value. The length of the
sample covered in a time Tz is de6ned as

R8'= Vd t t. (42)

o.g

0.3

0.2

In Ref. 4, the transient drift velocity of electrons was ob-
tained by a phenomenological equation in which several
parameters were experimentally determined. Here we
shall perform an entire microscopic calculation for Vz(t)
by Eq. (41), in which n (t) can determined in terms of
the evolution equation (24) for carrier numbers in both
cold or hot valleys:

0-1 I a Ikllll isa I ilk ~ I I Ia lt ~ ~ ll I I ~ i ~ 0 ~ II t ll I ~ ~ ~ a.

)o )o' )o' lo' )o
E(ytcm )

dpi ~
N,p~/N .

@=1
(y&a)

(43)

FIG. 4. Population n, of cold valleys as function of electric
field E parallel to (100) directions. The sohd hnes show the
steady-state results at the difkrent indicated temperatures, the
dotted line shows the result considering the transient repopula-
tion efect at lower temperature, T=8 K, and lower field calcu-
lated by a sample with length 1050 JMm.

This, together with the momentum and energy balance
equations, (30) and (31), will construct a complete set of
equations to determine V, T, and transient popula-
tions n (t). In general, we can solve these nonlinear
equations consistently and obtain the numerical values of
V, T~, and n (t). If we consider a silicon sample of
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high purity, the electrons of both hot and cold valleys in
quasiequilibrium obey the Maxwell-Boltzmann distribu-
tion even at low temperatures. In such cases, for an ap-
plied field along a (100) direction, Eq. (43) reduces to a
linear differential equation for the population of a cold
or a hot valley

dn
(—n, n,—„)/r, (44)

with

2n, +4n& ——1,
where n, and n& are the fractions of the electrons in a
cold and a hot valley, respectively, and n, „corresponds
to the steady-state fraction of a cold valley in a given
field. The physical meaning of r is clear —it is the repo-
pulation relaxation time. The solution of Eq. (44) is

n, (t)=—,'exp( —t /r ) —n, „[exp( t lr) —1], —

which satisfies the conditions that n, (i =0)= —,
' and

n, (t~ao )=n, „Th.e expressions of 1/r and n, „are
given in Appendix C. The repopulation relaxation time
r is shown as a function of field strength in Fig. 5 (solid
curve) together with the experimental data (solid circles)
and Monte Carlo results (dashed curve). n,„,the value
of the steady-state repopulation of a cold valley, has
been given in Fig. 4. Since at low temperatures and low
fields the effect due to f scattering is very small and can
be neglected, and the carrier distribution function used
in the present calculations is assumed to be a Boltzmann
distribution, the balance equations which determined V
and T are independent of the carrier populations of
various valleys. From Eqs. (41}, (42), and (45) we can
obtain n, (t), Vz(t), and Ta for a given sample with

length W. The dotted line in Fig. 4 shows n, (t =Ta ) as
a function of field strength at T=S K when W'=1050
pm is used in drift-velocity calculations. From that re-
sult it is easily seen that at low electric fields (E~10

VI. CONCLUSION

In this paper we have studied the hot electron trans-
port for many-valley semiconductors in a strong and uni-
form electric 6eld. A set of analytic balance equations,
used to determine drift velocities, efFective temperatures,
and populations of various valleys, is derived from the
approach of the nonequilibrium statistical operator. One
advantage of this method, which differs from the Monte
Carlo simulation and relaxation-time approach, is that

lO i
1 I I ili I I I I I I III

V/cm}, n, (t =Ta )=—,', there is little difFerence between
the populations of the hot and cold valleys, so that there
is little anisotropic effect for the drift velocity. In Fig.
1(a), the drift velocity, obtained by the relationship
Vd ——8'/Tz with 8'=1050 pm, is reported as dotted
curves at several low temperatures. It shows that, after
considering the transient repopulation effect, a negative-
differential-mobility (NDM) region was obtained for
T(45 K and with an electric field along the (100)
direction. This is consistent with the experimental data.
Unlike the phenomenological calculation in Ref. 4, our
transient calculation is entirely microscopic and without
any adjustable parameter. Furthermore, our results
agree quantitatively with experimental data for several
samples with different lengths at T=8 K, which is re-
ported in Fig. 6. %e believe that a better agreement
with experimental results at low temperature could be
obtained when the effects due to electron-impurity and
electron-electron interactions are properly considered.

M(s )

l

g8

lO:
goi s I l l Ill

lo
I l l I lllll

lo

10
lO

lO

O~

l l I s sasl s

10~

E (y(cmj

FIG. 5. Repopulation relaxation time as function of electric
field parallel to (100) directions at T=g K. Solid circles refer
to experimental data, the dashed line refers to the result of
Monte Carlo calculation, and the solid line refers to our re-
sults.

