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The net charge-compensation (NCC) model recently proposed by us is applied to EPR defect
centers: Cr’*, Fe’**, and Gd*>* in 4,MX,-, AMX,-, and MX,-type crystals, where A is an alkali
metal, M is an alkaline-earth metal, and X is a halide ion. The NCC model expresses the zero-
field-splitting (ZFS) Hamiltonian for a charge-compensated center in terms of a ZFS Hamiltonian
for a nonlocally compensated center and a ZFS Hamiltonian describing the net effect of charge
compensation. This partition enables, using the transformation properties of the Stevens opera-
tors, extraction of the net contribution due to charge compensation. It is shown that the previous
Takeuchi et al. model for charge-compensated Cr** (S = %) centers in 4, MF, is a particular case
of a more general NCC model. Analysis of EPR data for the Cr’* centers II (nearly trigonal) in
A,MF, and 4,MClI, crystals, in terms of our model, shows that the net charge-compensation con-
tribution exhibits a significant monoclinic component neglected in the previous model. Numerical
results for the ZFS parameters describing the net effect of charge compensation are given in the
special axis system with [b1]=0 and in the trigonal axis system. EPR data on trigonal and tetra-
gonal Cr**, Fe’*, and Gd** centers in AMF, crystals are also considered in terms of the NCC
model. Discussion of the orthorhombic Gd** centers in MX, crystals indicates that the use of the
‘“parameter shifts” by some authors, i.e., the differences between the rhombic and cubic parame-
ters (referred to the same axis system), is equivalent to an implicit use of the NCC model. Expres-
sions enabling application of the NCC model to EPR centers with higher spin, e.g., Fe’* (S =3)
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and Gd** (S = 1), in the crystals considered are provided.

I. INTRODUCTION

Recently the EPR data on charge-compensated Cr’*
(S =32) centers in several 4,MF,- (A represents an al-
kali metal and M represents an alkaline-earth metal ion)
type crystals of K,NiF,-like structure have been inter-
preted! =3 in terms of a superposition of two uniaxial
zero-field-splitting (ZFS) terms: D,S2 for a vacancy-free
(i.e., nonlocally charge-compensated) Cr’* center in
A,MF, and DZSZZ,, for the corresponding charge-
compensated Cr’* center in AMF; It seems
worthwhile to apply and subsequently test the model' for
the EPR centers with higher spin S >2. To this end a
derivation of the model formulas for the fourth- and
sixth-order ZFS terms has been attempted* (cf. also Ref.
5, Chap. IVB1) using the transformation matrices
S,(®,0) for the Stevens operators® and the algebraic
program ALTRAN.” Further considerations have, howev-
er, revealed that the model! has only an ad hoc
justification. Instead, a net charge-compensation (NCC)
model, which correlates in a symmetry-consistent way
the fine structure for a charge-compensated EPR defect
center with that for a nonlocally compensated one, has
been proposed.!® The NCC model® comprises the previ-
ous one' as a special case. The NCC model has been ap-
plied® to M'*+-V,, (cation vacancy) and M">+-4't (M’
represents Cr, Fe, and Gd; A4’ represents Li and Na)
centers in 4,MF, (Refs. 1-3) and 4,MCl,.° In this pa-
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per the EPR data on several defect centers, namely
Cr’*, Fe**, and Gd** in 4,MF,-, 4,MCl,-, AMF;-,
MF,-, and MCl,-type crystals, are analyzed in terms of
the net charge-compensation model. Relationships be-
tween the NCC model® and the description'®!! of the
EPR results for Gd** in MX, crystals as well as the
models'? of the crystal field for Yb** in CaF, are also
discussed. Other possible applications of the NCC mod-
el are suggested.

