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%'e analyze a simple model of dielectric breakdown in metal-loaded dielectrics. %e show that
the breakdown electric field in a large, but finite, sample tends to zero in a universal manner as the
fraction of metal in the material approaches the percolation threshold. In addition, the average

breakdown electric field decreases logarithmically with the linear dimension of the system when

the volume fraction of metal, p, is below the percolation threshold, p, . The average initial break-
down field, E„be ahves as E, =1/[ A (p)+B(pHn(L)), where L is the linear dimension of the sys-

tem. The coeScient of the logarithmic term diverges as p approaches the percolation threshold,
8 (p }-(p, —p) ". The exponent v is the power-law exponent for the divergence of the percolation
correlation length as p~p, . The breakdown field distribution function FL(E) has the form

FL(E)=1—exp[ cL exp( —h/E)], wh—ere d is the dimensionality of the system. These predic-
tions are verified by computer simulations of random mixtures of conducting and nonconducting
elements. The breakdown process is modeled by allowing the insulating elements to only be able

to withstand a fixed voltage difference before they fail and become conducting elements. This pro-
cess continues until a macroscopic dielectric failure occurs by the formation of a conducting path
across the system. %e find that the electric field necessary to cause this complete breakdown is

the same as the field necessary to cause a single microscopic failure.

I, INTRODUCTION

This paper addresses the problem of dielectric break-
down in metal-loaded dielectrics. ' These materials
consist of an inhomogeneous mixture of conducting and
insulating components. A good example of a metal-
loaded dielectric is the material used by Grannan, Gar-
land, and Tanner in their study of the dielectric con-
stant of a random mixture of 200-A Ag particles con-
tained in a matrix of Kcl. Another example is solid-fuel
rocket propellant. A typical solid-fuel rocket propellant
consists of a random mixture of aluminum particles (the
fuel), ammonium perchlorate particles (the oxidizer), and
a rubbery binder which holds the mixture together. Ex-
periments on dielectric breakdown in solid rocket propel-
lants indicate that the presence of the aluminum parti-
cles in the material dramatiea11y reduces the external
e1ectric field necessary to cause dielectric breakdown of
the material. The breakdown field is a sensitive function
of the volume fraction of aluminum in the material. The
dielectric breakdown of the material proceeds via a
series of microscopic failures which lead to a macroscop-
ic breakdown and electrostatic discharge.

In this paper we analyze a simple model of dielectric
breakdown in a mixture of metal and dielectric by means
of theoretical arguments and numerical solution of
Laplace's equations in a random system. Several impor-
tant results are derived from this analysis. The sensitivi-

ty of the dielectric breakdown field on the metal fraction
in the material is caused by the formation of metallic
percolation clusters in the material. The breakdown
field is of order the inverse of the linear dimension of the
largest of these percolation clusters. Since the size of the
clusters diverges as the volume fraction of metal tends to
the percolation threshold value, the breakdown field

tends to zero in this limit.
The breakdown field in our model has an intrinsic size

dependence. Large samples of material are more sensi-
tive to dielectric breakdown than small samples. This is
because the breakdown begins near the critical defect in
the system. The critical defect is (roughly) the largest
pair of strongly interacting metallic clusters which are
oriented parallel to the bulk electric field. The break-
down electric field is of order the inverse of the linear di-
mension of this defect. Clearly, since the largest defect
in a large sample will be larger than the largest defect in
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a small sample, the applied breakdown electric 6eld is
smaller in larger samples. Our arguments will show that
the breakdown field Ei is of order 1/1n(L) where L is the
linear dimension of the sample. ' The distribution func-
tion of breakdown electric Seld strengths Fr (E) has the
functional form '

d —k
FL (E)= I —exp cL—exp

shown in Fig. 1. The nearest-neighbor bonds of a lattice
are occupied at random by conductors with probability
p. The remaining bonds (probability, 1 —p) are occupied
by capacitors. These capacitors can withstand a voltage
drop up to one volt. If the voltage drop across any
capacitor exceeds 1 V, then the capacitor fails irreversi-
bly and becomes a conductor. The probability p is
chosen so that p is less than p„ the percolation thresh-

In Sec. III we derive this form from a simple scaling ar-
gument based on the statistics of percolation clusters.
This form is similar to the Weibull distribution' ordi-
narily used to St the distribution function of breakdown
and failure problems. The %eibul1 breakdown distribu-
tion function is of the form

Fl(E)=1—exp( cL E—) . (2)

A plot of Eq. (1) looks qualitatively similar to the
Weibull form (2) if the Weibull exponent, m, is large.
However we will show that (1) Sts our numerical data
much better than the Weibull form (2). This is because
the size distribution function for percolation clusters is
an exponentially decreasing function of cluster size. If
the cluster sizes had a power-law distribution function
then the Weibull form would be the appropriate one.

