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Nonlocality in the density-functional description of bonding in Li2, N&, 02, and F2
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The fully self-consistent implementation of the nonlocal-density functional of Langreth and

Mehl has been used in conjunction with the augmented Gaussian method to calculate the

potential-energy curves and dissociation energies of N2, Li2, 02, and F2. The nonlocal functional

gives ground-state potent;ial-energy curves in very good agreement with experiment. %e compare
these nonlocal results with other local-density calculations, and examine the efkct of nonlocal-

potential self-consistency on the dissociation energy.

I. INTRODUCTION

The local-spin-density approximation (LSDA), a spe-
cialization of the general density-functional theory ori-
ginated by Hohenberg, Kohn, and Sham i, 2 has been
used to calculate the electronic ground-state properties
of numerous atoms and molecules. Most undertakings
have been surprisingly successful —trends in electron
densities, ionization and binding energies, and molecular
geometries are well reproduced and quantitative accura-
cy in geometries is usually to within 1-2%. The lack
of corresponding accuracy in binding energies remains a
major shortcoming of the LSDA.

The fundamental local-density approximation is that
the exchange-correlation energy of a system of interact-
ing electrons can be calculated from an integral involv-

ing the exchange-correlation energy density, s„,;

E„,= fdrn(r) e(n(r)) . (1)

The exchange-correlation potential U„, is computed from
the functional derivative of the energy density

u„,= n(r) „s,(n(r)) .
t)n r

These local functionals are approximated as the
exchange-correlation energy density and potential of a
homogeneous electron gas with the charge density n (r).

T~o basic errors are entailed in the LSDA. First, the
exchange-correlation energy and potential of the in-
teracting (correlating) electron gas are imprecisely
known. The more recent LSDA functionals are parame-
trizations ' of electron gas results calculated by the
random-phase approximation (RPA) and by Monte Car-
lo methods. Both approximate Coulomb correlation
e8'ects.

The second error is that the charge densities of atoms
and molecules are not uniform, and the exact exchange
interaction (given by Hartree-Fock theory) is not local.
Recent progress toward removing this error has come
from gradient or nonlocal functionals, which depend

on both the charge density and the gradient of the
charge density. These functionals are nonlocal in the
sense described by Parr, 9 though the functional still de-
pends on the properties of the charge density only within
an in6nitesimal volume element.

This paper reports results from a study assessing the
effects of a full implementation of the Langreth-Mehl
(LM) nonlocal-density functional ' on the dissociation
curves for several diatomic molecules.

II. METHOD

The LM nonlocal exchange-correlation energy of an
inhomogeneous electronic charge distribution is given by

E„,[n]=E'„;"'+Jdr n (r)e"„f[n (r)],
where s„"i[n (r)] is the energy density per particle;

I «+
I

'
9 )(21/3 4/3 + 4/3

e"„;=afdr

2 F iVni2+ d' n4/3 (3)

where

b
/Vn/

7/6

2 —i/2[( 1+()5/3 ( 1 g)5/3]1/2

g= (n+ n)/n, —

n =n++n
The constants a and b are (in atomic units)

a =—,'In/[8(3n. ) / ]I =2. 1435X10

b =(9')' f =1.745f,
and f is an adjustable parameter which defines a cutoff
@eave vector used in the integration over the wave-vector
decomposition of the nonlocal contribution to the corre-

37 2850 1988 The American Physical Society



37 NONLOCALITY IN THE DENSITY-FUNCTIONAL. . .

lation energy. ' (The derivation and discussion of these
equations appear in Refs. 7 and 8.) The optimal value
for f is weakly system dependent and ranges between
0.13 for surfaces and 0.17 for atoms and molecules. Un-

less otherwise states, we have adopted f =0.15 for the
calculations reported here.

The exchange-correlation potential U„, is obtained via
Eq. (2),

XCf 1 XC 0 —7
U + I. j +,local + $/3 $/3n' 9X2

4
I Vn,

I

'
35y

—1/3

T

2 p (2 F)V—n 4
n 3

11F 7F [ Vn [ F(F—3)(Vn.V)(
~
Vn

~
)

3 6 pg2 n/Vnl

2xs 2n
2/3 2/3

Vn [2 (1—F)n~Vn —2 (2—F)nVn~]
6d' n4

(4)

The nonlocal portion of the potential, U„„diverges at
small n(r) (large r), and Langreth and Mehl suggested
multiplying both U + „& and e"„& by a suppression factor7

c =exp( —Ii
~

Vn
(

n '~'), (&)

where h was chosen to be 0.0001. This topic will be ad-
dressed in more detail below.

