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First-principles calculation of the electric-field gradient in hcy metals
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The electric-6eld gradient (EFG) for all hcp metals from Be to Cd is obtained from energy-band
calculations using the full-potential linearized-augmented-plane-wave (LAPW} method. Our Srst-
principles method, which does not rely on any Sternheimer antishielding factor, yields EFG s in
good agreement with experiment and predicts also the sign of the EFG"s. The EFG was found to
be determined mainly by the nonspherical distribution of the valence-electron density close to the
nucleus. In general, contributions to the EFG originating from p states dominate. This is the case
even for transition metals, where the d anisotropy is large.

I. INTRODUCTION II. METHOD

All nuclei with a nuclear-spin quantum number I & 1

have a nonspherical nuclear charge distribution and an
electric quadrupole moment Q. The interaction between
this quadrupole moment Q and the electric field gradient
(EFG) at the atomic site with noncubic point symmetry
can be measured by various methods' and is used for
the characterization of surfaces, impurities, and vacan-
cies. '

While experimental techniques are highly sophisticat-
ed, the theoretical understanding of the origin of the
EFG is poor. The current status of the theory was sum-
marized recently. For transition metals no reliable cal-
culations of EFG's are reported in the literature. Most
of the previous work is based on non-self-consistent
orthogonalized-plane-wave (OPW) or pseudopotential
calculations, which are not state-of-the-art band-
structure methods. Often a partitioning into an ionic
and a valence EFG is made, and these quantities are
modified by antishielding functions y(r), which can only
be crudely estimated, or by Sternheimer antishielding
factors y„,whose application is only justified if the EFG
is due to a slowly varying external 6eld.

Recently, Blaha et al. developed a new method of
calculating EFG's based on full-potential linearized-
augmented-plane-wave (I.APW) calculations and applied
it to I.i3N, a superionic conductor. I.i3N has three in-
dependent EFG's and they were calculated from f1rst
principles by means of two diferent ways of solving
Poisson's equation. Both schemes gave excellent results
in comparison to experimental data. In order to check
this method in metallic systems we performed self-
consistent full-potential LAP% band-structure calcula-
tions for Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, and Cd
in the hexagonal-closed-packed (hcp) structure at the ex-
perimental lattice parameters.

g ptse(r)YLst(r) (inside sphere);

p(r) = L,M

gp(K)exp(iK r) (interstitial) .

Poisson's equation is solved according to a method pro-
posed by %einert.

Since we calculate a full potential without any restric-
tions on its shape from the total charge density of the
infinite system (including the nuclear charges), we can
obtain the EFG V directly from the I. =2, M =0 com-
ponent of the potential expansion inside the spheres:

lim[Vzo(r)/r ],r~O
(2)

and hence do not rely on additional Sternheimer factors
or other (arbitrary) corrections. In Eq. (2) we assume
that the main axis of the EFG tensor points in the z
direction.

The solution of the boundary value problem yields
the radial potential coefficients VLss(r); thus the I. =2,
M =0 value at r =0 is directly available:

In the LApW method7 the unit cell is divided into
nonoverlapping spheres (with radii R, ) and in an inter-

stitial region; in the former the wave functions are ex-

pressed in atomiclike functions and in the latter in plane
waves. The charge density (and analogously the poten-
tial) inside the spheres is written as a linear combination
of radial functions ptss(r) times symmetrized lattice har-
monics YL~(r) and as a Fourier series in the interstitial
region:

Qc 1988 The American Physical Society



37 FIRST-PRINCIPLES CALCULATION OF THE ELECTRIC-. . .
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r dr

+4m g V(K)yi(KR, )Y'20(k) .

The first term in the calculation of V&0(0) corresponds

to the well-known integral over the charge density times

the i. =2 Legendre polynomial divided by r, but in-

tegrated only over the atomic sphere. The second and

third contributions arise from the charge density outside

the considered sphere. The second term comes from

solving the boundary value problem and guarantees that

the potential matches at R, .
The first part in Eq. (3} is named ualence EFG, since it

originates from the nonspherical electron density of the

valence (and semicore} electrons within the atomic

sphere. The sum of the second and third terms in Eq.
(3) represents the lattice EFG, since they include a mul-

tipole summation. Note, that this splitting into two

parts is formally exact (but depends on the choice of
sphere radii) and thus is not identical to the common
"valence" and "lattice" parts, which are only approxi-
mations since they require nonoverlapping charges.

