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Eigenstates with an energy E=2 are analyzed for a tight-binding Schrodinger equation
—g&, ig, =EP; on a two-dimensional Penrose lattice. Two diFerent kinds of eigenstates exist.

One is strictly localized and the other is on certain strings of rhombuses with one three-edge ver-

tex plus some additions. The latter tends to states whose support is self-similar and fractal with a
dimension ln2/1n~ on an infinite lattice. The fraction of eigenstates in the spectrum with E =2 is

obtained exactly and is 6.8189%.

I. INTRGDUCriON

The discovery of quasicrystals' has strongly stimulat-
ed theoretical activity. Much of the work is devoted to
the structure and defects of these fascinating new phases.
Several examples of quasicrystals had been known previ-
ously, such as one-dimensional (1D} Fibonacci lattices,
and 2D and 3D Penrose lattices. "'s' Quasicrystals are
rather high-symmetric systems with long-range order
and self-similarity but without translational symmetry or
periodicity. We expect that quasicrystals (or quasi-
periodic systems} can show exotic physical properties
which are quite different from those in crystal phases
and amorphous phases.

Electronic and phonon eigenstates on a 10 Fibonacci
lattice have been treated theoretically by several
groups, ' " and the Cantor-set spectrum with zero Le-
besgue measure and self-similarity of some wave func-
tions are known. Compared with the 1D Fibonacci lat-
tice, the 2D Penrose lattice has not been much investi-
gated' ' and most of the work is based on numerical
analysis. We should be very careful in discussing numer-
ical results, because a new phenomenon is diflicult to un-

derstand and often leads to some misunderstanding. In
a recent work, ' we argued that some of the eigenstates
are critical and show power-law decay due to Conway's
theorem. Sutherland defined a Hamiltonian for a 2D
Penrose lattice whose ground-state wave function is crit-
ical and non-normalizable. ' Recently we also de5ned a
Hamiltonian and obtained an eigenstate which is not the
ground state and either is critical or extends over all
sites without decaying. ' From these experiences, we be-
lieve that the spectrum may be very complicated and
multifractal. %e realize the importance of exact solu-
tions for an unexplored field such as quasicrystals.

In this paper, we demonstrate new exact solutions of
the electronic states of a standard tight-binding Hamil-
tonian on a 2D Penrose lattice. In Sec. II, the Hamil-
tonian is de6ned, and the existence of strictly localized
states (confined states) is shown at an energy E =2. We

analyze the supporting region of these localized states in
Sec. III and introduce another state (string state) whose
supporting region is a string of rhombuses with one
three-edge vertex. The support of the string states is
self-similar and fractal. The wave functions are explicit-
ly shown. The fraction of these two kinds of states and
the fractal dimension of the string states are evaluated in
Sec. IV. Section V is a summary.

II. CONFINED STATES

We now define a tight-binding Hamiltonian on a 2D
Penrose lattice (the center model). The s-type atomic or-
bitals sit on rhombuses both wide and narrow. Electrons
can transfer from one orbital to another on adjacent
rhombuses and the transfer matrix element is assumed to
be constant (t = —1). The resulting Schrodinger equa-
tion for the energy eigenfunction

~

qI ) =g, p,. ~

i ) with

an energy E is

(2.1)

where the summation is over four rhombuses j adjacent
to the central one i The en.

error
spectrum extends from

E = —4 (g;=1) to E=2.6865.
The Schrodinger equation of the 20 Penrose lattice

gives unusual states at E =+2, found for the 6rst time
in a system of 440 rhombuses by Semba and Ninomiya. '

They argued that the degeneracy of the states at E = +2
is proportional to the system size and estimated the frac-
tion as No/ltd &0.00429. We call these infinitely degen-
erate localized states at E=+2 "con5ned states" be-
cause we observed, by numerical calculation, that the ex-
tent of the states is confined in some special regions. '

In another 2D Penrose lattice (the vertex model}, where
atomic orbitals sit on vertices of rhombuses, Kohmoto
and Sutherland found in6nitely degenerate localized
states at E =O.

In Fig. 1, we show a wave function of one of the
con6ned states. %e refer to this as an A1 state. Of
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are 6ve 8 states and fIve D states in the unshaded region
of Fig. 4. Some linear combinations of these states can
be eigenstates of the 2n. /5 rotation around the central
S5 vertex and these eigenstates are folding around the
inner shaded region.

