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A nonlinear equation of motion recently developed for the study of finite-temperature soliton
dynamics is linearized and compared with corresponding results from traditional polaron theory.
Numerous points of agreement are found, and points of disagreement are interpreted in the con-
text of the full nonlinear theory. New interpretations of well-known features of traditional pola-
ron theory are made possible through this approach.

I. INTRODUCTION

The polaron problem has a vast history spanning some
fifty years, with a literature enriched by contributions
from many creative practitioners of condensed matter
physics and allied fields. The problem is ubiquitous as a
model for systems in which the cooperative interaction
of a particle with deformation or polarization modes
may result in dynamics profoundly different from those
of the uncoupled entities. The polaron problem is thus
of relevance to such diverse concerns as the dynamics of
defects, electronic and ionic conduction, exciton and vib-
ron dynamics, mechanical and electronic properties of
polymers, etc. Each area of application makes a unique
set of demands upon theory, which results in the theory
of the polaron having many faces.

In the present paper we deal with a new theoretical
development which brings into apposition two of the
faces of the polaron problem as presented by the
Frohlich Hamiltonian. Below we refer to these two
faces of the polaron problem as “polaron band
theory”! ~!! and “soliton theory.”>!2—%7

A substantial fraction of the literature on polaron dy-

namics is based on the use of judiciously chosen “dress-
ing” transformations and (time-dependent) perturbation
theory. The purpose of transformation is to pose the
theory in a set of basis states which are as close to the
eigenstates of the fully coupled system as possible. It is
expected that perturbation theory in such a basis should
possess improved convergence properties and, to a given
order of truncation, provide a more accurate representa-
tion of the true polaron dynamics. There is one limit
(see below) in which this program provides an exact
solution and thus identifies a quasiparticle as the polaron
in that case. In other cases, the principal aims of this
approach are to determine optimal transformations and
perturbation techniques. In such developments, one
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often refers to the state as a “‘polaron,” though “dressed
electron” or “dressed exciton’” may be more appropriate.

Typical of the results of such approaches are the fol-
lowing: Equations of motion for reduced distribution
functions (probabilities or density matrices) are obtdined
within which renormalized energy band structures can
be identified. In the simplest cases, which is all we shall
be concerned with here, this renormalization is simply
manifested in the basic tunneling parameter J being sup-
planted by a reduced tunneling parameter J(T) which is
a decreasing function of the temperature 7. The ratio
J(T)/J is sometimes called the “polaron band narrowing
factor.” The remaining terms of the equations are non-
diagonal in the basis of polaron band states. Though
these terms doubtless contain some residual systematic
effects, every theory reaches a point at which the
remaining terms must be approximated and such effects
are lost. The approximated scattering terms usually
have the form of damping terms, hopping terms, or sto-
chastic potentials.

A qualitative feature held in common by all such pola-
ron band theories is that the equations of motion are
linear in the distribution function. This distinguishes
polaron band theory from a growing body of work
which, through related but distinct reduction and ap-
proximation techniques, obtains systems of nonlinear
equations for the reduced distribution functions of the
same Hamiltonian. We refer to this body of work as
“soliton theory,” since the role of the polaron band exci-
tation is played by the solitary wave solutions of non-
linear evolution equations.

In a recent paper,'” the present authors obtained a
nonlinear equation of motion for the reduced density
matrix of an excitation coupled to the vibrations of a
host medium as described by the Frohlich Hamiltonian.
Rather than transforming to an optimally chosen basis, a
time-dependent reduction procedure was engineered hav-
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ing the property that the leading order evolution is
equivalent to a statistical mechanical generalization of
the wave-function equations used by Davydov!?~!* and
others?!=?" to describe soliton transport. Nonlinearity
enters through the time dependence of the reduction
procedure, which is determined self-consistently. The
systematic framework of the reduction procedure makes
possible the construction of correction terms which im-
plement essential improvements on the Davydov dynam-
ic. As a nonlinear theory of the Frohlich Hamiltonian,
the present theory is a “soliton theory.”

In this paper we analyze an approximation in which
we neglect the nonlinear terms appearing in the non-
linear density matrix equation. Apart from a transient
sense to be discussed below, this amounts to neglecting
the cooperative interaction of the mobile excitation with
the deformation which it induces in the host medium. It
is somewhat surprising then that we find numerous
points of agreement between the linearized soliton
theory and polaron band theory, whose traditional inter-
pretation rests on the existence of such cooperative
dynamical behavior. Points of disagreement exist; how-
ever, these may be satisfactorily interpreted in the con-
text of the full nonlinear theory.

