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Model dielectric matrices for quasiparticle selfwnergy calculations
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A computationally simple model for the full static dielectric matrices is proposed for use in

self-energy calculations to obtain quasiparticle energies and band gaps. The screening hole
around. an added electron at a given point in the crystal is approximated by the screening response
of a homogeneous medium determined by the local density. The resulting approximation to the
screening potential includes the crucial part of the local 6elds. Vixen used with the previously
developed self'-energy approach, quasiparticle energies and band gaps in good agreement vrith ex-
perimental resu1ts are obtained for diamond, Si, and Ge.

It has recently been possible to calculate the quasiparti-
cle energies and band gaps in semiconductors and insula-
tors accurately from first principles. '2 The approach is
based on evaluating the electron self-energy operator (Z)
in the GW approximation. 3 Then the quasiparticle ener-
gies are obtained directly. The crucial features of this ap-
proach have been identified' to include adequate treat-
ment of the full crystalline Green's function, the local
fields in the screening, and the dynamical screening
response of the electrons. The electron self-energy opera-
tor is intrinsically a nonlocal operator, an aspect which is
essential to obtain

properly
the gap energy in semiconduc-

tors and insulators. ' Despite the success of this ap-
proach, it is computationally quite demanding. Recent
applications to surface states and optical properties of
semiconductor superlattices represent the most complex
systems accessible to this approach to date.

The commonly used local-density-functional ap-
proach67 (LDA) for band-structure calculations has the
advantage of computational tractability and is therefore
widely used. However, the resulting band energies are not
formally justified as quasiparticle energies. Indeed, the
most glaring discrepancy is the underestimate of the
minimum gap in semiconductors and insulators by
30-100%, the "band-gap problem. "s It is desirable to
have a well-founded approach for quasiparticle energies
which is also comparable to the LDA in computational
difiiculty. The original proposal of Sham and Kohng for a
density functional for Z has recently been implemented
for semiconductors by Wang and Pickett. ' There have
been several other recent proposals, " ' some of
which"'2 attempt to reduce Z in semiconductors to a
form related to the local density through p'l . Unfor-
tunately, none of these proposals has been demonstrated
to be quantitatively reliable for a wide range of materials
and in comparison to all the experimental data for a given
material, e.g., photoemission, inverse photoemission, and
optical data. Godby, Schluter, and Sham' have fitted
their selfwnergy results to a simple nonlocal form for Z,
but have not yet found a constructive modeL

In the present paper, we propose an important sim-

plification of the selfwnergy approach. Rather than mod-
el X directly, the full crystalline Green's function and the
nonlocality of Z are retained. We propose a model for the
screened Coulomb interaction. This is a computationally
demanding step in the full calculation. ' The resulting ap-
proach is not as simple as previous proposals, but as seen
below, it is well founded theoretically and demonstrably
works for the test cases of diamond, Si, and Ge. The
present results for band gaps and band dispersions agree
with the full self-energy calculations within about 0.1-0.2
eV. The computational efFort is significantly reduced in
this approach, although treatment of the self-energy
operator and quasiparticle energies given the present mod-
el dielectric matrices is still more diificult than LDA cal-
culations.

Our approach is based on a simple observation. In the
self-energy calculation, the most important aspect of the
local fields is the variation of the depth of the screening
response to an the added electron with its location. The
depth of the static screening potential in this case general-
ly follows the magnitude of the local charge density. 's

We therefore, propose that the screening potential around
an added electron at r' can be approximated for these pur-
poses by that which would be induced in an electron gas of
the local density at r'. That is, the range of the screening
hole around an added electron at r' is approximately
determined from the local density at that point. 's The to-
tal amount of charge expelled from the region around the
added electron is determined by eo. Thus, the depth of the
screening potential near r' will smoothly follow the magni-
tude of the density p(r'). Regions of high density, e.g.,
the bonds in semiconductors, will screen the added elec-
tron more efFectively than regions of low density, e.g., out-
side the bond chain. V (r,r') should in general be sym-
metric under interchange of r and r'. In the present mod-
el, this is maintained by an explicit symmetrization as de-
scribed below. Consequently, the model screening hole is
in general anisotropic as it should be with weight shifted
towards the regions of higher electron density. This model
is obviously exact in the limit of a uniform electron gas.

The viability of these ideas is demonstrated in Figs. 1
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FIG. 1. The static screening potential around an added elec-
tron at the bond center in Sl is shown as calculated from (a) the
full ab initio dielectric matrices and (b) the present modeL The
contour plots (in intervals of 0.1 Ry) are displayed in the (110)
plane with the bond chain indicated schematically.

and 2, for the case of Si. Here, the screening potential
around an added electron is shown for two cases: the add-
ed electron at the bond center (Fig. 1); and the added
electron in the interstitial region (Fig. 2). Part (a) of
each figure shows the screening potential computed using
ab initio static dielectric matrices as previously report-
ed. 's Part (b) shows the results based on the present
model. It can be seen that the present model reproduces
the local fields quantitatively.