These nonlocal functionals are combined with one of
the local exchange-correlation parametrizations of the
RPA electron gas calculation. We have chosen the
Vosko-Wilk-Nusair fit of RPA data (VWN RPA).

Equations (3) and (4) were incorporated into the aug-
mented Gaussian orbital method of Painter and
Averill. ' In the version used in this study, the basis was
divided into two sets of atom-centered Gaussians. " One
set of Gaussians has large exponential constants and, to
within a small tolerance, is nonzero only within a
predefined sphere centered on the atom site. These func-
tions describe the core region of the basis orbitals. The
other set has smaller exponential constants and extends
beyond the atomic spheres; this set forms the exclusive
representation of the tails of the valence orbitals. This
dual basis set allows independent optimization of the nu-
merical integrations over the core and valence regions.
The numerical integration involved in evaluation of the
electron-electron matrix elements was done on a spheri-
cal point mesh around each atom (for the core and
valence sets) and on a global prolate spheroidal mesh
(for the valence set only). The all-Gaussian basis is par-

ticularly advantageous in the present context because the
charge-density gradients can be computed analytically.

Both local and nonlocal potentials were iterated to
self-consistency, except where otherwise noted. The size
of the basis sets for Li, N, and the dimers are noted in
Tables I and II. The basis for 0 was (10s,6p) and for F
the basis was (12s,6p).

III. RESULTS

A, Atomic tests

Gaussian functions poorly represent the cusp in the s-
orbital charge density at the nucleus, and the gradient
representation is even poorer. Hence we sought to es-

tablish that an a11-Gaussian basis of moderate size was
suitable for gradient functionals. Table I is a compar-
ison between atomic energies taken from Langreth and
Mehl, who used a numerical method, and our Gaussian
orbital calculations. %'hen we use the von Barth-Hedin
(vBH) RPA parametrization, the total energies agree to
within 0.005 hartrees. Table I also shows the minor
diS'erences that occur when the VWN RPA (Ref. 7) is
used rather than vBH for the local portion. The basis
sets used in our calculations for the atoms are also noted
in Table I. %e conclude that with a suScient basis, the
incorrect behavior near the nucleus has a negligible
effect on the total energy.

TABLE I. Comparison of atomic total energies calculated numerically (Ref. 7) and from a Gauss-
ian basis set (in hartrees). Calculations done with f =0.15 (see text).

Atom

He
Li
Be
N
Ne

Basis
size

(10s)
(8s)
(13s)
(10s,6p)
(14s,8p)

—2.90
—7.46

—14.60)
—54.445

—128.68

Present
(vBH local)

—2.8980
—7.4570

—14.6030
—55.4450

—128.6758

Present
(V%'N local)

—2.8998
—7.4538

—14.6088
—54.4629

—128.7000

'The values from Refs. 7 and 8 are reported in rydbergs. ~e have divided by 2 and when this division
resulted in a remainder, a subscript "5"is recorded.
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TABLE II. Comparison of calculated and experimental vibrational frequencies (in cm ).

Dimer

Li2

N2

02
F2

Basis

[as 3p ld /Ss 3p ld)
[10s6p 1d /5s4p 1d )
[10s6p 1d /5s4p 1d)
[12s6p 1d /5s4p 1d)

Expt.

351
2358
1580
892

Fitted
expt. '

357
2377
1611
994

LM

364
2409
1624
1067

V%N
(local)

356
2430
1628
1091

'From RKR data (Ref. 12) for Li2, N2, and 02, and fram Hulburt-Hirschfelder (Ref. 14) for F&, as de-

scribed in text.