The Frohlich Hamiltonian! may be written

.
H=3 J,ama,+ 3 #io,blb,
m,n q

+ 3 X, (b +b_,)ala,

q,n

(1.1)

in which a, annihilates an excitation in the site state n
and b, annihilates a vibrational quantum in the normal

2947

mode g with frequency w,. In some systems of interest
the excitation is electronic and in others it is vibronic.
We will refer to both kinds of excitations as “excitons.”
In either case, the resonant transfer integrals J,, con-
nect distinct site states and provide the sole mechanism
through which excitons may migrate among the various
sites. The coupling functions X? quantify the strength
and detail of the exciton-phonon interaction. The in-
teraction is taken to be linear in the vibrational coordi-
nates and local in the exciton coordinates. This causes
the local potential experienced by the exciton to depend
on the configuration of surrounding molecules. For later
use, we note that in an acoustic chain, for which neigh-
boring molecules are coupled by nearest-neighbor har-
monic forces, the phonon frequencies are given by

0, =wg sin—l—qéil‘ , (1.2)

and the coupling functions reflecting the interaction of a
molecular excitation with contiguous molecules is given
by

g X=2isinga) g, (1.3)
(2NM i)

in which X is the force constant controlling the interac-
tion and N is the number of molecules of mass M
comprising the chain of length Na.

Following the application of a time-dependent reduc-
tion procedure and subsequent approximations, Brown
et al.'® obtained the nonlinear evolution equations

pmn(t)zé[Hex:p(t)]mn —’i[fm(t)_fn(t)]pmn(t)—'i foldTE [Kml(t _T)'—Knl(t —T)]pII(T)Pmn(l)
!

"% F mm(t)+ﬂnn(t)_2ﬁmn(t)hmn(')

for the matrix elements of the reduced density operator

p()=Tryo(t) (1.5)

in which o(?) is the density operator of the full exciton-
phonon system. The time-dependent functions appear-
ing in (1.4) are defined by

—i

Fu()= 3 X%0,le “ B0 +e “B_ (0],  (L6a)
q9
Kpn()=23 XX, 0, cosw,t , (1.6b)
q
(1.6¢)

I mn(8)=23F XL, X741 — cosw,t) .
q

The complex quantities B,(0) are coherent-state ampli-
tudes?® corresponding to linear combinations of the clas-
sical coordinate pairs [g,(0),p,(0)] that specify the ini-
tial positions and momenta of all the material constitu-
ents at the initial time. Since these quantities are in-

(1.4)

r

herently unknown, they can be specified only through a
distribution function. The functions f,,(¢) are thus fluc-
tuations with a specific distribution characterizing the
initial condition of the medium, which we take to be the
condition of thermal equilibrium. The distribution func-
tion for this case is given by

e—!ﬂq(onz/(nq>
P(B,(0)] = :
{B,(0)} I;I w(n) (1.7
in which (n,)=(e™*"“®"_1)=! is the Bose distribution

for the gth phonon mode.?® The temperature enters ex-
plicitly only when thermal averages are constructed.
The kernels K,,,(¢) contribute to the description of the
response of the phonon system to the exciton dynamics,
and have a role in the fluctuation-dissipation relation of
the system [see (1.12) below]. The damping functions
JF mn(t) appear because the fluctuation properties of the
quantum system cannot be completely accounted for by
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the scalar fluctuations f,,(); the fF ,,,(t) can be derived
directly from the noncommutation of operator fluctua-
tions in the exact theory of West and Lindenberg? [see
(A2)].

In linearizing (1.4), we simply neglect the nonlinear
terms and consider the remaining equation. Specializing
to the case of two sites, the linear equations we consider
hereafter have the form

P11(1)=:‘£[P12(t)—P21(1)] , (1.8a)
p22 [P]z(l)—‘pZI(I)] (1.8b)
plz(t)z—_—[p“(t)—pzz(t)]—}\.(I)Plz(t) N (1.80)

P21 t)— [p“(t —pn(t)]=A*()py (1), (1.8d)

in which A(¢) is the complex scalar function

Mt)=pu(t)+iv(t) , (1.9a)
p(O)=1LF 11D+ (0 —2f (D], (1.9b)
=[f1(t)—f2(t)] . (1.9¢)

The real part u(t) acts as a damping function while the
imaginary part v(¢) acts as a fluctuating energy. The
kernels K, ,(t) appear explicitly only in the nonlinear
terms and therefore do not contribute explicitly in this
approximation.