II. OUTLINE OF THE MODEL

Since a detailed derivation of the net charge-
compensation model is given elsewhere,® we quote here
only the final result. The considerations® are based on
the superposition idea originally developed for the
crystal-field Hamiltonian'® and later extended for the
spin Hamiltonian.!* [Note the relationships'> between
the superposition model formulas'>!* and the transfor-
mation matrices S, (®,0) for the Stevens operators.°]
We denote the experimentally observed ZFS Hamiltoni-
an for a charge-compensated (CC) EPR center by #
and that for an otherwise undistorted (und) vacancy
center in the same crystal by #irs. The symmetry of
F expr» given by a point group G, is lower than that of
7[}:‘,“‘3,, i.e., Gy, due to the presence of the charge com-
pensator in the nearest (NN) or next-nearest (NNN)
neighborhood of the CC EPR center. A vacancy or a
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charge-compensating ion is likely to introduce distor-
tions of the NN ligands, further lowering the symmetry
around the CC EPR center. The NCC model relates the
two Hamiltonians as follows:

H exptl G)=F onsi(Go)+Hc(G") (1)
or, explicitly in terms of the Stevens operators,6

S BfOf =3 B{(und){Of} + 3 B4 OF}", )
k.q k.q k.q

where the curly brackets denote the operators in the
original®'® (local) axis system. The term #c in (1) and
(2) represents the net charge-compensation contribution
to the fine structure of the CC EPR defect center. A
general restriction on # ¢ is that # - must be of a sym-
metry G’ (to be established) which does not lead to #
on the left-hand side (lhs) of Eq. (1) of symmetry lower
than actually observed. The net charge-compensation
contribution parameters B;? can then be expressed in
terms of B and BZ(und) known from experiment. The

transformation matrices® S, (®,0) and/or the relations

between the parameters B{ in various axis systems'¢ are

then very useful.

For example, in the case of the Cr’* centers III and
IV associated with a vacancy at the nearest divalent cat-
ion site and an A'* ion (A’ represents Na and Li), re-
spectively, in 4,MF, (Refs. 1-3) or 4,MCl,,° #,,,, is
orthorhombic and 7{2;‘& (center I) is tetragonal. It has
been shown® that the model of Takeuchi et al.! for Cr**
(S=32) corresponds to the choice #c(axial) in Eq. (1).
However, the most general form of # . for centers III
and IV in these crystals is orthorhombic with the princi-
pal axis taken along the vacancy (or 4'" ion) axis. Nu-
merical results® indicate the orthorhombic component
induced by charge compensation (B%?) is significant for
these centers and hence the approximation' =3 B2 =0 is
not justified. Analysis for the M'3* centers II in
A,MF, (Ref. 1) and 4,MCl, (Ref. 9) associated with a
vacancy at the nearest A * site is more complex and is
presented below.

ML Cr’*, Fe**, AND Gd** TYPE-II CENTERS
IN 4,MF, AND A4,MCl, CRYSTALS

The immediate neighborhood of center II in 4,MX,
crystals is depicted in Fig. 1. Takeuchi et al.! con-
sidered the superposition of D,S? and D,S2, which
yields an orthorhombic ZFS Hamiltonian in a special
axis system with the angle ¢ given by the relation
D, /D, =sin(2¢)/sin(2¢). Their x and y axes are along
the —y and +x axes in Fig. 1, respectively. The sym-
metry of the site is monoclinic with the monoclinic axis
along the y axis in Fig. 1. There are three choices of the
monoclinic axis C, possible;'” one! corresponds to x| C,
and yields the monoclinic term B ‘02“ ! whereas our
choice corresponds to y||C, and yields the monoclinic
term Bj0}. The latter choice is more convenient and
has also been used’ for Cr** in Cs,CdCl,. This choice
corresponds to the trigonal axis system with x"|[[112]
and y"|[110] being adopted for the DZSf,, term. The
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FIG. 1. The axis system for the A *-vacancy-associated

Cr’* center I in 4,MX, crystals.

choice of Takeuchi et al.! corresponds to adopting the
trigonal axis system with x”'||[110] and y"||[[112]. The
two axis systems have been denoted!®’ “Watanabe” and
“Orton,” respectively. The third possible trigonal axis
system is that of “Hutchings” (x"|[T12], y"'[110])—for
detailed references, see Refs. 16 and 5.