In our computation the EFG is affected by the follow-

ing three aspects.
(a) Numerical limitations in our band-structure code.

Especially the small EFG's in Be, Mg, and Co are
affected by a finite k mesh. We have consistently taken
about 800 k points in the irreducible wedge of the first

Brillouin zone, while all other computational details are
the same as in the work on Be.

(b) The treatment of the core electrons. We have par-
titioned the core into semicore states (i.e., ls for Be; ls
and 2s for Mg; 3s and 3p in the 3d series; and 3d, 4s, and

4p in the 4d series}, which are treated completely as

band states in the full (nonspherical) potential and true

core states, which are treated atomiclike in the self-

consistent muflin-tin potential (thawed core approxima-
tion).

(c) Our theoretical EFG's are based on band-structure
calculations using the local-density approximation'
(LDA) for exchange and correlation. Since the electron

density is the key quantity in this theory, the EFG is a
direct and very sensitive test of the validity of the I.DA.
The most critical quantity for us is the symmetry split-

ting of p or d states in a crystal, since in the LDA the
effective potential is local and state independent, and

thus may lead to a charge density whose anisotropy is

not correctly described. Problems in the theoretical
description of anisotropies for 3d metals show up, for in-

stance, in bcc vanadium, where the x-ray form-factor ra-

tios of the paired reflections (330}-(411)and (422)-(600)

are severely underestimated by theory in comparison to
experiment.

III. RESULTS AND INTERPRETATIONS
OF THK KFG

V„=(1—y„)V,';"+(1—R) V,',"' (4)

(where R is small but
~ y„~can be quite large} was used

in many attempts to explain EFG's basically from V""
alone, e.g., with the "universal correlation. "' When we

compare this traditional view with our results, we arrive

at a completely different understanding of the EFG.
The lattice contributions are small compared to the

TABLE I. Theoretical and experimental EFG's {Refs. 1 and

12-14) (in 10' esu/cm ) for hcp elements. The sign of the ex-

perimental values is unknown if not given explicitly. The ideal

c/u ratio is 1.633.

Element

48e
12Mg

p2T1

»Co
30ZI1

4ozr

43Tc
~Ru
48Cd

c/a

1.56
1.62
1.59
1.59
1.62
1.86
1.57
1.59
1.60
1.59
1.89

Expt.

1.6
1.8

13
54

—9.6
+ 120

123
23

—32
+ 230

Theory

—1.4
+ 1.6

+32
+ 69
—6.2

+ 125
+93

+ 143
49

—41
+ 254

In Table I we list the experimental values' ' and our
theoretical results for the EFG's of all hcp metals up to
Cd. Note, that because of uncertainties in the values of
the nuclear quadrupole constant Q and due to influences

of structure and temperature in the respective experi-
ments, error bars of approximately 10—20% exist in

many cases. In view of this uncertainty the agreement is
excellent. For the 6rst time one theory is able to repro-
duce the experimental values of the EFG's in all hcp
metals. We can reproduce the sign of the EFG where it
is measured (Co, Zn, Ru, Cd) and predict interesting
changes in the sign (indicated by —) of the EFG in the
series Be-Mg; Sc, Ti-Co; and Y, Zr —Tc, Ru. Our
theoretical value for Ti (69X10' esu/cm ) is in much
better agreement with a recent measurement' than with
the previous accepted value' (56 versus 36X 10'
esu/cm ). Hopefully these theoretical predictions will
stimulate additional measurements of the EFG's includ-
ing the sign.

A reliable theory of physical properties must not only

be able to calculate the respective quantities accurately,

but should also explore the origin of these quantities and

provide a deeper understanding. So far, it was by no

means clear what the main contributions to the EFG
are. Do they come from the point charges of the lattice,

from core or valence electrons, from p or d statest In

the following we address these questions.

Above we have given our de6nition of the valence and

the lattice EFG. In Table II both of these contributions

are listed. The valence EFG dominates and the lattice

EFG contributes 10-15% at most (except for Be). Pre-

viously, the traditional equation, '
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direct local contributions. These local contributions to
the EFG originate from the nonspherical charge density
inside the atomic sphere. This charge density is built up
from the core density (in our approximation always tak-
en to be spherical), the semicore, and the valence contri-
bution. The contribution from the semicore states
(Table II) is found to be almost negligible, independent
of the principle quantum number or the angular momen-
tum of these states. Therefore we have neglected the
"core polarization" of the deeper core states by forcing
their charge density to be spherically symmetric.