The simplest nontrivial solutions to (1.8) obtain in the

limit J =0, in which we find p,;(t)=p,;(0), p,(2)
=p,,(0), and p,(t) =p3,(¢), where
pralt)=exp [— fo’drm)]p,z(m. (1.10)

Since A(t) is dependent on the fluctuations f,(¢) of a
particular realization, we must average p,,(¢) over pho-
non initial data as appropriate for a thermal ensemble.
The averaged solution is

—F u()—f (0]}

X exp [— ford‘r fotdf’[(fl(f)fl(r’))

—(fl(T)fz(T'))]
(1.11)

<P12(t) ) =p12(0)exp{

in which we have used ff =/, and {(f,(1)f,(¢t"))
={f,(t)f,(t")), which follow from assuming the host
lattice to be translationally invariant. The explicit form
of the correlation functions is given by

(fr(Df () =2 XX 90} cos[w,(t —t")](n,) .
q

(1.12)

It has been shown in Ref. 11 that (1.11) is the exact
J =0 solution for the density matrix of an exciton in-
teracting with a phonon bath initially in equilibrium.
The exciton solution is nonstationary and evolves into a
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form at long times which is precisely the time-
independent solution for the density matrix of a similarly
prepared polaron. This and other quantities which may
be calculated exactly in the J =0 limit allow the dynam-
ics of the J =0 limit to be interpreted as the dynamics of
polaron formation. Since polaron formation is the only
dynamical process occurring in this system when
J =kpT =0, the damping functions ff ,,(t) may be
unambiguously identified with this process.

II. GENERALIZED MASTER EQUATION

When J 50, the solution (1.10) for the off-diagonal ele-
ment p,(¢) must be replaced with the integral relation

pialt)= exp [_ [ dran) ]pn(O)

— ftfd‘rk('r)

X[P“(t')—Pn(tl)] .

J t o,
T fodt exp

(2.1)

Defining P =p,; —p,,, we may use (1.8) and (2.1) to con-
struct the integro-differential equation

P(t):——;— fo'dt'exp[—— f;dry(f)]

X cos (2.2)

[larvin) [P .
t

In obtaining (2.2) we have set p;,(0)=0 for simplicity.
This restricts our present discussion to exciton matrices
which are initially site-diagonal.

To facilitate comparison with results of polaron band
theory, we arrange (2.2) in the form of a generalized
master equation

Pmm (D)= f dt’ 2[ mn (52 )P (2

W (68" )ppm (8] . (2.3)

The generalized master equation is not the most com-
mon form of transport equation used in this context;
however, its memory kernels provide a convenient means
of characterizing transport models. We find that the
memory kernels for our linearized equations have the
form

le(t,tl)':Wz](t,tl)
L [ arutn)|cos | [arun]
= ﬁz €xXp '— v TU\T ]COS v .

(2.4)

We note that the generalized master equation we obtain
involves memory kernels which are nonstationary. This
is not surprising since the memory W,,(¢,t’) is actually a
fluctuating quantity that depends on the fluctuations
fn(7) of a particular realization of the phonon system.
Only in the thermal average ( W,(¢,¢’)) may one anti-
cipate stationarity. However, carrying out this thermal
average we find
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2
<W12<t,t'>>=—§7expz—wum—ﬂ O = 1)+ 1))

xexp [— [ar [\ar[(fi(nf 1) =(£10fD] ]

(2.5)

The integrated correlation functions in the second exponential factor depend on ¢ and ¢’ only through the combination
t —t' [see (1.12)]; i.e., the second exponential factor is stationary. On the other hand, the first exponential factor is
nonstationary. The nonstationarity of the thermal average implies the existence of a privileged point in time and an

ongoing change in the character of the evolution.