In the preceding part, we found several irreducible
con6ned states. Once we construct simultaneous eigen-
states of the 2n/5 rotation and if they are reducible,
they fold around a central unsupporting region. To
specify in more detail the supporting region of confined
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FIG. 1. One of the irreducible confined states„ the 3 1 state.
Amplitudes are shown on each rhombus without normaliza-
tion.
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course, there should be another very similar state, (A2
state) in which rhombuses with nonzero wave-function
amplitude are on the opposite side of the S3 vertices.
There are eight different vertices (Q, D, K, S, S5, J, S4,
S3), named by de Bruijn. The S3 vertex is that at
which seven edges (two double-arrow and five single-
arrow edges) join. These A 1 and A2 states have a van-
ishing angular momentum around the central S vertex.
The vertex S is that at which 6ve double-arrow edges
join.

Another typical example is shown in Fig. 2(a) and has
an angular momentum m (m =0, 1, 2, 3, and 4), which is
just the state found by Semba and Ninomiya. The sup-
porting region of this state is doubly connected snd we
call these sorts of states "reducible, " because we can
have some "irreducible" confined states ~hose support-
ing region is minimal and singly connected by choosing
an appropriate linear combination of these states. %e
show an irreducible con6ned state, referred to as a 8
state, in Fig. 2(b) obtained as a linear combination of
states in Fig. 2(a). These irreducible confined states can
be found in another region and two of them are shown
in Fig. 3. One has the same pattern of the supporting
region as the 8 state and we also call this state a 8 state.
The other state in Fig. 3 has a different pattern of the
supporting region from the A 1, A 2, and 8 states, and
we refer to this as a C state. It should be noted that ap-
propriate linear combinations of 6ve 8 states and 6ve C
states form ten reducible states folding around the inner
shaded region of Fig. 3. They can be simultaneous
eigenstates of the 2n/5 rotation around the central S
vertex.

In Fig. 4, we show two other irreducible states. One
of them is a 8 state. The other state has a different pat-
tern of the supporting region and we refer to this as a D
state. Though its supporting region is multiply connect-
ed around an S5 vertex, the D state is irreducible. There
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FIG. 2. (a) The reducible con6ned states found by Semba
and Ninomiya. The amplitude shown is denoted by s =i sing,
c = —cos((), e =exp(iP), e =exp( —iP), with P=mn/S (m =0,
1, 2, 3, and 4). Others in an inner region are not shown but
can be determined in a (clockwise) cyclic way with an addition-
al phase factor exp(2i P) (b) A. nother irreducible confined
state (8 state) obtained by a linear combination of the states in

Fig. 2(a).
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FIG. 3. Examples of other irreducible confined states
around S vertices (8 state and C state).

states, we calculated all eigenstates with E =+2 an the
Penrose lattice of 6545 rhombuses under the Dirichlet
boundary condition and found that there are some
specific clusters and strings of rhombuses on which any
confined state is forbidden (Fig. 5). There are two
different kinds of such clusters, both of which are five-
fold symmetric around S5 vertices. One is of five wide
rhombuses and the other is of 30 wide and 15 narrow
rhombuses. One-dimensional closed strings consisting of
rhombuses with only one three-edge vertex (the D or Q
vertices) are also forbidden regions with some excep-
tions. For example, the A 1 and A2 confined states ex-

FIG. 4. Two examples of irreducible confined states around
the S5 vertex (8 state and D state).

FIG. 5. The unsupporting region for confined states is shad-
ed ~ith black. The Dirichlet boundary condition is imposed
on a system of 6545 rhombuses.

tend across one of these strings. The aforementioned
forbidden clusters are also thought to be such strings.
These forbidden regions in the system of 6545 rham-
buses are shaded with black in the figure. We will find
another exceptional case of strings which support new
states with E =2.

III. IRREDUCIBLE CONFINED STATES,
STRING STA'IKS, AND THEIR SUPPORTING REGIONS

There are seven different nearest configurations for
rhombuses, four for wide rhombuses and three for nar-
row, shown in Fig. 6. Every rhombus has one or two
three-edge vertices (the g vertex with three double-
arrow edges and the D vertex with two single-arrow and
one dauble-arrow edges). We can observe the following.

(1) There are four configurations in which a rhombus
has one three-edge vertex, i.e., (b), (c), (d), and (e) in Fig.
6. (2) It is impossible that both ends of an arrow are
three-edge vertices. (3) A tail end of a single arrow is
never a three-edge vertex. (4) One of the 144' vertices of
a narrow rhombus (i.e., the top end of the single-arrow
edge of a narrow rhombus) is always the D vertex and a
three-edge vertex. (S) There are only three cases in
which neither side of a double arro~ is a three-edge ver-
tex [(c), (d), and (e)). (6) There is no isolated rhombus
with two three-edge vertices.

From the above considerations, we have the following
theorem.