The radial coefficient p20(r), which enters the integral
in the EFG equation (3) can be obtained from the wave
functions7 by (in a short notation)

p20(r) g g g ~lm(r)~l'm'( ) 2II'

E„k(E~ I, m I', rn'

a. o

-7
r
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FIG, 1. Nonspherical charge-density component p20(r), the
EFG integrand p20(r)/r, and the valence EFG V,", '(r) are plot-
ted as a function of radius for Be, Mg, Sc, and Cd. The arrows
indicate the total EFG.

where R& denote the radial wave functions (of state
E„i,) and GRIP are Gaunt numbers, which vanish for
most cases so that only a few terms remain in the double
sum. For I. =2, M =0 only p-p, 1-1, and s-1 combina-
tions of I and I' are allowed. The p20(r) coefficients can
be calculated separately for each combination, and the
p-p and 1-1 contributions to the total EFG are given in
Table II. (The mixed s-1 term is negligible. ) To our
surprise we found that the EFG is dominated by p-p
contributions not only in the sp metals, but also in the
31 and 41 transition-metal series, where the total p pop-
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FIG. 2. Kh8'erence electron densities of hcp Zn in the I', 1120}plane. The cutoff'of the perspective plot is 0.08 e/a. u. In the con-
tour plot units of me/a. u. ' are used.
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TAQLF II. Contributions to the total EFG V from the "lattice" and "valence" parts (see text) and further decomposition of
the "valence EFG" into p-p, d-d, and semicore contributions (in 10"esu/cm') as well as the "nonspherical" p and d charges inside

the muffin-tin sphere. [En~=1/2(nr +n~ ) —n~; Snab
—( nq +nq, , )—1/2(nq +nq ) —n~ 2.]

Element

/Be
)2Mg
2ISc
22T&

»Co
30ZI1

40Zr

43Tc
~Ru
48Cd

+ 1.8
—0.1

—14
+1
—19
—10
—18
+6
+8
—26

oval

—3.2
+ 1.7

+ 36
+ 83
—7

+ 144
+ 103
+ 161
—55

49
+ 280

—3.2
+ 1.7

+40
+48
—13

+ 177
+ 106
+ 123
—70
—75

+ 322

0
0

—5

+ 33

—32
—11
+32
+ 14
+22
—39

ysemicore

0
0

+1
+2
+2
—1

+9

+1
+4
—3

—0.010
+ 0.002
+ 0.015
+ 0.011
—0.002
+ 0.041
+ 0.013
+ 0.012
—0.006
—0.007
+ 0.054

—0.025
+ 0.086
+ 0.003
—0.010
—0.027
+ 0.056
+ 0.008
+ 0.021
—0.005

E
O

0

ih I

tR

Cl

P

P P
X Q

6814
0.2 0. 0 0.6 0.8 1.0

Enef. gg (Rtj)

ulation is small while the d charge and its anisotropy is
large, as can be seen from the numbers hn, hnz of p
and d electrons deviating from spherical symmetry.
Table II shows that the signs of the p and d contribu-
tions, V"~ and V, are determined by the signs of the
anisotropy counts hnz and hn&. Thus it is the valence
anisotropy which is of prime importance for the EFG,
but there is no simple proportionality between V~~ and
hn, V„"and hnz, respectively. Indeed the radial
dependence of the anisotropic charge densities is very
important, since in the radial integral in Eq. (3) the 1/r
factor strongly enhances the anisotropic contribution for
short distances. Figure l shows the radial dependence of
the nonspherical charge density pzo(r), the integrand
p20(r)!r for calculating the valence EFG, and the in-

tegral Jo p20(r)/r r dr up to a certain r' While. p2p(r)
is largest near the atomic radius, pgp(r)lr has its max-
imum st short distances from the nucleus. This is the
region inside the first node of the p wave function which
practically determines the EFG. The only exception is
Be, where the nodeless 2p orbital increases slowly and
the contributions from inside the atomic sphere are
twice the total EFG.