Since it is always the case that ¢z > ', let us consider new time variables ¢ and ¢, such that ¢’ —¢, and t -, +1. We
wish to consider the averaged memory { W ,(t,+1¢,t,)) for various reference times #,. First setting t,=0, the explicit

form of { W ,(to+1,ty)) yields

J2
(W,,(£,0)) = 7 o [— S [ X{—Xx§|*[1— cos(w,t)]coth(fiw, /2kzT) | . (2.6)
q
This may be compared with the polaron memory W?¥S!(t) obtained by Kenkre and Rahman,®
2
wesl(t)=Re %2— exp [— 3 1 X{—x4|*{[1— cos(w,1)] coth(fiw, /2kp T)—i sin(w, 1)} ] ) , (2.7
q
|
which is in agreement with results of Grover and Sil- ) J2  J0)?
bey.’ Inspection shows that the only difference between tll:n@ (Wip(e0,0)) roo= ZZ_ 2 P (2.10)
(W ,(1,0)) and WE!(t) appears in the imaginary part of 0
the exponent in (2.7) which is absent from (2.6). Since  That is, for reference times ¢, sufficiently large,

WP'(0)={( W ,(0,0)) and W' ()= (W ,(,0)), this
difference does not affect the comparison of memory
function behavior based on limiting values obtaining at
short and long times. The origin of the difference be-
tween (2.6) and (2.7) is addressed in the Appendix. For
the purposes of the present discussion the principal
difference between the two memory functions arises from
the nonstationarity of { W,(ty+1,1,)).

The temporal behavior of the polaron memory func-
tion WP5!(z) is well known and easily read from (2.7).
The polaron memory function falls from the value J2/#
at t =0 to a final value J(T)?/#* at long times, where
J(T) is the renormalized polaron bandwidth given by

J(T)=Jexp (=13 | X{—X]|*coth(fiw, /2kpT) | .
q

(2.8)

Taking into account the nonstationarity of (W ,(t,
+1,t,)) we may consider the long ¢ limit as a function
of the reference time t,. Thus we find

lllm <W12(t0+t,to))
_ (1P
= ﬁz

exp{w”(to)_ﬂn(to)]} . (2.9)

That is, when #,=0 we have the usual polaron result;
however, other values of t, result in different limiting
values. For example, for times 7y, near the maxima of
LF 1()—fF 1o(8)], the average memory { W,(t, +1,20))
may actually exceed J2/#, the constant memory of the
“bare” exciton, at least at low temperatures. We find in
the zero-temperature case that as ¢, grows large,

(W, (to+1,t5))r_o departs negligibly from the con-
stant bare value J?/#%. At finite temperatures, the large
to limit may be expressed

J(T)?
J(0)?

JZ
7

F( T2
>J(T)
2"

lim (W,,(w0,t0))

Io—toc

) (2.11)

carrying the apparent implication that only the thermal
part of the polaron band narrowing factor has persistent
significance in the linearized dynamics following from
(1.8). The nonstationary memory { W,,(t,+12,¢,)) thus
distinguishes between the zero temperature and thermal
parts of the usual polaron memory decay, modifying the
zero-temperature part in a nonstationary fashion while
preserving the stationary thermal part. Since the zero-
temperature part contributes at all temperatures, the net
result is nonstationary behavior.

The resolution of { W,(t,+1,t,)) into stationary and
nonstationary factors which are also the thermal and
nonthermal factors has the consequence that at any tem-
perature T, and for any times ¢, and ¢, the thermal fac-
tor of (W ,,(ty+1,2,)) and the corresponding thermal
factor of Wﬁ"z’l(t) are identical,

(W, (tg+1,10)) wesl(t)
<W12(t0+t,t0))1‘:0 - W?(Zﬂ(t)Tz() ’

(2.12)

despite the general difference between ( W,,(to+1,1,))
and WFS'(¢) noted earlier (see Appendix). We may con-
sider departures of this ratio from unity to be the
thermal contribution to the memory function decay.

All thermal effects in our theory, and hence the ratio
(2.12), are derived entirely from the fluctuations f,(1).
The fluctuations depend only on phonon initial values,
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and these are uncorrelated with the initial exciton sys-
tem. The propagation of the f,(¢) through time is the
same as the free phonon evolution. In particular, there
is no cooperation of thermal fluctuations which can be
interpreted as a participation in the formation or preser-
vation of a coherent structure.

III. LINEARITY AS A LIMIT

In obtaining the nonlinear equations (1.4), phonon
coordinates were eliminated using the definition
Bq(t)=Tr0'(O)bq( t), from which follows the exact formal
relation

—iw t t
t)= 9(0)—i d
B ()=e""(0)—i [ dre

—iw (i —
wq(

" 3 X0 () -
n

(3.1

This is the relation one would use in a simulation to fol-
low the dynamics of the medium in tandem with the dy-
namics of the exciton. In linearizing the equations of
motion for the reduced-density matrix, however, we
have neglected the contributions of the integral or
“response” term that (3.1) contributes to the exciton
evolution equations. This affects the dependence of the
exciton evolution on the phonon coordinates, but does
not affect the dependence of the parallel phonon evolu-
tion on the exciton probabilities. Equation (3.1) contin-
ues to describe the evolution of the medium, including
the response of the medium to the linearized evolution of
Pun(T).