In general, ' the quasiparticle energies are determined
by solution of

[T+V...(r)+ V&(r)]e(r)

+ dr'X(r, r';EvF)% (r') EvF%'(r), (1)

where the terms correspond to the kinetic energy, the
external potential due to the ion cores, the average elec-
trostatic (Hartree) potential, and the electron self-energy
operator, respectively. We use the GR' approximation3
for Z:

X(r,r';E) dme ' G(r, r';E -m)W(r, r', m), (2)

~here b is a positive infinitesimaL The full crystalline
«een's function G and dynamically screened Coulomb

FIG. 2. The same as in Fig. 1 for an added electron in the in-
terstitial region.

interaction IV enter. For the Green's function, a quasipar-
ticle approximation is used as has been detailed previous-
ly. ' The screened Coulomb interaction is given by

IV(r, r', m) dr "e '(r, r";m) V, (r"—r'), (3)

where e ' is the timewrdered dielectric matrix and V~ is
the bare Coulomb interaction. In our first-principles ap-
proach, ' the dielectric matrices were obtained in two
steps: (i) the ub initio static dielectric matrices were cal-
culated using the local-density-functional approach 5 (ii)
the dielectric matrices were extended to finite frequency
using a generalized plasmon-pole model employing exact
sum rules. '

In the present paper, we approximate the static dielec-
tric matrices and then proceed exactly as before. Our
model for the screening response in the crystal is

V (r,r') —,
' [V"; (r-r', r, (r'))+V"' (r' —r;r, (r))],

(4)
where r, is the usual density parameter evaluated at the
position of the added electron. The average taken in Eq.
(4) enforces the proper symmetry under interchange of r
and r'. The local screening response is determined by an
approximate dielectric function. We use the Levine-Louie
model dielectric function appropriate for a semiconduc-
tor. "

nVF Q' 2Q' & X SQ' 2Q' SQ X'+(2Q —Q')'
Here Q q/qF(r, ) and the parameter A, (r, ) is determined from

Z'(r, ) -mF2(r, )/mp(r, )(ea —1). (6)
For each r', the parameters (plasma frequency and Fermi energy) are evaluated at the local density r, . The model re-
quires as input the value of the dielectric constant of the material. It can in principle be calculated, but in practice is tak-
en from experiment. The Levine-Louie model is used with the dielectric constant fixed throughout. The parameter X

which formally enters should not be interpreted as a local gap in the present context. It is a parameter which insures the
correct long-range screening in the system. Physically, only 1 —1/eo electrons are expelled from the region of the added
electron in a semiconductor. This incomplete screening must be properly included in the self-energy operator, particular-
ly the screened exchange term.

It is straightforward to manipulate Eq. (4) to obtain the dielectric matrices for the crystal. Using a reciprocal lattice
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vector-basis, one obtains
r

eGG (q;ro 0)V,(q+6') & V, (q+6) dr'eIr. '[(q+G(;r, (r')je'(o

+ V, (q+6') dry~'[) q+G' ii;r, (r))e"o' G" (7)

In this model, the diagonal portion of the dielectric matrix
is an average over the local screening response at different
points in the crystal. Equation (7) is straightforward to
implement in practice. Each row of the dielectric matrix
for a given q can be obtained by using a fast-Fourier
transform. The second term is just the Hermitian conju-
gate of the first. No use need be made of crystal symme-
try as the calculation is quite fast for an arbitrary q.
(Crystal symmetry could be exploited both in setting up
the real space values for the fast Fourier transforms and
to eliminate some of the rows which need be calculated. )

This new approximation for the static screening re-
sponse has been used to calculate quasiparticle energies
for diamond, Si, and Ge. In each case, a dielectric con-
stant must be chosen as input. We have used the experi-
mental values of eo 5.5, 12, and 16, respectively. 's The
final results are rather insensitive to the exact choice
made. In particular, the gap energies change by less than
0.1 eV when eo is varied from 11 to 14 for the case of Si.

The resulting quasiparticle energies and band gaps are
compared to our previous first-principles calculations' and
experiment20 in Tables I-III. The overall agreement is
quite good, generally within 0.1-0.2 eV of the full theory
and experiment. The calculated gaps are a little too small
using the model while the valence-band width is broader.
(The direct gap in diamond is exceptional in that regard,
being somewhat larger. ) Qne should note that the LDA
gaps calculated for these materials are 3.9, 0.5, and &0
eV for diamond, Si and Ge, respectively. We stress that a
full range of available experimental data is included in the
comparison made in Tables I-III.