The NCC model, Eq. (2), yields for center II the fol-
lowing second-order equation:

+BY {09}

B0} +B3035+Bj0}=Bj(I)f
3 ‘+B3' {03}, 3)

+By |

where the operators Of, {Of}, and {Of}’ are expressed
in the axis systems (x,p,z), (x’'|la, y'||b, z’||c), and
(x"|[112], p"|[T10], z"|[111]), respectively. The
monoclinic parameter B can be set to zero by a rotation
a /Oy with the angle a given by’

03
03

J
}

tan(2a)=B) /(3B —B3) . @)

Since the experimental values"’ of D(~BY) and
E(~B3) are given in this special axis system, i.e., with
B)=0 (Ref. 9) [B; ! =0 (Ref. 1)] and ¢=a, it is most
convenient to adopt this system for the ZFS term on the
lhs of Eq. (3). On the other hand, an arbitrary rotation
around the monoclinic axis leaves the form of # ¢ in (3)
invariant with the parameters B, B, and B}
modified.'” Hence transformation of #,,, and #cc in
(3) to this axis system yields

[BS1[091+[B31[0}]1=BY({03} +[B51[09]
+[BZ1[031+[B3'][03], (5

where the square brackets indicate that the parameters
and operators are now expressed in the special axis sys-
tem. Using the transformation (45°,0°) followed by a ro-
tation by a around the new y’ axis,'® we obtain the fol-
lowing relations:
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[B71=[B3%]—i(sin’a)BY(I) ,
[B} 1=3sin(2a)BY(I) , (6)
[BY]1=[B3]—1(3 cos’a—1)BII) .

Numerical results are given in Table I using [9]=D
and [b3]= —3E of Ref. 1 [the minus sign arises because
the (x,y,z) system! is rotated by (+90°,0°) with respect to
the (x,y,z) system in Fig. 1] and [b3]=3E of Ref. 9.
The procedure of Takeuchi et al.! corresponds to setting
B=B’' =0 in (3) and results in a different set of equa-
tions. In order to enable direct comparison between
their results and ours, the parameters b in the axis sys-
tem (x",y",z") obtained by a rotation ¢=>54.73"—a
around the y axis!® are also given in Table I. For exam-
ple, for the Cr3* center II in K,ZnF, at 77 K the au-
thors! adopt D,(=b%)=—1613x10"* cm~' taken
from the trigonal center in KZnF;, as compared with
the value —1849.7x10™* cm™! derived in Table I
without the implausible® resort to data on AMF;. The
values of b5 in Table I indicate the approximation'
J

(B 1=[Bi1+Bi(I)t(cos*p+6cos’p+1)—

b3 =0 is hardly justified for the Cr** centers II in all
A,MX, crystals studied. Moreover, the neglect! of b3
for the Cr** centers II in all K,MgF, and Cs,CdCl, ap-
pears also not justified.

Extension of the NCC model for the higher-spin EPR
centers II in 4,MX, leads to the following equations [in
the notation used in Eq. (5)]:

E[BZ][OZ] BYID{O%}+BL({0%)}
g=1

+ ﬁ [BE104] (7)
g=1
and

E[BZ][OZ] BUN{0Y}+B§(D{O +2[B d]oi1.

g=1
(8)

Solving Egs. (7) and (8) in the same way as in the deriva-
tion of Eq. (6), we obtain the relations

Bi(D¥sin'p

(B 1=[B}]+B4(I)sing cosp(cos’p+3)+BY(I)35 sin’ @ cosg ,

[BY1=[B}]1+Bi(I)isin’p(cos’p+1)—BS(I)2sin’p(7 coslp—1) , ©)
[B{1=[Bl]1+B}(Isin’p cosp+B3(I)S sing cosp(7 cos’p—3) ,

[BY1=[B3]1+ LB} (D)sin*p—B(1)1(35 cos*p—30cos’p+3) ,

and

[BE1=[B§1+B¢(I)iisin 2p(cos*p+6coslp+1)—

(,(I)msm ?

[B& 1=[B}1+B¢(I)Lsing cosp(3 cos*p + 10 cos’p—5)+ B (1) Lsin’p cosp ,

[B& 1=[B¢1+BE(I)L(33 cos®p+35 cos*p—65 cos’p+13)—B o (I) Esin*p(11 cos’p—1) ,

[BS1=[B21+BI)ising cosp(11 cos*p+2 cos’p—5)+ B (1) Bsin’p cosp(11 cos’p—3) ,

(10)
[BE1=[B%]+B¢(I)%sin’p(33 cos*p— 10 cos’p+1)— B (1) Lsin’p(33 cos*p— 18 cos’p+1) ,
[Be' 1=[B{]1+B¢(I)isin’p cosp(33 cos’p—13)+ B (1)L sing cosp(33 cos t9—30cos’p+5) ,
(B [B6]+BG(I)]6sm (11 cos’p—1)—B2(I)L (231 cos®p—315cos*p+ 105 cos’p—5) .
TABLE 1. Zero-field-splitting parameters for the Cr’* type-II centers in 4,MX, crystals (all in 10~* cm~'). Experimental

values of b3(I), [b3], [b1], and a are taken from references as indicated. The primed parameters [b57] and b3 derived here de-
scribe the net effect of charge compensation in the special axis system with [b}]=0 and the trigonal axis system, respectively. RT

denotes room temperature.