Since the two contributions to the vibrational dynam-
ics, the free phonon evolution and the response of the
medium to the exciton dynamics, are not approximated
in our numerischen Gendankenexperiment, the medium

J

. W% ),
P(t)=—*%7 fo dt' exp

— [ldrutn) | cos | [ drivin)+nin] P
t

DAVID W. BROWN, KATJA LINDENBERG, AND BRUCE J. WEST 37

clearly responds to the motion of the exciton in the ex-
pected fashion; however, the mechanism by which this
response feeds back into the exciton equations of motion,
viz., the nonlinear terms, has been eliminated in the
linear approximation. Although the medium responds
to the exciton dynamics by organizing a deformation,
the linearized exciton dynamics are insensitive to this de-
formation since such sensitivity is essentially nonlinear.
Thus, while the resulting picture of an exciton dragging
a deformation about is cosmetically correct, the ‘“drag”
which one is wont to read into the picture is absent from
the linearized exciton dynamics.

We have thus far considered Egs. (1.8) merely as a
“linear approximation” to the complete nonlinear system
of equations embodied in (1.4). We now consider how
Egs. (1.8) may result as a physically meaningful limit of
the full nonlinear system. We note that for the two-site
problem (1.4) may be rewritten

P(t)z—?-ﬁz_‘,‘[plz(t)ﬁpzﬂt)] ’ (3.23)

. —J .

P]z([)=71’(”—[&(1)4—17](!)]}712([) , (3.2b)

. J . .

p21(t)=l_—ﬁ'P(t)——[k (t)—in(t)]py(2), (3.2¢)
in which

n(t)= foth[K”(t —7)—K ,(t —7)]P(7) . (3.3)

The integro-differential equation (2.2) may be formally
rewritten in terms of the quantity 7(¢) as

(3.4)

We now introduce the scaled variable P'(¢)=P(t)/P(0) which is of order unity at least at short times, and the scaled
function %'(¢)=m(¢)/P(0). The equation of motion then reads

P’ 2Jz t ., t
P(t)=—? fo dt' exp [— ftldf,u(‘r)

Written in this form, the dependence of the equation of
motion on the initial exciton distribution is explicit. The
linearized dynamics are clearly recovered in the limit
that P(0)—0; that is, in the limit of a uniform initial
distribution. The evolution in the strict limit is, of
course, trivial in that the unscaled probability differences
P(t)=P(0)P'(t) are equal to zero for all times. The
strict P(0)=0 limit is not necessary, however, for the
linearized dynamics to be a meaningful limit. It is neces-
sary only that P(0) be small enough to render the con-
tribution of P(0)7'(t) negligible throughout the time of
observation. For this condition to hold it must prove
possible to bound 71’(z) by some function of P(0) for the

cos | [ 'drlv(r)+ PO (n] [P

(3.5)

period of interest. Instabilities may prevent such a
bounding relation from existing in some parameter re-
gimes; however, in any case, the linear approximation is
self-consistent since 7’(¢) is independent of P(0) within
the linearized dynamics (a bounding relation exists).
Thus, our treatment of the linearized dynamics supplies
a self-consistent approximation to the full nonlinear
problem posed by (3.2) in the small P(0) regime. This
conclusion generalizes to the full system of Egs. (1.4) if
“small P(0)” is interpreted as “long wavelength,” since
for nearly uniform excitations p,,,, (£)—p,,(?) may be ex-
pected to be a small quantity.
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IV. STOCHASTIC MEMORY

The comparison between the linearized dynamics and
the polaron band theory has been made through com-
parisons of the polaron memory function W§S'(¢) with
the averaged memory function { W,,(to+2,t,)) of the
linearized dynamics. It must be kept in mind, however,
that the averaged memory {W,,(t,+tt,)) does not

J

(Wip(to+1,0)%)
(Wi,(to+1,10))?

t

= cosh {2 fto
1)

+1t tot+t
dr [ ° dr[{(fi(0f1(F) = (f1f (D]
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provide a complete characterization of the linearized dy-
namics since the evolution of the site occupation proba-
bilities is actually driven by the fluctuating memory
W ,,(to+1t,t) and not its thermal average.

