
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 5

Simple derivation of exponential tails in the density of states
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The observed exponential tails in the density of states are sho~n to arise from a Gaussian distribu-
tion of local potential wells and an approximately linear relation between the binding energy and the
square of the depth of the potential well.

The optical-absorption coeScient a in crystalline and
amorphous semiconductors and in crystalline insulators
often exhibits (over a hmited range of frequencies) an ex-

ponential behavior of the form

a =aoexp[(enrico —E/)/Eo] (1)

known as the Urbach tail. '
Ey is the so-called Urbach

focus and Eo determines the slope of the curve lna vs trito;

co is the photon frequency and ao, the preexponential fac-
tor, depends weakly on frequency. The quantity Eo is of
the order of 50 meV or less, the higher values appearing
in amorphous materials.

Many theories have been proposed to explain the
rather general exponential behavior shown in Eq. (1}.
Most of them attribute the frequency dependence of ct to
an exponential tail in the density of states (DOS) in the

top of the valence band and/or the bottom of the conduc-
tion band. Various physical mechanisms have been as-
sumed and diferent formalisms have been employed in
order to obtain the exponential tail in the DOS. This pro-
liferation of formalisms and detailed physical mechanisms
tend to obscure the common feature of a fluctuating po-
tential being the source of the exponential tails in the
DOS.

Recently Monroe and Kastner have demonstrated
through transient photocurrent measurements in glassy
As2Se3 that the DOS appears to exhibit exponential tails
over a rather extended energy range from 0.3 to 0.86 eV
above the valence band.

The rather general character of the exponential tails in
the DOS suggests a quasiuniversa1 mechanism that by-
passes the complexity of real materials. It has been
shown before~' through the use of the coherent-potential
approximation (CPA) that the assumption of independent
local (i.e., of atomic scale) potential wells whose depth
follows a Gaussian distribution leads to an exponential
DOS. It has also been pointed out that the energy range
over which the exponential behavior is exhibited is quite
extended. In the present paper, we offer a simple physical
explanation of why a Gaussian distribution of the depth of
the potential wells leads to an exponential tail in the DOS.
%e also comment on the physical origin of a Gaussian
distribution. Finally, we point out that our results are
consistent with the recent observations of Monroe and
Kastner.

%'e considered the elementary problem of a bound state
( j E j is the binding energy) in a potential well of depth e
and three-dimensional (3D} volume a . Five types of po-
tential wells (PW) were examined: A steplike PW in free
space given by V(r)= —e for r ~ro and V(r)=0 for
r &ro (obviously a =4nro/3 in this case); a single site
PW of depth —e in a tight-binding (TB) model'o for a
simple-cubic lattice (lattice constant a};a single site PW of
depth —s in a TB model with a semicircular unperturbed
DOS (lattice constant a); a PW of depth —e (or a poten-
tial bump of height e) for the bottom of the conduction
band (or the top of the valence band) in a TB model for
hydrogenated silicon. " In all cases, we found' that over
a range of energies the binding energy ~E

~

is a linear
function of the square of the depth c, of the P%'

iE i
=He B for Ei—~ iE i

«Ei. (2)

p(E)-exp
Eo

(4)

with

Equation (4) gives the exponential DOS with a focus at
zero, i.e., at the average value of the Auctuating potential;
this focus is independent of the variance w .

In Table I we summarize our findings for the quantities
A, E~, E2 in the five cases considered here. The case of
a PW of Gaussian shape' of the form s(r)
= —eexp( err /a ) is also inc—luded in Table I. Note
the extended range of validity of Eq. (2). The TB models
are very important because they demonstrate that the va-
lidity of Eq. (2) by no means depends on the validity of
the e8'ective mass theory, in agreement with our previous
findings. For a-Si:H the range of the validity of Eq. (2)
is more limited due to the nearby presence of another
band of similar atomic character (p-type in this case).

The zero of energy is chosen at the average value of the
random potential (e).

Combining Eq. (2) with a Gaussian distribution

p{e)—exp{ —s /2io )

for the depth e, we obtain immediately an exponential
DOS of the form
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TABLE I. Values of the constant A aud range of validity of Eq. (2) for the various cases examined
here (the Gaussian shape was studied by Soukoulis, Ref. 14). TB denotes tight-binding model with a
bandwidth equal to 12 V.

