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Dynamics of the dissipative mnltiwel1 system
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The motion of a quantum particle with Ohmic damping in a tight-binding lattice is discussed.
An exact series representation in powers of the tunnel matrix element h, for moments of the prob-
ability distribution is given. The dynamics at zero and at 6nite temperatures in the presence of
an external force is solved exactly to all orders of d for a particular value of the friction
coefficient rt nh/d2, where d is the lattice constant, and also for very weak damping.

The problem of the quantum transport of a particle
coupled to a heat bath occurs in many different areas of
physics including superionic conductors, atoms on sur-
faces, and interstitials in crystals. While earlier work was
mainly concerned with the significance of polaron effects,
e.g., in tunneling transitions of defects in solids and exci-
ton motion in molecular crystals, recent attention has fo-
cused on the influence of a frequency-independent (Ohm-
ic) damping mechanism. This type of dissipation influ-
ences, for instance, incoherent tunneling transitions of
charged interstitials in metals3 through the interaction
with the conduction electrons. Ohmic damping is also
relevant for the quantum effects in the current-voltage
characteristic of Josephson devices. s From a theoretical
point of view the case of Ohmic damping represents the
case of critical dimensionality7 in which the phase dia-
gram at zero temperature is nontrivial both for a double
wells and a periodic potential: At zero temperature there
is a transition from an extended to a localized ground
state as the dimensionless friction tt is raised through a
critical value tt, 1. Further, in a cosine potential there is
a duality transformation between the tight-binding limit
and the weak corrugation case in which weak and strong
damping are exchanged, as shown for the partition func-
tion at T 0 (Ref. 10) and for the full dynamics at arbi-
trary T.

We consider a particle moving in a "washboard" poten-
tial V(q) Vo(q) —Fq, where Vo(q) is a periodic poten-
tial with lattice spacing d, i.e., Vo(q) Vo(q+d), and F
is an external force. The frequency of small osctllations
about the minimum of a well is denoted by tao. Following
Caldeira and Leggett'2 we assume that the heat bath can
be represented by a set of harmonic oscillators coupled bi-
linearly to the particle. The system is then governed by
the translationally invariant Hamiltonian

r

H +V(q)+g + rnt'taj xj 2 q
P CJ-

2M

(1)

and the influence of the environment on the particles
motion is described by the spectral density

J(oi) -—g ' b(ai —to ) .
I ~, I

'
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In the case of Ohmic dissipation J(to) has the form rita for
to 0, where ri is the viscosity coefficient.

Here we study the motion of the system described by
the Hamiltonian (1) in the tight-binding limit and calcu-
late moments of the probability distribution as functions
of time, temperature, damping strength, and external
force.

To determine the time evolution of the probability dis-
tribution P„(t) of the damped particle, we use a
functional-integral method based on the influence-
functional theory of Feynman and Vernon. '3 In this ap-
proach the reduced density matrix is given by a double
path integral where the paths q(t), q'(t) are weighted by
the factor

exp —'(So[q] -So[q'])+F[q,q'1

Here, So[q] describes the action of the undamped system
and F[q,q'] is the complex influence functional describing
the frictional influence of the environment. The diagonal
elements of the reduced density matrix are the occupation
probabilities P„(t). In the following, we choose the initial
condition P„(t 0) b„o. In the tight-binding case each
transition between different system states is associated
with an amplitude ihdt/2. The transition amplitude,
which may be calculated by instanton methods, is already
renormalized for the high-frequency modes ni ) tao of the
heat bath. ' Further, it is convenient to transform the
double path integral into a single path integral over states
[n', n "] by embedding the flip times tj, tt, in chronological
order into a single time interval extending from 0 to t We.
then obtain P„(t) in the form of a power series in h2. For
reasons of space we merely sketch the derivation here. 's

In order to specify all the possible paths q(t), q'(t)
contributing to a given order h, , we define x(t)- [q(t)+q'(t)]/2, y(t) -q(t) -q'(t) and introduce
"charges" Xt ~1, (t +'I with l 1, . . . , 2nt, and
time-ordered flip times tt, tt &tt~i Then a. path com-
posed of 2m transitions is given by

2Nl 2'
x(t) —gzte(t —tt), y(t) dg ate(t —tt), (2)

2
E 1 E 1

where d denotes the lattice constant and e(t) is the stan-
dard step function. Now, the sum over all paths contrib-
uting to the order b, z of the occupation probability P„(t)
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is represented by a sum over all configurations jXtl' + 1,
f(tj' ~1, where the prime denotes that each con-
figuration obeys the constraints