The approach of Wang and Picket, 'o which contains
two parameters, gives the correct band gap for diamond
and moderately accurate results for Si (e.g., a direct gap
at I of Es@r 3.07 eV and an indirect gap of Eg 0.93 eV)
but has not been successfully applied to the more demand-
ing case of Ge. Neither of the p'~3 theories"'2 have been
explicitly evaluated for a wide range of materials and
band energies for comparison to experiment. The two-
plane-wave-based model' which also has several param-
eters does not yield the indirect gapa but does give
Es"-7.7 eV (3.3 eV) for diamond (Si).

TABLE I. Comparison of the calculated quasiparaticle ener-
gies and gaps for diamond using the present model (Model) to
previous full calculations (Full) and experiment.

TABLE II. Same as Table I for Si.

Theory
Full' Model Expt. '
1.29 1.16 1.17

r».„-rI&,
I 2s'- ~z.

12.04
3.35
4.08

12.45
3.32
4.14

12.5+ 0.6
3.4
4.2

X4„~I qq „ 2.99 3.09 2.9, 3.3 ~ 0.2

In the present model, the magnitude of the matrix ele-
ment at the valence band maximum (V8M),
(VBM

~ X( VBM), is reproduced within 0.4, 0.3, and 0.2
eV of the full calculation for diamond, Si, and Ge, respec-
tively. This corresponds to only a 2-3% difference and as
seen from Tables I-III, the quasiparticle energies relative
to the valence-band edge are within 0.1-0.2 eV of the full
theory. If the common division of the self-energy operator
into screened exchange and Coulomb hole terms is made,
X Xgx+XcH, we find that the excellent agreement re-
sults in part from cancellation of somewhat larger errors
for the individual terms. For instance, in the case of Si,
these terms are —3.56 and —8.41 eV in the full calcula-
tion of Ref. 1 while using the present model we find
-4.00 and —7.73 eV respectively. The Xg~ term is too
large in magnitude, indicating that the exchange operator
is underscreened. The XcH term is too small, also con-
sistent with less effective screening. These errors cancel to
some degree so that the model is only off by 0.3 eV for the
total. Similar cancellation occurs for the gaps which in-
volve differences between self energies: the SX contribu-
tion is overestimated while the CH contribution is un-
derestimated.

We expect that the present model will be of great help
in calculations for more complex systems. In particular,
surfaces and superlattices are very demanding systems
with considerable experimental interest. For these hetero-
geneous systems, the model requires a dielectric constant
at each point. We suggest that the appropriate way to use
our model in these cases is with an eo appropriate to the
material in the immediate neighborhood of a particular
point. For example, in a superlattice AB, the dielectric
constant of material A would apply in the A region and

Theory
Full' Model Expt. ' I „.„LI,

l 25, ~ L3,

1.27
2.27
4.24

1.31
2.22
4.19

1.2 +' 0.2, 1.5
2.1, 2.4+' 0.15

4.15+0.1

Eg
~In

1 ~5c

5.6
23.0
7.5

5.5
24.2
7.6

5.48
24.2+' 1, 21+'1

7.3
L, „LI,
L3,~ L3,

3.54
5.51

3.53
5.50

3.45
5.50

' Reference 1. b Reference 20. ' Reference 1. Reference 20.
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Theory
Full' Model Expt. '

1 sp I sv

I sp I"7~

Is. I6
I so I sc

12.86
0.71
3.04
3.26

13.06
0.62
2.91
3.13

12.6, 12.9+' 0.2
0.89
3.006
3.206

+5v~ 1 stt

1 so &sr
3.22
1.23

3.28
1.06

3.15 + 0.2, 3.5 + 0.2
1.3+0,2

J6o~ 1 so

I.&,5.—rs.
~s.
I stt I 4,5c

Is.

1.61
1.43
4.33
4.43
7.61

1.64
1.46
4.19
4.29
7.43

1.4+ 0.3

4.3 + 0.2, 4.2 + 0.1

7.8 + 0,6, 7.8 +' 0.1

' Reference 1. b Reference 20.

TABLE III. Same as Table I for Ge. that of material 8 in the 8 region with some smooth inter-
polation near the interfaces within about a bond length.
For the self-energy operator, it is the local screening hole
that is crucial. Therefore, the charge expelled from the
immediate region of the added electron must be correct.
Longer-range efFects due to material heterogeneity are of
limited importance for Z but alter ec for the heterogene-
ous system

In summary, we have developed a model for the screen-
ing response of semiconductors which works quite well in

conjunction with the selfwnergy approach for quasiparti-
cle energies and band gaps. This allows a considerable
computational saving for calculation of the quasiparticle
energies while maintaining the quantitative results. The
present model should allow treatment of complex systems
more readily and should also extend to the case of metals.
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