The strength of the fluctuations of W,(ty+1,t,) can
be measured by their mean-square value or variance.
For convenience we normalize the mean square with
respect to the square of the mean, finding

4.1)

Obviously, (4.1) is unity when ¢ =0. Moreover, due to the stationarity of the correlation functions, (4.1) is indepen-
dent of the reference time t,. In the limit of long times ¢, we find

tim Paltot0te?) 1 Jor | Jay (4.2)

i—w (Wy(tg+1,29))2 2 | T(T)?  J(0) '
Similarly, the long-time limit of the normalized variance is

lim Wialto+14,10)) —(Wialto+1,10))* 1 | J0)  J(T) ’ @3

tmees (Woy(to+1,00))? 2 | T '

At low temperatures, J(T)~J(0) and the variance is
negligible relative to the square of the mean, implying
that W,(1,t")={W,(t,t')). However, at elevated tem-
peratures, J(T)<<J(0) and the variance is many times
the square of the mean, implying that the fluctuating
memory differs strongly from its mean most of the time.
Figures 1-3 show the results of numerical simulations
which bear out these implications. Each figure displays
one realization of the fluctuating thermal factor
W12(2,0)/{ W ,(2,0))  _, (solid curves), and the average
corresponding to (2.12) obtained on combining 1000
realizations (dashed curves). The system used in the cal-
culations was an acoustic chain comprised of 50 mole-

T T T T T
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FIG. 1. Solid line ( ): Stochastic memory factor

Wi,(£,0)/{W,(1,0)) 7 _o; dashed line (— — —): Average
{(W,,(1,0)) /{W,(1,0)) 7 _, for an ensemble of 1000 realiza-
tions; kg T =#wyg /10.

[

cules identical in their vibrational properties. The func-
tions w, and X4 were defined as in (1.2) and (1.3), respec-
tively, and sites 1 and 2 were taken to be adjacent. In-
trinsic system parameters were constrained such that
32¥*=NM#w}. The random quantities in the simula-
tion were the complex initial mode amplitudes S,(0);
moduli and phases were chosen independently according
to the distribution (1.7), and the initial values for the
mode g were chosen independently of those for the mode
—q. The same random sequences were used in generat-
ing all three figures, so the changes in the character of
the fluctuations from figure to figure and differences in
the resultant mean values are attributable to differences
in temperature only.

THERMAL FACTOR
L o

FIG. 2. Solid line ( ):  Stochastic memory factor
W2 (,0)/{W,(£,0))r_o; dashed line (— — —): Average
(W,(£,0)) /{ W,(£,0)) _o for an ensemble of 1000 realiza-
tions; ky T =fiwy.
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FIG. 3. Solid line (——): Stochastic memory factor

W15(1,0)/{ W,(£,0)) r_o; dashed line (— — —): Average
(W,,(1,0)) /{ W,(t,0)) r_, for an ensemble of 1000 realiza-
tions; kz T =10fiwg.

It must be emphasized that the time dependences con-
tributing to the fluctuating thermal factors are the same
as those occurring in the free phonon evolution, and the
initial data for distinct phonon modes are uncorrelated.
The individual realizations, and therefore the ensemble
average, of the thermal part of W ,(¢,t’) thus contain no
contributions interpretable as being derivable from
cooperative phenomena. That the thermal factors de-
pend on the same coupling functions as do rigorous po-
laron effects'! is a fortuitous consequence of the fact that
thermal and cooperative effects are communicated to the
excitation via the same system-bath interaction terms of
the Frohlich Hamiltonian.

V. CONCLUSION

In this paper we have considered in detail a linear ap-
proximation to the nonlinear density matrix equations
recently obtained by Brown et al.'’ as a dynamical
description for the Frohlich Hamiltonian. It has been
shown previously that a complementary approximation
in which certain quantum-mechanical properties are
neglected yields the nonlinear Davydov dynamic as a
special case. The retention of linear terms in the present
treatment allows some of the quantum effects absent
from the Davydov dynamic to be studied.'® The linear-
ized theory describes the evolution of both diagonal and
off-diagonal density matrix elements and is exact in the
transportless (J =0) limit. Since the linearized theory is
a valid approximation in any case that the site occupa-
tion probabilities are nearly time independent, it is possi-
ble that the linearized theory may provide a self-
consistent approximation for extended excitations, or in
any case for short times. However, the immediate value
to be realized from the linearized theory is the contact
with traditional polaron theory it affords and the reinter-
pretation of that theory which is thus made possible.