We test all of these theoretical predictions by solving a
lattice Laplace's equation for a random network of con-
ductors and capacitors. In two dimensions we use lat-
tice sizes up to I.=100 and in three dimensions we use
lattice sizes up to L =3S. The numerical results agree
extremely well with the theoretical predictions. The
breakdown field is a rapidly decreasing function of the
metal fraction near the percolation threshold; the aver-
age breakdown Seld is a logarithmically decreasing func-
tion of system size, and the breakdown field distribution
function (1) Sts the numerical results very accurately. It
might be noted that, for two dimensions only, this
dielectric breakdown problem is dual2 to the fuse failure
problem discussed in Refs. 4, S, and 8. The dual vari-
able to the breakdown Seld below the percolation thresh-
old is the critical current density above the percolation
threshold.

Similar work on numerical modeling of dielectric
breakdown has been done by other authors. In Ref. 3
the authors model dielectric breakdown in an initially
homogeneous system. In that work the randomness is
put into the choice of which bond on the Lattice to fail
next. The failure probability is proportional to the local
electric Seld to the power q. This procedure generates a
fractal growth of the breakdown path. Our method of
only failing the capacitor with the largest voltage drop
corresponds to the limit g~~. Reference 2 describes
independent work similar to ours on dielectric break-
down in metal-loaded dielectrics. References 4 and 5 ad-
dress the problem of critical current failure in a random
network of fuses and insulators.

The simple model' ' ' we use to describe dielectric
breakdown in these metal-loaded dielectric materials is
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FIG. l. (a) A typical starting configuration for dielectric
breakdown on a two-dimensional square lattice. The top sur-
face is held at voltage V and the bottom surface is grounded.
The dots are lattice points and the lines denote conducting
paths. Here the metal fraction is p =0.100 and the system size
is I.=48. (b) The 6nal con5guration after complete breakdown
has occurred. Note the conducting path running from top to
bottom.
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old. This ensures that no conducting path spans the sys-
tem. This is s simple model of an inhornogeneous ma-
terial which is composed of s random mixture of metal
and dielectric. An external electric 6eld is applied to the
model by grounding sll sites on the bottom layer of the
lattice and fixing the voltage at all sites on the top layer
of the lattice to have voltage V.

This model is relevant to an experimental situation in
which s sample of dielectric contains a randomly distri-
buted volume fraction of metallic particles. Clusters of
metallic particles occur naturally due to their random lo-
cation in the sample. A large electric field is placed
across the sample fast enough so that there is insufficient
time for space-charge motion through the (imperfect)
dielectric to reduce the electric 6eld in the dielectric.
Breakdown occurs in regions of the dielectric where the
local electric field exceeds the intrinsic breakdown field
of the dielectric,

The initial breakdown of the material is modeled by
finding the minirnurn external voltage V necessary to
cause one capacitor in the system to fail. %'e call this in-
itial breakdown voltage V, . If the lattice has s linear di-
mension of I. then the initial applied breakdown field is
given by E, = V, /L.

In the pure limit, where all bonds of the lattice are oc-
cupied by capacitors, the initial breakdown field is 1 V
per lattice spacing. By contrast, in the limit where p is
close to the percolation threshold, p„ the initial break-
down field is very small. This is because for p close to p,
very large conducting clusters exist in the system. For p
just below p, the largest clusters in the system will al-
most span the system. There will be some capacitors in
the system which lie between a cluster attached to the
top electrode snd a cluster connected to the bottom elec-
trode. In such s circumstance the breakdown voltage
will be Vi=1 V. The breakdown electric field is then
E, =1/L volts per lattice spacing. The breakdown elec-
tric field will scale like 1/L when L is much smaller than
g, the percolation correlation length. This will occur
when p is close to p, in s large but finite system.