Step potential well

of 3D volume a
Gaussian potential

well of 3D volume a'
TB, semicircular DOS
TB, simple cubic
O.-Si:H, valence band
a-Si:H, conduction band

Effective-mass
description

no
no
no
no

0.023

0.010

0,064
0.065
0.007
0.003

0.3

0.2
0.2
0.1

0.1

3

3

0.3
0.3

Energy
Unit

A /2m a'

A /2m a'

In Fig. 1 we plot the binding energy
I
E

I

and the de-

cay length of the ground state versus e for a steplike
spherical potential well of depth c. and 3-d volume a .
V=fi /2m'a . For s~e, =6.4116V, there is no bound
state. As e just exceeds c„abound state appears with a
huge decay length A. -(e—e, ) '; in this weakly bound
regime the binding energy

I
E

I
behaves as (s —s, ) .

With increasing e, A, drops very fast (e.g. , for a=8. 83V,
A, =1.41a) and we enter a regime where A, /a is of the or-
der of 1 (0.4%A, /a 5 1.4). It is in this regime (A, /a -1)
that the linear

I
E

I
-vs-e relation holds, as can be seen

from Fig. 1. As s increases beyond a value correspond-
ing to A, /a =0.4, the

I

E
I

-vs-e curve starts bending
over and a very broad transition region follows until
finally the asymptotic behavior

I
E

I
=e—4e, is reached

for e larger than 100V when A, /a is less than O. l. For
the semicircular TB model the asymptotic behavior

I
E

I

=e —6 V is approached for values of
I
E

I
larger or

about equal to the total bandwidth. When
I
E

I
reaches

the asymptotic behavior of linear dependence on e, , then
the DOS will exhibit a Gaussian distribution, as can be
seen from Eq. (3).

In Fig. 2 we plot the binding energy

square of the depth of the potential weil e for the five

cases we examine here. We see that the
I
E

I
-(s—s, )

regime [which would produce an exp( c&
I
E

I
) depen-

dence for the DOS] is so narrow that it may be very
diScult to observe. The large

I
E

I
regime, where sub-

stantial departures from the linear
I
E

I
-vs-e. relation ap-

pear, corresponds usually to so low a DOS that it may not
be observable. Thus, in most cases the linear part produc-
ing an exponential DOS is left to dominate the tail. Possi-
ble exceptions may appear in narrow gap materials with
the top of the valence band and the bottom of the conduc-
tion band having a similar atomic character and in cases
where the extent of the local potential well is substantially
larger than atomic scale. In these exceptional cases the
energy scale is compressed and the asymptotic behavior

I
E

I

—e may be observable.
We comment now on the question of how common a

Gaussian distribution may be. Lattice vibrations produce
ionic displacements u which exhibit Gaussian tails [since
the eigenfunctions of harmonic oscillators decay as
exp( —u mai/2R)]. Due to the smallness of the displace-
ment u, the induced time-dependent electronic potential
depends linearly on u and hence must exhibit a Gaussian
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FIG. 1. Binding energy IE I
s«decay length ~ « the

ground state in a steplike spherical potential well of depth c and
3D volume a3. V=iI /2m a', where m is the elfective mass.
Region I corresponds to A, /a y& I and

I
E

I
-(E—s, )~, where s,

is the critical value for the appearance of a bound state. Region
II corresponds to 1.4 ~ A. /a ~ 0.4 aiid exhibits s linear

I

E
I
-vs-

relation. The asymptotic region III, where
I
E

I
=s —4s,

I',dash-dot curve) is approached when A, /a « 0. 1 and c ~ 100 V.

FIG. 2. Binding energY
I
E

I
vs s iu the five potential-well

cases examined here. TB,S denotes the TB model with a semicir-
cular unperturbed DOS; TB,SC denotes the simple-cubic TB
model; ST denotes the steplike potential well; and VB and CB
denote the VB and CB cases of our model for a-Si:H (see Ref.
11). The straight broken lines indicated the regions of an ap-
proximate linear

I
E

I
-vs-s' relation. V=fr /2m a' for the ST

case; V=bandwidth/12 for the TB models; and V=1 eV for the
a-Si:H case.
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distribution. For fast processes, such as optical absorp-
tion, the time dependence can be omitted and the
phonon-induced fluctuations in the electronic potential
will behave like local, static, random potential wells of
Gaussian distribution. However, note that at zero tem-
perature the phonon-induced electronic potential produces
no tails in the DOS unless the strength of' the electron-
phonon coupling exceeds the value needed for small-
polaron formation this results from energy conserva-
tion. (The gain from the electron-phonon coupling must
exceed the loss from the local lattice deformation; at 6nite
temperature the excited phonons may supply the missing
energy and thus the tail in the DOS appears even for
weak electron-phonon couplings. ) Note also that for
acoustic phonons and for low temperatures the extent of
the phonon-induced potential wells is of the order of
a08D/T, where ao is the volume per atom and SD is the
Debye temperature. If s deformation potential is assumed
for the electron-phonon interaction, i.e., if

e=E,V u, (6)

then one can easily show'0 that the variance ic' of the
phonon-induced random potential c is given by