8. Dissociation curves

A variety of treatments for N2 have appeared in the
literature. In Fig. 1, we compare the experimental N2
binding-energy curves to curves from other calculations.
In order to better compare the shapes of the curves, we
have adjusted each curve along the energy axis to a com-
mon reference energy. The coincidence of the minima
shows that all curves have nearly the same equilibrium
separation. It is also apparent that the shape of the LM
exchange-correlation curve, denoted by diamond mark-
ers, is in excellent agreement with the Rydberg-Klein-
Rees' experimental (EXPT) curve (the solid line). By
comparison the Hartree-Pock (HF) (dashed) curve rises
too steeply at large R. This is expected for Hartree-
Fock, which predicts the wrong dissociation limit. Con-
versely, the LM exchange-only (dash-dotted) curve
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FIG. 1. Potential-energy curves for the nitrogen molecule
calculated from several exchange-correlation functionals. The
solid line (EXPT) is the Rydberg-Klein-Rees experimental
binding curve (Ref. 12). To better compare the shapes, all
curves have been shifted along the energy axis to a common
zero. The HF curve (dotted line) and the self-

interaction-corrected results (SIC, triangles) are taken from
Pederson et al. (Ref. 13). The Langreth-Mehl nonlocal
exchange-only functional (LM-XC) gives the dot-dashed line,
and results using the LM nonlocal exchange and correlation
functional (LM-XC) are shaven by diamond markers.

(LM-X) rises too slowly. The comparison between HF
and LM exchange-only curves (by definition, the exact
density-functional exchange energy is identical to the
Hartree-Fock exchange energy) shows the amount of er-
ror in the R dependence of the LM exchange, although
exchange plus correlation produces a curve with nearly
the same R dependence as experiment. Also noted (by
triangles) is the self-interaction-corrected (SIC) potential
curve of Pederson et al. ' The SIC results are in reason-
ably good agreement with experiment for large R, but
show a softer curve for compressed bond lengths than
experimentally observed. The VWN local potential-
energy curve is not shown because it is very nearly the
same as the LM-XC curve. Thus nonlocality has, in
fact, little effect in changing the shape of the Ni binding
curve, but does improve the magnitude of the dissocia-
tion energy, as discussed below. Although not shown,
the curves for Li2, 02, and F2 are also in good agreement
with their experimental curves.

%e feel a comparison of theoretical versus experimen-
tal curves over a wide range of geometries ofhce'rs the best
test of a calculation. Nevertheless, a concise„quantita-
tive comparison is possible by extracting the equilibrium
separation R, and the vibrational frequency co, from the
theoretical curve.

Unfortunately, procedures for obtaining co, are sensi-
tive to the separation distances chosen for curve fitting.
To filter out fitting error, we have fit both theoretical
and experimental curves to a third-order polynomial, us-

ing the same atom separations in both cases. For Li2
N2, and Oz, we chose the equilibrium separations plus
the Rydberg-Klein-Rees' turning points of the lowest
three vibrational levels. For F2 we chose seven evenly
spaced geometries ranging from 2.368 to 2.968 a.u. The
experimental F2 values were calculated using the
Hulburt-Hirschfelder curve' calculated from experimen-
tal constants.

The results are tabulated in Table II. The error in-
herent in the curve 5tting is shown by the diC'erence be-
tween the experimental and fj[tted experimental values.
The close (1—2%) agreement between the fitted experi-
mental and the fitted theoretical curves for Li2, N2, and

Oz demonstrates the accuracy of the shape of the
theoretical curve. Moreover, ~, is at least slightly better
in the nonlocal than the local calculation, with the ex-
ception of Li2, ~here the local results may be fortuitous-

ly good. The calculated ~, for Fz is not as good as for
the other dimers, but here, too, nonlocality improves
upon the LSDA.
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TABLE III. Results of binding-energy calculations for N2. Comparison of the effects of self-consistency, of the choice of f, and

of the suppression of a.„~ at large r. Total energies are in hartrees, binding energies in eV. Non-self-consistent calculations were

done with an exchange-only Xa (a=
3 ) self-consistent density.

0.15
0.15

1

6
1

6

0.15
0.15

Self-consistent~

No
Yes
No

Yes
No
Yes

Suppressed c,"„&7

No
No
No

No

Yes
Yes

Total energies

—109.292 43
—109.297 18
—109.337 83
—109.342 71
—109.286 45
—109.291 14

—54.46041
—54.462 89
—54.48400
—54.486 56
—54.453 26
—54.455 79

Binding
energy

—10.11
—10.11
—10.06
—10.06
—10.34
—10.33

C. Binding energies

Binding energies calculated within the LSDA for 0&,
Nz, and Fz dim'er considerably with the experimental
values. Most LSDA calculations, though, overbind di-
mers which form p bonds. ' Calculations going beyond
the LSDA have done better. For example, Pederson
et al. ' report an unusually close binding energy of
—9.94 eV calculated from a SIC Nz total energy and a
SIC atomic energy by Harrison, ' and Becke has ob-
tained good results incorporating a nonlocal semiempiri-
cal functional into a numerical method designed espe-
cially for dimers. '