The approximate dependence of E, on p can be in-
ferred by a simple argument based on the idea of the
critical defect as displayed in Fig. 2. The critical defect
is a pair of clusters of metal of total length I oriented
along the applied field snd separated by s small number
of lattice spacings. The electric field between these two
clusters is enhanced by s factor of order I times the ap-
plied bulk electric field. " The probability of finding a
percolation cluster of size I is of order (1/g) exp( —1/g)
where g is the percolation correlation length. The larg-
est cluster in s sample of volume I. is of order
1~,„=gin(L"). Since the breakdown field is of order
l /I, „ the breakdown electric field is

ln(L )

The dominate dependence is the (p, —p) behavior so
the breakdown field tends to zero as p approaches p, .
The logarithmic size dependence is less obvious but can
be important in very large systems. Note that for any

~ ~

FIG. 2. The critical defect is a pair of roughly linear con-
ducting elements oriented parallel to the applied field. The
pictured defect is composed of l connected conducting ele-
ments. The breakdown field for this configuration is of order
1/I. The breakdown will begin between the two conducting
clusters.

p gp, the breakdown 6eld tends to zero logarithmically
with I. and L, ~so.

%hen the metal fraction is close to zero the metallic
clusters will be small. This does not imply that the
breakdown electric field tends to unity as p ~0, On the
contrary, even if there is only a single defect (conducting
element) in the system (as long as it is aligned parallel to
the applied field) the breakdown field will be reduced by
s 6nite amount. The problem of a single conducting de-
fect can be solved exactly in terms of the lattice Green*s
function. In two dimensions the addition of s single
eondueting defect fsr from any of the surfaces of the

sample will reduce the breakdown field from E& =1 V
per lattice spacing to E, =m. /4 V per lattice spacing.
Hence, the addition of even s very small amount of met-
al to a dielectric material will signifieantly reduce the in-
itial dielectric breakdown field.

The numerical method we use to solve the lattice
Laplace's equation for the random configurstion is as
follows. The lattice Laplace's equation amounts to solv-
ing

g CJ(V, —V, )=0,
fi j 3

where i is summed over sll internal sites on the lattice, j
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is summed over the nearest neighbors of i, the voltages
along the top row of the lattice are set to unity and the
voltages along the bottom row are set to zero. The con-
stants C, . are chosen to be C, . = 1 if sites i and j are con-

nected by a capacitor and are set to C; =10 if they are
connected by a conductor. This serves to short out sites
which are connected by a conductor. The numerical
technique used to solve (4) is the conjugate gradient
method. ' ' This method amounts to finding the
minimum of the function

—,
' g C,J(V; —VJ) (5)

ti,j )

in the (L —1)L" ' dimensional space of the voltages at
the internal nodes of the lattice. This method converges
reasonably fast and is extremely suitable for vectoriza-
tion so that the calculation can be done efhciently on a
Cyber 205. We relax the system of equations until the
residual is smaller than 10 '~. On a two-dimensional
lattice of size I.=100 at @=0.200 this requires about
14000 iterations of the conjugate gradient algorithm and
takes about 26 s on a Cyber 205. Alternative methods
exist for finding the solution to the random lattice
I.aplace's equation which are more rapidly convergent
for p very close to p, . '

III. SIZE DEPENDENCE
OF THE BREAKDOWN FIELD

0.$

0
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0
X
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FIG. 3. The initial breakdow'n field, E&, as a function of the
conducting fraction, p, and the system size L. The breakdown
field tends to zero as p approaches the percolation threshold

p =p, . Note that F.
&

is a slowly decreasing function of system
size at fixed p.

Figure 3 displays a plot of the initial breakdown field

E, as a function of p for L =50, 70, 100 on a two-
dimensional lattice. The percolation threshold for this
lattice is p, =0.50. The breakdown field E, tends to
zero as p approaches p, .

Note that the breakdown field in Fig. 3 is a slowly de-

creasing function of the system size L. As predicted by
Eq. (3), the breakdown field is a logarithmically decreas-

ing function of the linear dimension of the system for
large systems. This behavior is demonstrated in Fig. 4.
In order to test the logarithmic length scaling argument,
we plot the inverse of the average breakdown field versus
the logarithm of the system size for several different p's.
The data is well described by a hnear dependence on the
logarithm of the system size. Again, as predicted by Eq.
(3), the slopes of the lines are small for p close to zero

and large for p close to p, . From these data we can

make the empirical observation that the average initial

breakdown field Ei scales like

1

A (p)+B(p) ln(L )

15—

IO—

p= 0.40

O. 25

~ p=0. IO

By comparing with Eq. (3) the coeScient of the logarith-
mic term is 8(p)=(p, —p) . To test this behavior, Fig.
5 shows a plot of In(8) versus in[(p, —p) jp, ]. As ex-

pected, the power-law fit to the data give v=1.46+0.22
which is consistent with the two-dimensional value