E (y/cm)

FIG. 6. Electron drift velocity as function of electric field
parallel to (100) directions for different sample lengths at
T=S K. Stars and open circles refer to experimental results
obtained with sample lengths 1050 and 280 pm, respectively;
dashed and dot-dashed lines refer to the calculated results ob-
tained with sample lengths 1050 and 280 pm, respectively. For
comparison, solid circles and solid lines refer to experimental
data and calculated results for the field parallel to (111)direc-
tions.
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all the average values of the relevant operators and
correlation functions are derived microscopically and
quantum mechanically by means of the nonequilibrium
density-matrix approach. Every term in those balance
equations has explicit analytic expressions which can be
easily used for numerical computation on a Mie�r-
oVAX� computer. In the present numerical calcula-
tions, the intravalley and intervalley electron-electron in-
teractions are neglected so that the balance equations
reduce to the semiclassical ones. However, in our for-
mulation these Coulomb interaction effects have been in-
cluded in terms of the electron density-density correla-
tion functions. %'hen the density-density correlation
functions are evaluated beyond the random-phase ap-
proximation (RPA), the obtained balance equations
should be superior to the semiclassical ones. One ad-
vantage of the present formulation is that the electron-
electron interaction effects are included in a natural and
consistent way. It is straightforward to extend the
present method to study the transient hot-electron trans-
port' for many-valley semiconductors. In this paper we
have only discussed the transient repopulation effect for
a small sample of silicon at low temperatures and low
6elds. In the present method the valleys of electrons are
assumed anisotropic but parabolic, and some additional
effects, such as nonparabolieity and complicated device
geometries, are not considered. These effects may be im-
portant in some situations. How to extend the present
theory to account for these effects is currently under in-
vestigation.

%'e have presented our theoretical results for n-type
silicon with six equivalent valleys. By applying the elec-
tric field parallel to the (111),(100), and (110) direc-
tions, it is shown that the anisotropic effect for the drift
velocity depends on the lattice temperature and the field
strength. The effective electron temperatures and repo-
pulation for both cold and hot valleys have been present-
ed to interpret this anisotropic effect. %'hen the tran-
sient repopulation effect is considered, a negative-
differential-mobility region has been obtained. Using the
identical set of parameters as those in Monte Carlo simu-
lation, it is shown that our results are not only in excel-
lent agreement with those of Monte Carlo method in
wide temperature and electric field ranges but also quan-
titatively comparable with experimental data. Thus we
believe that the balance equations obtained from the
NSO or Green's-function approach should be considered
as a useful tool to deal with hot-electron transport prob-
lems in a uniform electric 6eld.

APPENDIX A: THK EXPRESSIONS OF P AND s{t,0)

i g g (k„+q„)Ry(q, k)+H. c.
y=l q, k

H, a=eEP „/m
—i X Xv, (q)(e., k+q s—.k)

y~a q, k

XCa, k+qCa kI y q

(A 1)

i g pe k+ R~y(q, k)+H. c.
y=l q, k

(A2)

N = i g—QR~y(q, k)+H. c. ,
y=l q, k

(A3)

H h i g—— g 0 zM y(qA)(b z —b z)c k+ c
a, y=1 k, q, A,

(A4)

with

R, (q, k)= g u,y(q)e'q "'c, k+qcy „

++M (q, A, )(b k+b k)c k+ cyk,

where m is the conductivity efFective mass, along the
direction of the applied 6eld E, of electrons in the ath
valley. H.c. stands for the conjugate term. The summa-
tions over y from 1 to n in Eqs. (Al) —(A5) include both
y =a and y&a; the former corresponds to the contribu-
tion of the intravalley scattering, and the latter comes
from the intervalley scattering due to phonons and im-
purities. It can be easily shown that the term y=a in
Eqs. (Al), (A2), and (A4) may reduce the same result in
a single-valley model [see Eq. (22) of Ref. 11]. Substitut-
ing Eqs. (Al) —(A5) into (14), we obtain the expression of
s(t, 0) as

By means of the quantum equation (15), the time
derivatives of the operators I' are obtained as follows:

I'~ =eEN i—g g v, (q)q„p p
y&a q

'(t 0)= —t y y ~.y(e)e 'lA(te. , k+q &y(teyk]c. , k+qc—y, k
a, y= 1 k, q, a

& M.y(e ~)[A(t)4, k+q —&y(t Cyk &&qk]bqkc. , k+—qcy, k
a, y= 1 k, q, A,

~)[A(t)4., k+ & (t%yk+&&qklb qkc , k+qcy, k- '

a, y=l k, q, A,

V, (&)[p (t)(p k+q —p k ) py(t)((y k. q
—
py k )]Ca, k+qccr —kCy k qCy k

a&y k, q, k'
(A6)
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kuk =elk pa &

s'k ——s~k —k„V+m V /2, (A8)

where c. k is the one-electron energy of the ath valley in the moving system with velocity V, and s k is that in the
laboratory system. They are connected through Ecl. (AS).