2

my —— UL, ,
Es

(7)

where I( is the bulk modulus and UL, is the 1sttice vi-
bration energy per unit volume due to longitudinal pho-
nons only. The quantity a OUI. behaves as
(fiche/2)coth(%coo/2kT) for optical phonons of frequency
coo or as the Debye function for acoustic phonons. Both
expressions are almost identical (except at very low tem-
peratures} and approach kT at high temperatures.

Combining Eqs. (5) and (7) with the value 3 =0.065
(appropriate for a single band) we find that

Eo=3' OUL, ,

where A, =E,p/2K and P= —,', Vao is the band-averaged
DOS per unit volume. The dimensionless quantity A, is
similar to what appears in the theory of superconductivi-
ty; very rough estimates give A, of the order of 0.1. As
Toyozaws pointed out, exciton formation decreases sub-
stantially the value of V and hence increases A, so that 3A,

may become close to 1.5 for excitons. A value of 1.5 for
3A, produces results for Eo which are in excellent agree-
ment with experimental observations in ionic crystals.

In disordered materials, such as a-Si:H, where there are
many independent sources of disorder (substitutional, to-
pological, due to reconstruction, etc.) one expects that at
least the tails of the probability distribution of the local
potential fluctuations will exhibit Gaussian behavior. To
the variance of this static disorder one must add the vari-
ance of the thermal disorder

2 2 2=~s +tOT .

As was pointed out by Cody, ' Eq. (9) coupled with Eq.

(7) is in good agreement with experimental data concern-
ing the temperature dependence of the Urbach tail. For
w =1.6 eV (which is consistent with several experimental
data' } one finds that (using A from Table I) that E0=16
meV for the conduction band and ED=36 meV for the
valence band. These values seem to be in fair agreement
with the experimental estimates. '

For glasses, such as As2Se3, the upper part of the
valence band is a subband of approximate total width
12V=4—5 eV consisting of nonbonding (i.e., lone pair) p
orbitals which are almost orthogonal to the antibonding
orbitals of the bottom of the conduction band. Because of
this near orthogonality the top subband of the valence
band can be considered as an isolated single band for the
present purposes and consequently (see Table I) A =0.065
and E2 =3V=1 eV. This last number is consistent with
the recent observation of an exponential tail extending
0.85 eV above the top of the valence band.

Regarding the magnitude of the variance wG for
glasses' of complex internal structure one may assume
that there are complicated modes which freeze out at the
glass-transition temperature T~ producing a static disor-
der below T~. For T p T~, the excitation of such modes
costs elastic energy given by a' Kb. /2, where a' is the
correlation length of the dilation h. At Tg T~ we have
thermodynamic equilibrium; thus, the probability of oc-
currence of such modes is proportional to
exp( —a' Kb, /2kT). For r~ Ts these modes are frozen
out of thermodynamic equilibrium so that T is replaced
by T~ in the Boltzmann factor. The electron will couple
with such modes in a complicated way involving both a
deformation potential interaction E,h plus other terms
which for simplicity could be assumed to be proportional
to h. Thus, the efFective coupling is expected to be of the
form e=E,'h. If the static disorder dominates over the
thermal disorder all the way up to T~ one has to assume
that the coupling E,' is appreciably larger than the defor-
mation coupling to phonons E,. Substituting in the
Boltzmann factor, we 6nd again a Gaussian distribution
for c with a variance wG being equal to
icG =(E,' /Ka' )kT& Combining . this expression with Eq.
(5) and taking into account the thermal disorder as well
we obtain

Eo=3A kTg+3~oUL(T) (10)

where the dimensionless quantity A,'=E,'~P '/2K is ex—pect-
ed to to be appreciably larger than k. If one chooses k' to
be 0.4 and A. =0.1, one 6nds that

Eo ——1.2k' +0.3kT

for T not so small but smaller than T~. For As2Se3,
T~=450 K so at room temperature Eo/k=630 K; the
value determined in Ref. 8 is Eo/k=550 K. This 15 jo
discrepancy may be due to a slight overestimation of the
quantity A, and/or an overestimation of )L.. The latter
possibility can be checked by repeating the experiments of
Ref. 8 at different temperatures.
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