4—3.
Since the systems being modeled are random, dilerent

samples will have di6'erent breakdown fields. Ho~ever,
there does exist a smooth distribution function for the
breakdown fields of samples with a given p and I.. %e

0 l I I I

IS 25 55 50 70 IOO

L

FIG. 4. The inverse of the breakdown field vs the system

size I. on a logarithrmc scale. The linear dependence demon-
strates that E, has the form given by Eq. (6). The lines are fits

to Eq. (6).
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cluster size distribution is an algebraically decaying
function of n then the distribution function is

CL (I~,„)=exp( —cL /, „) . (9)

CQ

~ Q, 5—
Cl

This distribution is of the Weibull form and is the ap-
propriate distribution close to the percolation threshold,
i.e., when L &&g.

%e can use this result to give the distribution function
for the dielectric breakdown field strength in this model.
We argued earlier that that enhancement of the electric
field in the neighborhood of a linear defect is proportion-
al to the linear dimension of the defect. The breakdown
field is of order I/l~, „where 1~» is the size of the criti-
cal defect so the breakdown field distribution function
FL(E) is of the form

FL (E)= 1 —exp cL exp- k
E (10)

—0.5

'«lo
FIG. 5. This is a plot of log, 0[8(p)] vs log+[(p, —p)/p, ] to

test the relation 8(p) =(p, —p) '. The slope of the line is pre-
dicted in Eq (3) to. he —v where v is the percolation correla-
tion length exponent. The power-law fit to the data gives
v=1.46+0.22 which is consistent with the two-dimensional
value v= 4.3'

This form is valid if L »g. The function FL (E) is the
probability that a sample of size L will experience a
dielectric breakdown failure if an external electric field E
is applied to the sample. For E~O the probability of
failure tends to zero and as E~oo the probability of
failure tends to unity. The constant k is proportional to
the inverse of the percolation correlation length and c is
weakly dependent on p. ' The connection of this
analysis to the logarithmic scaling of the average break-
down field can now be made clear. The average break-
down field will be close to the value E,&2 which is
defined as the value of E for which half of the samples
will fail.

will give an outline of the derivation of the breakdown
field distribution function and show that the result is
consistent with the numerical distribution function
found from the computer simulations. The details of
this derivation are given in Refs. 5 and 8. The break-
down Seld is determined by t'he linear size, I,„, of the

largest defect in the sample. ' Let CL(l,„) be the
probability that no defect larger than size I,„exists in a
d-dimensional hypercubical volume I. . %e then subdi-
vide the cube with volume L" into (L/Li) smaller
cubes of linear dimension. I, If the characteristic size
of the largest defects is much smaller than I.&, then, by
using the statistical independence of the subcubes, we ar-
rive at the result that the probability of there being no
defect larger than I,„on the L, lattice is

[CL (1 »)] ' =CL(l,„) . (7)

Sy solving this equation, along with the fact that the
percolation cluster size is an exponentially decaying
function of I, we arrive at the result

,' =FL (E, &2 ) —=1 —exp cL exp-
Ei/2

This can be easily solved for E,&2.

1

A(p)+B(p) In(L)

where

(12)

ln(c) —ln[ln(2) ]Ap=
k

7 (13)

cia&(p)= —.
k

(14)

Both A (p) and 8(p) should scale proportional to the
correlation length as p approaches the percolation
threshold. This is exactly the form presented above [Eq.
(6)].

The equivalent distribution for the %'eibull form is

FL (E)= 1 —exp( cL E ), —

and the average breakdown field scales as
(8CL(1,„)=exp[ cL exp( —kl,„)]. —

I —4/m
1/2This is the form first derived by Duxbury and Leath '

and is the appropriate distribution function far from the
percolation threshold, i.e., if L »g. If the percolation

%'e will now demonstrate that the distribution form
(10) gives a much better fit to the breakdown distribution
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function numerical data than the Weibull form (15) if p
is far from the percolation threshold. In Fig. 6(a) we

plot the logarithm of the logarithm of the distribution
function versus the inverse of the breakdown electric
field. In Fig. 6(b) we plot the same function versus the
logarithm of the breakdown electric field. If Eq. (10) is

appropriate, the data for the two diferent lattice sizes
should collapse onto a single straight line in Fig. 6(a). If
the Weibull form (15) is appropriate then the data will

collapse to a single straight line in Fig. 6(b). As can be
seen, the data form a very nice straight line in Fig. 6(a)
whereas the data in the Weibull plot [Fig. 6(b}] are no-
ticeably curved. The slope of the curve in the Weibull
plot [Fig. 6(b}] is the Weibull exponent m. The data in-
dicate that m is quite large (m =20). This is a good
empirical signal that (10) may be the more appropriate
distribution function to use.