Theorem l. A rhombus with one three-edge vertex al-
ways has two (and only two) nearest-neighboring rhom-
buses with one three™edge vertex. This implies that all
rhombuses with one three-edge vertex are connected
with strings and there are no end points in the strings.

It can be easily shown that, on a 10-rhombus cluster
(five wide and five narrow) around an S vertex and on a
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FIG. 6. Nearest-neighbor confj.gurations of wide and narrow rhombuses. Shaded and unshaded rhombuses have one and two
three-edge vertices, respectively. The number of three-edge vertices cannot be known for those with question marks.

4. +la+0, =o . (3.1)

For a rhombus 0 with adjacent neighbors 1 —4, we have
from Eq. (2.1)

240+ 4i+ 42+ 43+ f4= o ~ (3.2)

Any three-edge vertex can be approached from some S
or S5 vertex by going along rhombuses with two three-
edge vertices. Furthermore, two three-edge vertices of
one rhombus do not share the same edge. Therefore,
from Eqs. (3.1) and (3.2}, we can obtain the next
theorem.

Theorem 2. Three adjacent rhombuses a, b, and c
meeting at any three-edge vertex satisfy the equation for
E =+2,

30-rhombus cluster (twenty wide and ten narrow) around
an S5 vertex, three adjacent rhombuses, a, b, and e,
meeting at a three-edge vertex should always satisfy the
equation for E =+2,

(3.3)

(3.4)

where N is the total number of rhombuses in a string.
The solution of Eq. (3.4) can be assumed as

'exp[i2n(mlN)1], m. =1,2, . . . , N . (3.&)

A rhombus with one three-edge vertex has two neigh-
boring rhombuses with one three-edge vertex and no two
of these three rhombuses share a three-edge vertex. (See
Fig. 6.} We number the rhombuses in a string men-
tioned in theorem 1 in a sequential way as 1,2, . . . , X,
and will refer to this 10 arrangement of rhombuses sirn-

ply as the "string. " From Eqs. (3.2) and (3.3), the wave
function on a string with E=+2 should satisfy the
equation
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0 ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ I tttte ~

1 ~ ~ 0 ~ 1
~ ~ ~ ~ ~ ~ ~ '~

~ 1 ~ ~ ~ ~ te ~ ~
~ 11~ ~ 0 II ~ 'e

~ ~ ~ ~ e
~ ~ ~ 0 tet ~ ~ ~ ~ ~ '~~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ tate~ e ~ ~ 1 ate ete

~1~ 1~ 1~ ted ~ ates~ et ~ ~ ~ ate ~

~ ~ tt ~ ~ ~ 1
~ ~ ~ ~ ~ ~

~ ~~ et ~ ~ to 1 ~ ~ ~
~ ~ ~ ~ tt ~ ~ ~ ~ ~ 0

~ tt ~ ~ 1~ ~ 1' ~ 11~ eence ted~ ~ ~ I ~ 1
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ Iet ~ ~ 1 ~ ~
~ ~ ~

~ ~ ~ ~et ~ I to ~ ~
0 ~ ~ ~~ ~ 1~ 0

~ 1~ I
~ ~ 0

PIG. 6. (Continued).

Substituting Eq. (3.5) into Eq. (3.4), we can obtain

%=3m or 2N =3m, (3.6) Z""=5n+1 n D

(3.8a)

(3.8b)

otherwise we have a trivial solution f&
——0 for all I.

Then the wave function of a nontrivial solution on the
string should be

and easily solve them as

(3.9a)

. 2m
1t, =goexp i l

3
. 4m

or foexp i l (3.7)
(3.9b)

which are zero-angular-momentum solutions.
The strings are generated by the delation of the small-

est strings around the S or S5 vertices. In the following
discussion, we refer to the smallest strings around S and
55 vertices as the first-order 5 and zeroth-order S5
strings, respectively. It must be noticed that five wide
rhombuses around an S vertex do not really constitute a
string because these 6ve rhombuses have two three-edge
vertices. The n-times twofold deviations of the first-order
S string and the zeroth-order S5 string, respectively,
generate the (n +1)-st S and nth S5 strings. We denote
the numbers of rhombuses of these strings by R ' ' and

By successive twofold defiations, we can get the
recursion relations

The nontrivial solutions with E =+2 on the strings can
appear on the (3m +1)-st S strings and the (3m +2)-th
SS strings (m =0, 1,2, . . . ) from Eqs. (3.6), (3.9a), and
(3.9b).