2Ptf 2P2$

QXt 2lt, g ft ~0 .
1 / 1

Q ~ (z) 2a arctan(cooz),
4

Q2(z) -2aln sinhhp . xz +a ln (1+a)02z2),

z, which for Ohmic dissipation assumes the form' '
(4)

Further, the influence functional introduces an interaction
Q(z) Q2(z)+ig~(z) between two flips with an interval

I

where p I/kttT and where a is related to the Ohmic
viscosity rt by a rid /2xh. We finally arrive at the fol-
lowing expression for P„(t):

oo gj
P„(t) ( —1) "(~'2)2 dt2 dt2

m nI

where

Wj2 2m —1

dt)QG (fttl, f&tl)+exp i g Xt,H~, (&ted, {(,j), (5)
hj) '

2m j-1 28$ 2M

G exp g g@gg2(tj-tt) icr-g g~tj, Ht, g gtg)(t~-tg) .j~2/~1 j 1 j k+1

Here, Aa is the potential drop between neighboring wells provided by the external force F Acr/d. On introducing the
generating functional

Z(k, t) g e'e"p„(t), (7)

the sum over all possible "charge" configurations fgjf
' can be performed explicitly and moments of P„(t) are readily ob-

tained by differentiating Z(k, t ) with respect to A, at X 0. Following these lines we find

~j t' j2stt Pj2
&q"(t)&-d" g (—1) 'a' dt2m dtgm )-dt) +am"'({&,l, tttf)Gm(l&), Std),

nt 1

where we give am&
~ for N 1 and N 2 explicitly:

~ 2gpfa"'-—' P sin(H, , ),j~1

2' —1 2' 1a"' —g cos(Ht, ) Q sin(H, , ) .
/m1 j~1

je/

Formulas (5)-(9) are general and exact expressions for
the time evolution of a damped particle in a tilted periodic
potential in the range kttT«h, eo and ~ cr~ &&tao in which
excited states in the individual wells can safely be neglect-

Clearly, it is impossible to sum up the cumbersome ex-
pression (8) to all orders of 6 for arbitrary damping. We
shall be able, however, to perform the summation to lead-
ing order in the ratio d/too exactly for the damping pa-
rameter a 2 and also for weak damping a « 1.

Before studying these cases two general remarks are ap-
propriate. First, in earlier work' "the dynamics have
been solved by taking solely incoherent tunneling events
between neighboring vrells into account. Then the occu-
pation probabilities P„(t) obey simple master equations.
This case formally corresponds to restricting the paths
contributing to (5) to the strip [y ) & d along the main di-
agonal y 0 of the (q, q') plane. Introducing the ofl'-

diagonal measure

2ltla- Zct,
/ 1 /~j+}

D lim &q'(t)&/t, (12)

of the unperturbed system (a 0) by the well-known Ein-
stein relation

pt D/2ktt T,
whereD Do—=d2I and where

r(a)
2 a)0 r(a+1/2)

' 2e —1

eke T
h~o

(14)

is the rate of incoherent relaxation in a symmetrical dou-
ble well. Hence, in this approximation both the mobility
and the diffusion coeScient are found to be simply propor-
tional to h2. 2' Below, these special results will be
recovered in the high-temperature limit of our more gen-
eral express1ons.

Second, we note that the "noninteracting blip approxi-
mation" commonly used for damped double-well sys-

we then have ~gj ~

~ 1 for all j and m. In this approxi-
mation the nonlinear mobility

p lim &q(t)&/Ftj~ OO

is found to be tt tanh(PAa/2)d 1/Acr, where I is the
rate of incoherent relaxation in an asymmetric double
well. Further, the linear mobility pt is related to the
diffusion coeScient
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tems ' fails for those paths of a multiwell system
which are not restricted to the strip ~y ~

~ d along the
main diagonal of the (q, tI') plane.

For the special value 2 of the damping strength a (Ref.
23) the evaluation of (q(t)) to all orders of d, and to
lowest order in the ratio 6/too is possible. The crucial

point, now, is that in the corresponding limit cop

I xh /2aio const, only those paths of a given order b,

contribute to (q(t)) which belong to the strips
I ~gj, ~2 and —I ~gj, ~ —2 for aB j and m, re-
spectively. Then, by introducing a Laplace integral repre-
sentation the series (8) for N 1 can be summed to yield

(i5)
2xl "c z 2 x AT 2x ttT 2K ttT

where y is the digamma function and C the standard Bromwich contour. This expression is exact in leading order of
6/too for arbitrary times t, temperature T, and bias energy ha (as long as we maintain the condition hPtpo»1,
top »

~
o

~ ). At zero temperature we find, from (15),
2+1 ' '2

2r
( ( )) ha (T 0) +2Id 1 g( I)~(a/2) 8 8 a

2 „, (2m+ i)! ar r' 4r'+ a'

Here, the second term is only relevant at short times
t & I/r. In the first term we have introduced the non-
linear zero-temperature mobility

tt (T 0) ttp(2r/a) arctan(o/2r)

which is conveniently normalized by

p,p I/rl d2/2zha .