%e have also performed a few simulations of three-
dimensional metal-loaded dielectrics to make sure that

I

EI

I

IO
I

[3 15
I l

[8 20
L

I

25

FIG. 7. The inverse of the initial breakdown field vs the log-
arithm of the system size in a three-dimensional model for

p =0.100 and 0.050. The percolation threshold for this model
is p, ~0.25. The linear behavior of the data in this plot
confirms that E& is of the form (6) in three dimensions and in-
directly supports the form (10) for the breakdown distribution
function in three dimensions. The lines in the figure are fits to
Eq. (6).
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FIG. 6. (a) Data for the breakdown field distribution func-
tion plotted in a form to test the Duxbury and Leath form [Eq.
(10)] for the distribution function. If this form is vahd, the
data for the two different lattice sizes should collapse to a sin-

gle straight line. (b) The same data plotted in a form to test
the Weibull form [Eq. (15)] for the distribution function. The
straight line is a guide to the eye and has a slope (%'eibull ex-
ponent) of order m =20. The Duxbury and Leath form (10)
for the distribution function gives a much better St to the data
than the %'eibull form.

FIG. 8. The breakdown field, E„,in a two-dimensional sam-

ple of size L =48 with p =0.100 (the sample sho~n in Fig. 1)
as a function of the number of prior microscopic dielectric
breakdowns, n. Note that E„ is roughly a decreasing function
of the number of previous breakdowns. The complete break-
down field is the largest of the microscopic breakdown fields
and the initial breakdown field is the first point. In this partic-
ular case, the initial and complete breakdown fields are the
same. In general, the complete breakdown field is larger than
the initial breakdown Seld but the average initial breakdown
Seld and the average complete breakdown field turn out to be
the same to within the the natural distribution width of the
two quantities.
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our arguments extend properly to higher dimensions.
We expect the critical defect to be a roughly linear ob-
ject as shown in Fig. 2 in all dimensions. Therefore the
arguments we presented for the breakdown field distribu-
tion function should also be valid in three dimensions.
To save computer time, instead of determining the entire
distribution function for three-dimensional breakdown,
we determined the average breakdown field at several
metal fractions, p, and several sample sizes I.. If the dis-
tribution function of breakdown fields is of the form
given by Eq. (10) then the average breakdown field
should have the size dependence given by Eq. (6). A
plot of the data demonstrating this is shown in Fig. 7.
The linear dependence of }/Ei on in(1. ) confirms our
predictions.

Finally, we would like to mention the connection of
the initia1 breakdown field to the complete breakdown
field. The crucial question to be answered is, does initial
failure cause the system to undergo a catastrophic se-

quence of microscopic failures resulting in the formation
of a macroscopic breakdown path? %e can answer this
question by continuing our simulations as follows. After
each failure we replace the failed capacitor by a conduc-
tor and re-solve for the equilibrium voltage distribution.
We continue this process until a conducting path is
formed across the system. We define the complete
breakdown Seld as the largest breakdown field found in
that sequence of microscopic failures. A plot of the
breakdown field as a function of the number of previous
microscopic failures is given in Fig. 8. On average the
function is a decreasing function of the number of previ-
ous failures. This is because the critical defect is getting
longer and longer as the breakdown process continues so
the breakdown field gets smaller. The complete break-
down field was typically slightly larger than the initial
breakdown Seld but in every case we have tested the un-

certainty of the complete breakdown field strongly over-
laps the uncertainty in the initial breakdown field. %e
conclude that the initial and complete breakdown fields
have essentially the same value.

IV. CONCLUSIGNS

Based on the theoretical arguments and the numerical
data presented in this paper we can suggest a couple of
crucial experiments for dielectric breakdown in metal-
loaded dielectrics. First, the initial dielectric breakdown
field should be measured in a large number of similarly
prepared random mixtures of metal and dielectric. This
should be done as a function of metal fraction and sys-
tern size. The resulting distribution functions can be
plotted in the manner given in Fig. 6(a) to test the Dux-
bury and Leath form (10) for the breakdown distribution
function. The manner in which the average breakdown
field depends on p and I. can be tested against the ex-
pected form (6). One can test whether the coefficient
8 (p) is proportional to the correlation length in the sam-
ple. Finally, a careful study can be made of the
difference between the initia1 and complete breakdown
fields. We predict that they are essentially the same.
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