From the arguments mentioned above it is also clear
why the charge density originating from p wave func-
tions ("p density" ) dominates over the d contribution.
The Arst node of the 5p wave function is at much shorter
distances than the one of the 4d wave function, while the
3d wave function is nodeless. In addition, the wave
function near the nucleus behaves as r', and thus the d
increases much slower than the p density.

In order to show more directly where the nonspherical
effects are located, the di8'erence electron densities

(p„„z—p,'„"~,~ ~) of Zn are shown in Fig. 2 in the
(1120) plane. It is evident, that the superposition of
atomic densities generally represents the crystal density
quite satisfactorily, but there is a small expansion of the
crystal density (i.e., a positive difference density in the
interstitial region) and consequently a negative difference
density close to the nucleus. It is most important for the
EFG that this negative difference density is highly aniso-
tropic, as the clipping in Fig. 2 demonstrates. It is this
anisotropy within the clipping which practically com-
pletely determines the EFG. The widely used pseudopo-
tential method can be used to easily reproduce the gen-
eral features of this density, but will not enable us to ob-
tain the (for the EFG) most important anisotropies near
the nucleus.

There is another interesting phenomenon, namely the
change in sign of the EFG in the 3d and 4d series, which
can be easily understood by inspection of the partial den-
sity of states (DOS). In Fig. 3 the p, and p„,p» DOS of

TABLE III. Theoretical valence contributions (@without sem-
icore) to the EFG for the 4d transition metals: "NE" means
number of electrons per unit cell, "true" marks the column
with the actual V,"; contribution of that element, "rigid" mod-
els these contributions starting from the energy bands of Tc by
respective band filling, and EF is the corresponding Fermi en-
ergy (with the Tc bands) in mRy.

Element NE Tr ue Rigid

FIG. 3. Decomposition of the partial p density of states
(DOS) of hcp technecium (in states/atom Ry) into p, and p„
{p~) contributions. The arrows indicate the respective Fermi
energies for 6 (Y), 8 (Zr), and 16 (Ru) electrons per unit cell.

3gY

40Zr
3Tc

44Ru

6
8

14
16

+95
+ 155
—56
—53

+32
+ 104
—56
—49

705
777
927

1016
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Tc are presented. '%e notice the dominance of the p„,p„
DOS at lower energies (up to a band filling of eight elec-
trons), while p, dominates at higher energies. In a
molecular-orbital scheme this DOS can be understood as
unsplitted (nonbonding) p, states and split (bonding and
antibonding) p„,p states. Since this DOS does not
change much in the 3d and 4d series a simple band-
filling argument leads to more p„,pr (Sc, Ti, Y, Zr) or
more p, states (Co, Tc, Ru). Note that all these ele-
ments have a rather similar c/a ratio somewhat smaller
than the ideal value of 1.633. Table III lists the 4d and
5p contribution (V," without semicore) to the EFG for
the 4d transition-metal elements. By starting from the
energy bands of Tc and using only a rigid band-Ailing
model, we obtain already the correct trend for the sign
of the EFG, although the quantitative agreement is as to
be expected —fair, but not perfect.

IV. CONCLUSION

%'e have accurately calculated the EFG's of all hcp
metals up to Cd and the results compare favorably with
experiment. Our analysis strongly suggests that the
EFG is determined by the aspherical electron density
distribution of the valence electrons, predominantly from

p electrons, close to the nucleus. To obtain this charge
distribution reliably both a full-potential and an all-
electron calculation is required. The widely used pseu-

dopotential method should not be applied to EFG calcu-
lations, and methods based on muSn-tin potentials
might yield unreliable results as well.

Some of the more semiempirical methods ' ' at-
tempt to solve the EFG problem from the wrong start-
ing point, i.e., they perform better lattice summations or
include additional shielding factors, which are not calcu-
lated from Srst principles for that particular system. %e
feel that an accurate description of the electronic struc-
ture is indispensable. The knowledge of the exact elec-
tron density (near the nucleus) is by far the most impor-
tant part in the calculation of the EFG, and this quanti-
ty must be calculated with the highest precision. Thus,
even for more complex systems with vacancies, impuri-
ties, or surfaces one should not try to explain the EFG
with point charges and lattice sums, but with electronic-
structure calculations, which can be performed on a
highly sophisticated level not only for ordered bulk sys-
tems but also for surfaces' and impurities. ' Alterna-
tively, cluster calculations2 '~' may provide suScient ac-
curate electronic-structure results for nearly all systems,
even when they are very complex.
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