The nonlinear mobility at finite temperature is obtained
from (11)and (15) as

p tto Imp( —,
' + hl /ttktt T+t'ha/2ttktt T) . (19)

At high temperatures kg T » hI this expression simplifies
to

tt -ttott(I /a) tanh(hPa/2),

which is the result discussed above and obtained previous-

ly. "'9 Correspondingly, the linear mobility ttl at arbi-
trary temperatures is obtained from (19) as

tt t (hI Ppp/ir) y'( 2 +hl P/tt)

where y' is the trigamma function. At T 0 we then ob-
tain the strikingly simple expression

pt(T 0) po .

This result confirms for the particular value a 2 a re-
cent conjecture" that (20) holds for all a & 1. This con-

D -(2/x')d'r~'(-, ' + hr/xk, T), (22)

which vanishes at zero temperature and reduces to the
previous result D dzI at temperatures k~T&& hI . At
zero temperature and long times I t»1 the second mo-
ment is found to grow logarithmically as (q2(t))
(2/tr')d'ln(2rt ).

For weak damping a((1 the relevant expansion param-
eter in the series (8) is u hprxa/2. On keeping only the
leading a dependence in each term of the power series (8),
we find, in the limit t

jecture is based upon the duality transformation
ttt po —pt where pt is the linear mobility in a weak-
binding model with damping parameter a 1/a.

Next we discuss more brieffy the second moment

&q (t)) for a 2 . We find that the paths contributing to
(qz(t)) in leading order of b/tao are restricted by the
weaker constraint ~gJ ~

~ 3 for all j and m. Now, the
summation problem is more delicate than before. Also
the resulting expressions are more complicated for general
values of t and a, except in the most interesting limit
t ~, o 0, in which we find

lim (q (t)),-p (2d/Pha) lim (q(t))t, (21)

verifying that for arbitrary T and arbitrary orders of A2

the linear mobility pt is related to the diffusion coefficient
by the relation (13). Hence we find, for the diffusion
coefficient,

2m —i

&q(t))-t g (—u) g Q Im g, +i
hp -i (t l, -i ' 2~a

(23)

In the range hPa/a ~ 1, the neglected terms are at least smaller by a factor a compared to those being kept.
Recently, Zwerger' has solved the combinatorial problem of the path summation in (23) and obtained the nonlinear

mobility in the form of a continued fraction. Here, we note that by formal analogy with a recent result (23) can be
transformed into an integral expression yielding for the nonlinear mobility

(2x/z) f(z)
p Po

A+(2x)A -(2x) —f(z)g dxexp[ —g(x)A+(x)
(24)
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with

f(z) -1—exp( —2nz), z -@Per/2tra,

(x) -ycosx+zx, A (x)-„,dx'exp[+ g(x

y -(2naai. /k, T) '" .

From (24) the linear mobility is obtained in the form

pt -pe[i —I/Ij(y)], (26)

where In(y) is a modified Bessel function. Again, this ex-
pression simplifies for T 0 to pt pe. We further note
that the evaluation of (q (t )& in the analogous approxima-
tion gives a result which is again related to &q(t)&t by
(21). Hence the diffusion coefftcient is found to be

D -d' [1 —I/1$(y)] .2 kttT
trah

At high temperatures kttT)) ill a from (27) the earlier
result D Dn d I which behaves like T ' ' is
recovered. In the low-temperature region, y)) 1, we find
D d ktsT/ttah, . Hence the diffusion coefficient vanishes
at T 0 indicating that the spreading of the probability
distribution is again slowing down at zero temperature.
The diffusion coefficient has a maximum D=0.4d d,/tta
at T=0.She/kts.

In summary, we have investigated the quantum dynam-
ics of a multiwell system where the environmental
influences are modeled by an Ohmic heat bath represent-
ed by bosons. However, some of the qualitative features
found here, e.g., that the diffusion coefftcient linearly in-
creases at very low temperatures and decreases like Tz'
at high temperatures for a & 1/2, are expected to remain
unchanged for a coupling to a Fermi bath.
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