There are several choices one must make when calcu-
lating a LM binding energy. We wanted to explore the
sensitivity of the binding energy to three of the choices:
(1) the self-consistency of the nonlocal potential, (2) the
choice of the cutoff parameter f, and (3) the suppression
of the divergent nonlocal potential. We focused on the
Nz binding energy to examine these efFects. All calcula-
tions were done at the experimental bond length (2.074
bohrs, 1.098 A). (The total molecular energies of the ex-
perimental and calculated bond lengths are virtually
identical. )

We tested the importance of a self-consistent nonlocal
potential by computing the binding energy with a self-
consistent Xa exchange-only (a= —', ) density. This bind-

ing energy is then compared to the value for a totally
self-consistent calculation. Comparing the 6rst and
second rows {or third and fourth, or fifth and sixth) of
Table III, one can see that self-consistency lowers the to-
tal energy by 0.13 eV (in N2), but that a corresponding
drop in the energy of the atom leaves the dissociation
energy unaffected. Nonlocal changes in the charge den-

sity have little efFect on the binding energy of Nz.
The optimum value of f changes for different sys-

tems, so we have compared the binding energies of Nz

using two reasonable molecular values, f =0.15 and

f= ,'. The t—otal energies are moderately aff'ected by
changing f ( —1.2 eV in N2), but, as in the case of self-

consistency, a compensating change in the energy of the
atom results in only a small change in the binding ener-

gy
The divergence of U"„i at large r was mentioned above.

In the earlier LM paper, both e"„~ and U"„& were multi-

plied by the factor shown in Eq. (5). In the more recent
spin-polarized version by Hu and Lang reth, this
suppression was applied to U"„f, but not to s"„;.

To test the effect of the suppression on the binding en-

ergy, we calculated binding energies both with and
without suppression of c.„"~. Spin-dependent terms were
suppressed by an expression similar to Eq. (5), except
that n+ or n was used rather than the total density.
The parameter h was set at 0.0001, as in Ref. 7.

The fourth and sixth rows of Table III show that the
total energies change only slightly with suppression
(-0.006 hartrees out of -109 for N2). But the binding

energy, which is sensitive to changes that a8'ect rnole-

cules and atoms difkrently, increases by -0.23 eV.
This is a modest increase, but it is larger than differences
due either to the choice of f or to self-consistency. An
increase in binding energy with e."„& suppression also
occurs for Fz and Liz.

The binding energies of the other dimers were calcu-
lated using f =0.15, a fully self-consistent potential, and
without suppression of c„"&. The results are shown in

Table IV. In all four cases, the nonlocal functional
lowers the binding energies, and except for Lit (where lo-
cal theory is very close) this is an improvement. The
binding energies of Fz and Oz can be further improved

by removing the spherical averaging over the partially
occupied atomic p shells. However, we have used spher-
ical atomic charge densities for the results in Table IV so
that we may show only the efFects of the nonlocal func-

TABLE IV. Comparison of binding energies (in eV) and equilibrium separation 4,
'in a.u.}.

Diner
Binding energy

Experiment LM V%N Experiment
R,

LM

Li2

N2

Q2

F2

1.03
9.91
5.20
1.65

0.60
10.12
6.87
2.69

1.04
11.44
7.54
3.32

5.05
2.07
2.25
2.68

5.22
2.07
2.30
2.65

5.16
2.07
2.29
2.63
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tional. %ithout spherical averaging, our results' are
closer to the non-self-consistent results of Becke. '

D. Bond lengths

The theoretical bond lengths, R„are also shown in

Table IV. The calculated R, were already quite good
with local functionals. The F2 bond length is slightly
better using the nonlocal functional, but otherwise there
is little difference.

VA'th the exception of Li2, nonlocality also slightly im-

proves the agreement between calculated and experimen-
tal vibrational frequencies and bond length. VA'thin the
accuracy quoted in Table III, the N2 binding energy was
not affected by self-consistency in the nonlocal potential,
or by altering f between reasonable limits. The means
of suppressing the nonlocal potential does slightly affect
the binding energies.
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