By the inflation-delation rule, we found two units,
shown in Fig. 7, of which any nontrivial solution can be
constructed with certain phases of wave functions.
There exist two nontrivial solutions corresponding to the
two cases of Eq. (3.7) and we will call them "string
states. "

There are several possibilities of some additions to a
string for the support of string states. We can easily un-
derstand that this ambiguity is not essential, because the
additions are restricted on the regions of confined states
8, C, and D. It must be mentioned that the largest
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shaded string in Fig. 5 is just the fourth-order 5 string,
which supports the string states. However, in the nu-
merical calculation, this string and several rhombuses on
the boundary are shaded, i.e., unsupporting regions.
This is simply due to the Dirichlet boundary condition
of our numerical calculation. The confined states A1
and A2 can be classified as string states on a first-order
S string but cannot be constructed by units in Fig. 7.

Theorem 3. There are two and only two (nontrivial,
zero-angular momentum) string states with E =+2 on
each (3m+1)-st S string and (3m+2)-th S5 string.
Other strings can never support any states with E =+2.
The wave functions of string states can be constructed of
two units in Fig. 7 except on the first-order S string.

FIG. 8. An example of a bridge (marked by an asterisk)
connecting two subparts, between nth and (n+1)-st strings.
Shaded regions are strings.

(b)

FIG. 7. Two units of string states. The factor a is either
exp(i2m/3) or exp(i'/3), a+a +1=0, b =2(a —a ), and
e =

2
(a —a*). The shaded rhombuses have vanishing wave

functions and others are shown explicitly or uniquely deter-
mined. The strings are 10 chains of rhombuses with numbers
1, a, and a . An appropriate common phase factor is not
shown here. The string states can be constructed of these two
units, overlapping S vertices with each other.

Before closing this section, we present one more im-
portant theorem which will help to clarify the term "ir-
reducible. "

Theorem 4. All possible eigenstates with E =+2 are
covered by the confined states A 1, A 2, 8, C, and D and
the string states.

This can be proved in the following way. Any region
caught between successive nth and (n + l)-st strings can
be divided into five smaller equivalent regions by cutting
"bridges" of rhombuses. (See Figs. 5 and 8.) These
bridges are just the central parts of the 8, C, or D
confined states. The smaller subparts are decorated by
other bridges which are also the central parts of B, C, or
D confined states. The component of a wave function on
a bridge is uniquely determined except for an appropri-
ate constant phase factor. Therefore, if we choose a
wave function of confined states on a region between two
successive strings to be orthogonal to those of B, C, and
D confined states on the bridges, this is equivalent to im-
posing a condition that the wave function vanishes on
the bridges. After discarding five bridges and several ad-
ditions to B, C, and D confined states, five smaller sub-
parts remain and each of them is identical with a region
surrounded by an nth string. Therefore, it is not neces-
sary to consider larger regions except for string states al-
ready examined completely.

IV. NUMBER OF E =2 STATES AND
FRACTAL DIMENSION OF THK

Ng —+ oo STRING STATE

In order to understand the hierarchical structure of
the lattice, the original tiling of Penrose, shown in Fig.
9, is convenient. There are four prototiles in it, penta-
gon, five-pointed star, three-pointed half-star, and dia-
mond. There are three di8'erent pentagonal pieces. The
unit prototiles are defined as the first-order ones.
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(4.4)

[S5i j =S5i+ [S5ol

[S5„j=S5„+[SS„,j +5W„(n)2),
a„=28„,+ 8'„
e'„=28„,+3m„

(4.5)

(4.6}

(4.7)

(4.8)

Each (n —1)-st-order diamond contains one [S„' z j, one
[S5 3 j, and one [S5„2j . The first two are in the
(n —1)-st-order wedge (a half diamond). The last one
uniquely corresponds to 8„.Therefore, we have addi-
tional generating rules,

[S' il+[S5. zj (4.9}

(4.10)

FIG. 9. Tiling of six prototiles by Penrose (Ref. 4). The
umt prototiles are de6ned as the first-order ones. {S,l and 8,
are shown by bold solid and dashed lines, respectively.

Narrow rhombuses are always isolated or paired, and are
denoted by Ti and Tz, respectively. Every So (five wide
rhombuses around an S vertex) is surrounded by five iso-
lated narrow rhombuses; every W, contains one pair of
narrow rhombuses and every 8& converts two isolated
narrow rhombuses (around an So) to two pairs of narrow
rhombuses. Therefore, we have the following generating
rule for narrow rhombuses:

[So j =So

[Sij=Si + [Sol

(4.1}

(4.2)

[S„j=S„+[S„,j+5[S„' i i+58„,(n )2), (4.3)

A narrow rhombus in a string shares a E vertex (at
which four double-arrow edges join) with two wide
rhombuses in the string [(e) in Fig. 6]. There exists one
other wide rhombus meeting at this E vertex, which is
not in the string. Adding a cluster of 6ve wide rhom-
buses around an S vertex, we can get the result that all
wide rhombuses are connected by strings and that there
are no end points. We will call them nth-order S rings
and S5 rings in order to distinguish them from strings of
rhombuses with one three-edge vertex. The rings are al-
most identical with the strings shown in Fig. 5. The
numbers of wide rhombuses in rings around S and S5
vertices are also given by Eqs. (3.8a} and (3.8b), respec-
tively.