APPENDIX B: THK EXPRESSIONS OF SEVERAL FUNCTIONS IN THE BALANCE EQUATIONS

The expressions of F„,F,~, IV,~, and N,~ in Eqs. (22)-(25) are as follows:

Fe&y= «'g I
u y(q) I

k Hoy(k q&co&),
k, q

F,zy= —2 g ~M~y(q)
~

k 4 y(k, q, co y},
k, q, A.

8;~y= —2 g ~M y(q) ~~e k4 y(k, q, co ),
k, q, A,

N,py —2 g——~M~y(q) (
4 y(k, q, co ),

k, q, A,

where

HP(k, q, ~.y) =2qr[f (g.k/T. ) f(gy, k—+q/Ty)]5(eak ey, k+q

y(k q co ) Hay(k q co~y+Qqk)[n(Qqk/T) n(g~k/T, gy k+q/Ty)]

+Hay(k, q, co Qqk)[n —(Q k/T) n(gy k+—q/Ty —g~k/T~)],

with

(81)

(82)

(83)

(84)

(85)

(86)

ay (ey, k+q eak } (ey, k+q eak ) &

f ( g~k /T~ ) = I/{exp[(s' k p)/T, )+—1 I

is the Fermi-Dirac distribution function, and

n (Qqk/T) = I /[exp(Qqk/T) 1]—
is the phonon occupation number. In Eels. (81)—(86), all those terms with a =y correspond to the intravalley scatter-
ings due to impurities or phonons. The intraband Coulomb interaction can easily be included in our approach by us-
ing the random-phase approximation for the density-density correlation functions IIO', whose expressions are well
known and will not be given here.

The Coulomb intervalley scattering results, F„and8'„,are

Fy=g iv(q)i q„I n

q
—00 F

Ay= g ~v(q)
~ J co n

q
—oo a

N+ N&&
—N~z

Ty

N +6)&&
—M~~

Ty

Hi'(q, co)HP(q, co+co —co ),

Hi (q&co)Hj (q, co+coy co ), —

(87)

(88)

where Hz (q, co) is the imaginary part of the electron density-density Green's functions for the ath valley, in which the
electron-electron interaction has been considered under the random-phase approximation. '

APPENDIX C: THK EXPRESSIONS OF I/y AND n,
„

IN KQ. (44)

For the case of the electrons in quasiequilibrium which obey the Maxwell-Boltzmann distribution, we have

n = g f (g k/T )/N= +exp[ —(g k IJ, )/T ]/N, — (Cl)

exp(p /T )=(Nn /2)(2n/rnDT )i~ (C2}

where a stands for the ath valley. When the electric field is applied along the (100) direction, we have two cold val-
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leys (ct=c) and four hot valleys (a=h), and n, =(1—4nk )/2. Due to Eqs. (Cl) and (C2), Eqs. (85) and (86) in Ap-
pendix 8 take simpler forms:

and

IIO (k&q&to,k )=qrN(2qrlmD ) (n, H,k n—kHk k+ )5(E,k —ek k+ ),

p'"(k, q, tok ) =qrlii(2'/mD )' '[[n,H,„n(Qqkf T)+n„H„„+,n ( —Qqk/T) j5(e,k ek —k+q+Qqk)

[n,—H,kn ( Q,—k/T)+nkHk, k+qn «,k/T) P(&,k Ek, k—+q Qq—k) I

(C3)

(C4)

H k
——exp( g„I—T )/T (a=c,h), n„=(1 2n—, )/4 .

'0

Substituting (C4) into (84) and (43), and comparing them with Eq. (44), we get

I /r =4qr(2qr/mD )

&& & I~,k(q ~) I't[H,kn«, k/T) —05Hk, k+, n( —Q,k/T)15(e, k ehk+ , +Q
k, q, A,

—[H kn ( —Q k/T) —0.5Hk k+ n(Q k/T)]5(e, k
—ek k+ —Q k)I,

and

n, „/r= qr(2tr/—mD) Q ~

I k(q)
~

Hk k+
k, q, k

+ [n ( Qqk/T)5(&&k &k, k+q+Qqk) n (Qqx/T)5(~ck eh, k+q Qqk)) (C7)

It can be shown that I/q. will decrease rapidly with decreasing lattice temperature T. As T +0, 1/r v—anishes,
which corresponds to the case where there is no repopulation e8'ect.
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