The principal polaron effects, the dressing of the bare
excitation with a deformation of the medium, the con-
comitant increase in the effective mass, the decrease in
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diffusivity, and self-trapping phenomena are intimately
tied to polaron band narrowing in traditional polaron
theory, and hence to J(T). Since all these aspects of the
polaron dynamic (with the possible exception of
diffusivity) may be considered in isolation from the
thermal motion of the medium, the zero-temperature po-
laron bandwidth J(0) is perhaps the most pervasive
feature of polaron theory. The various polaron effects
implicitly or explicitly involve the expectation that the
cooperative interaction of the exciton and phonons re-
sults in ponderable effects within the space of the exci-
ton. In linearizing our equations of motion, however, we
have interfered with the feedback channel through
which such cooperative interactions can affect the exci-
ton evolution. All results of the linearized dynamics ex-
plicitly exclude the sensitivity of the exciton dynamics to
the deformation which it induces in the medium without
excluding the deformation itself. It is thus not surpris-
ing that J(0) and its attendant interpretations have at
best an ephemeral existence in the linearized theory here
presented.

We have found significant points of agreement in our
comparison of the memory functions of the linearized
dynamics with the memory functions which characterize
polaron band theory. On the other hand, significant
differences suggest alternatives to the common interpre-
tations of memory function structure. We interpret the
zero-temperature (nonstationary) memory function decay
not as arising from the comovement of an exciton and
medium deformation, but rather as originating in the po-
laron formation process only. The polaron formation
process involves a transient loss of energy from the exci-
ton system. The existence of an energy-loss process is
consistent with usual memory function interpretations
once the transient nature of the process is taken into ac-
count. Since the energy loss is a transient associated
with polaron formation and not an ongoing energy ex-
change process such as thermal scattering, there is a
privileged point in time which introduces nonstationari-
ty. The recovery of the memory toward its bare form at
long reference times ¢, is consistent with the linearity of
the dynamics since in the wake of initial transients there
is no agency in the linearized equations of motion
through which the induced deformation can affect the
exciton evolution.

The thermal (stationary) part of the averaged memory
agrees in every detail with the corresponding thermal
part of the polaron memory function. Similarly, the
thermal part J(T)/J(0) of the polaron band narrowing
factor is obtained in complete agreement with polaron
band theory. In our linearized theory there is no sensi-
ble connection between the deformation of the medium
and the thermal part of the band narrowing factor; in
our theory such thermal band narrowing is a conse-
quence of ordinary thermal scattering. We further find
that at high temperatures, characterized by the inequali-
ty J(T)<<J(0), the memory function is strongly sto-
chastic so that the averaged memory provides a very
limited characterization of the dynamics.

In polaron band theory, one encounters a dilemma.
There is no qualitative difference between polaron
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memory function decays at zero temperature
[72—J(0)?] and at finite temperature [J2—J(T)?]; the
decay of memory in each case is sufficient to introduce
incoherence and cause the damping of quantum trans-
port. (This is easily verified for small systems such as
the two-site segment of the acoustic chain we have con-
sidered in this paper.) While we may ascribe the excess
decay at finite temperatures to thermal processes, we
cannot account for the zero-temperature decay without
appealing to some unknown, but intrinsic, nonthermal
scattering process. While such a possibility is becoming
increasingly credible in nonlinear dynamical systems, its
occurrence in an ordered linear system is problematic.
The memory functions we have calculated from the
linearized equations (1.8) obviate this difficulty through
their nonstationarity. The only persistent memory func-
tion decay is that ascribable to thermal processes.

It is a matter for speculation whether retaining the
nonlinear terms may restore a picture of energy trans-
port consistent with the traditional polaron interpreta-
tions based on J(0). At the present time there are no
calculations based on (1.4) which support or contradict
such a conjecture. On the other hand, we have noted
that the nonlinear Davydov dynamic can be recovered
from our general theory as an approximation. Both nu-
merical®?~?7 and analytical?® results indicate that self-
trapping phenomena and reductions of transport rates
can be found in Davydov-type dynamical systems. It
must be anticipated that some manifestation of these
features of the Davydov-type approximation will persist
in the more general theory, and thus contribute to at
least a partial restoration of the intuitive content of pola-
ron theory tied to J(0).