It must be noticed that the hierarchical structure of
rings is just the same as the structure in Fig. 9. Each
edge of the nth-order pentagon (nth-order boundary) can
be understood as a sum of two edges of (n —1)-st-order
pentagons and an (n —1)-st-order wedge (a half-
diamond). Let us introduce a new notation [ j such as

[S„jor [S5„j.The notation [S„jmeans an nth-order
S ring denoted by S„plus all rings within it. Further-
more we use notations [S„'j = [S„j—S„,and B„and8'„
for a boundary and a wedge. The 6rst-order pentagons
and stars correspond to [S', j and [SSij, respectively. A
wedge 8'„includes rings within a half diamond but not
the boundary ring, because the boundary ring is already
taken account of in [S„jor [S5„j.Then the hierarchi-
cal structures of rings are as follows:

S0~5T, ,

8 ) ~ I T2,

8)~—2Ti+2T2 .

(4.11)

(4. 12)

(4.13)

N([So j)/Nit ——r /(1+v ),
N( [S5oj )/Nn ——r /(1+~ ),

(4.14)

(4.15)

where r=(&5+1)/2. The nth-order rings can be gen-
erated from the (n —1)-st-order ones by a twofold
delation and, therefore, we get

N([S„j)=r "N([Sol ),
N([S5„j)=r "N([S5oj) .

(4.16)

(4.17)

One A l, one A2, and five 8 confined states appear in
every [S2 j [Figs. 1 and 2(b)]. An [S5oj in an [S5, j (30
wide and 15 narrow rhombuses) does not carry any
confined state. From Figs. 3 and 4, we can see that
every other {S5oj carries one 8 confined state and one C
or D con6ned state. Therefore, the total number of 3 1,
A 2, 8, C, and D confined states can be evaluated as

7N( [$2 j )+2[N( [S5oj )—N( [S5, j )] . (4.18)

Furthermore, the number of string states other than A 1

and A 2 confined states is

The fraction of rings can be evaluated by the above re-
cursion relations but here we use the delation pro-
cedure. We denote a number of X's by N(X) and the to-
tal number of rhombuses by X&. The generating rule of
eight vertices can be seen by delation and the fractions
of [So j and [S5oj are calculated as
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2 g N(ISi +i I)+2 g N(tS5i +q)) . (4.19)

By using the additional relation

&( IS2 l ) =&( ISi l » (4.20)

we obtain the following results. The fraction of confined
states (A 1, A2, 8, C, and D} is equal to

T

7 1 1

r (1+x ) r (1+r ) r' (1+r )

ln(2 )/ln(r )=1n2/in' 1.4404 . (4.23)

The finite width of the support does not change the re-
sult.

Xz ~ 00 string state is really self-similar and fractal. It
is easily seen that the similarity ratios of one twofold
deflation are v and 2 for the total number of rhombuses
in a system and on its boundary. Therefore, the fractal
dimension of the (Xx ~00 } string states (a support of
states} is

=6.749483 2004y10 ', (4.21) V. SUMMARY

and the fraction of string states (other than A 1,A 2) is
equal to

r

2
1

—16 —8

r4( 1+P) 1 r —lz r6( 1+r2} 1 ~—l2

=6.944 377 661 4&(10 (4.22)

The fraction of degenerate states at E =2 is 6.818927%
in total.

Confined states and string states are localized and nor-
malizable except for infinite-length string states. In the
thermodymamic limit %&~00, this limiting operation
generates two string states on the largest (infinite length)
string. The wave function is not normalizable and ex-
tends from one end to the other. The support of this

The eigenstates with E =+2 of the 2D Penrose center
model are studied. Five irreducible confined states and
string states are defined. %e have proven that these
states cover all eigenstates with 8=+2. Two string
states appear on every (3m +1)-st S string and
(3m+2)-th S5 string. Any other state with E =+2
cannot be supported on strings of rhombuses with one
three-edge vertex. The fractions of confined states and
string states are exactly evaluated. The fractal dimen-
sion of the support of (Nz ~ 00 ) self-similar string states
is ln2/in'.
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