Note added in proof. The forms of the integral terms
given in (1.4) and (3.3) differ from those of the corre-
sponding terms in Ref. 19 through the neglect of surface
terms obtained on integrating the latter by parts. The
justification for neglecting these surface terms will be
discussed elsewhere.
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APPENDIX

The purpose of this appendix is to determine the ori-
gins of both the similarities and differences between
(W ,,(£,0)) and the polaron memory W' (t) of Kenkre
and Rahman. The more general behaviors of W ,(¢,¢)
and ( W ,(t,t')) are quite different from that of W¥3'(z).

The memory functions of interest have been derived
by very different methods. It is shown in the text how
(W,,(¢,0)) is obtained from a density matrix equation
of motion. It is an essential feature of the equation of
motion that the damping functions ff ,,(¢) are deter-
mined nonperturbatively by requiring that all terms of
the equation not explicitly dependent on the transfer in-
tegral J agree with corresponding terms in the exact
J =0 equation. The consequence for the memory func-
tion ( W,(1,0)) 7 _, is that
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2

( Wu(x,m),»:o:i; exp{—LfF (D= 0]}, (A1)

jf,,m(t)=Re[fotdrl fO‘dTZ(F,,.(ﬁ)F,.(Tz))T:o ,

(A2)

in which the F,(¢) are fluctuating operators defined in
Ref. 11. The damping function fF ,,(¢)—fF 15(¢) is the
exponent of the memory { W,(1,0)) r_o; however, it is
derived from the exact J =0 solution p,(t); _, for which
it is also the exponent. We thus rewrite (A1) using the
results of Ref. 11

2 - —-—
(W,,,,,(t,O)):‘_}%Trphp;%(T)e $4(0), S,y (1), =S (1) S, (0)

(A3)

The memory function of Kenkre and Rahman is a re-
sult of second-order perturbation theory in the basis of
dressed states. After transforming the Frohlich Hamil-
tonian into the dressed basis, Kenkre and Rahman ob-
tain

2
\ J S, (1) —S,(1) 5,(0) —S,(0)
WPho(t)=Re ?Trphp;‘ﬂ,(T)e e e e

(A4)

Equations (A3) and (A4) are ambiguous as they stand be-
cause the operators S,(¢) have not been defined and the
states over which the traces are taken have not been ex-
plicitly stated. In the calculation of Brown et al. all
phonon operators are bare operators; i.e., those
representing the normal modes of the isolated medium.
In the calculation of Kenkre and Rahman, all phonon
operators are dressed operators; i.e., those representing
modified modes of vibration which include part of the
effects of exciton-phonon coupling. While these dressed
modes are normal modes in the J =0 limit, neither the
bare nor the dressed modes are normal modes when
J£0. Both (A3) and (A4) are traces over the relevant
phonon states [i.e., bare for (A3) and dressed for (A4)]
and pp3(T) is the relevant equilibrium density operator.
The exponential operators are defined such that

"= exp EXﬁ(eim"[b;—e“m“tb_q) , (AS)

q

and thus may be recognized as products of coherent
state displacement operators.

Were it not for the distinct ordering of the displace-
ment operators in (A3) and (A4), the structure of the
traces would be identical and would yield the same result
despite the differences in the interpretations of the
operators involved. Yet the exponent yielded by (A3) is
real, while the exponent yielded by (A4) is complex.
One may verify using simple properties of displacement
operators that it is the distinct ordering of the operators
in the two traces which is responsible for this difference
in phase.
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The order of displacement operators in (A4) is deter-
mined by the derivation of (A4) from a perturbation
theory which gives the memory function as a correlation
function

Sm(D), =Sy(1),5,(0) =5, (0)

(V,,,(t)V,,(0)) —>Trpe (A6)

On the other hand, the order of displacement operators
in (A3) is determined by the derivation of (A2) from a
density matrix equation, in which the density matrix ele-
ment p,,, () is given by

—5,(0) S,() —5, () —S,(0)
Tro(0)a(t)a,, (t)>Trpe " e e ™ e " .

(A7)
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Since the difference in ordering is intrinsic to the
different methods of calculation, the only way to bring
the two methods into agreement would be to modify one
or the other memory function in an ad hoc fashion. The
modification of our theory which would be necessary to
“resolve” this disagreement consists of removing the re-
striction of ff,,(t) to the real part of the operator
correlation function in (A2). A serious consequence of
such a modification would be that the resulting ad hoc
theory would fail to reproduce the known exact density
matrix solution in the J =0 limit. Moreover, such a
modification would not resolve the disagreement we find
in the transient behavior of the system, so the agreement
thereby gained would be short lived.
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