T (K) b [69] (%] a (deg) [62] [b3 [b7? by by b3
K,ZnF,* 293 —381 —1872 288 44.0 —1766.8 —1142.3 —122 —1779.6 872.6 0.6
77 —374 —1937 =279 44.5 —1838.6 —1121.8 —34 —1849.7 876.9 7.7
4.2 —376 —1948 —279 44.1 —1845.1 —11274 —59 —1853.2 955.4 2.2
K,MgF,? 293 —419 —1861 —141 43.1 —17354  —1254.2 + 152.4  —1750.3 964.9 167.3
Cs,CdCl,° RT? +228 F758 +108 ~35 +873.5 +642.8 +4.5 +622.2 £2159.1 +255.8
+228 +758 F108 ~35 1642.5 +642.8 +220.5 +622.2 +869.3  F200.2

2Reference 1.
bReference 9.
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Analysis of the net charge-compensation contributions
[B] and [B¢] is not possible at present because of lack
of relevant EPR data on M"* (S§>2) centers II in
A,MX,. The results on Fe** in K,ZnF, are expected to
become available in the near future.'®

IV. Cr*t, Fe**, and Gd*+* CENTERS
IN AMF,; CRYSTALS

EPR studies”®~?* on the Cr’* ions in AMF;
perovskite fluorides reveal the centers analogous to the
Cr** centers' =3 I-IV in 4,MF,. Temperature depen-
dence of the EPR spectrum provides useful information
on the structural phase transitions in KCdF; (Ref. 23)
and RbCdF; (Refs. 25 and 26). However, since the sym-
metry of the nonlocally charge-compensated cr*
centers I in the cubic phase AMF, studied so far?’ is cu-
bic (and hence no ZFS is observed), the experimentally
observed axial parameter D (=b9) for the charge-
compensated centers II (trigonal), III, and IV (both
tetragonal) is entirely due to the charge compensation,
ie., by =b9.

Two types of the vacancy associated Fe’™ centers in
AMPF, have been observed: trigonal —due to an 4 * va-
cancy along a (111) axis in KZnF; (Ref. 27) and
KMgF; (Ref. 28), and tetragonal —due to an M>" va-
cancy along a (100) axis in KZnF;,'> RbCdF;, and
CsCdF;.2° The cubic parameter a, for the vacancy-free
Fe* center has been reported for several AMF; crys-
tals.?? =33 The Fe3* ion has been used as a probe in EPR
and electron-nuclear double-resonance (ENDOR) studies
of the structural phase transitions in RbCaF; (Ref. 34)
and RbCdF; (Ref. 35), respectively. The NCC model,
Eq. (2), yields for the trigonal centers the fourth-order
equation

B300+B30;=B,({03]+5(04})+BL0+B0; ,
(11

where B, =BJ(I) and the operators O} are expressed in
one of the three trigonal axis systems>'¢ (see Sec. III),
and {Of} are referred to the cubic axis. Hence, the re-
lations follow

BY=B}+1B,,
B} =B}+(40V2/3)B, , (12)

where the upper and lower signs refer to the Watanabe
and Hutchings systems, respectively. The relations (12)
also apply for the parameters b§, provided consistent
scaling'®* is used (then b, =a, /2). The authors®"? use
the Hutchings axis system. Using the relations® for con-
version of the conventional parameters’’ @ and F to
Bj(b]), we obtain the same results as quoted in Ref. 28.
The corresponding net charge-compensation contribu-
tions are listed in Table II. (Note that for Fe’* at cubic
sites in KMgF; there is a disagreement concerning the
value a, at 300 K in Refs. 29 and 28. We believe the
value |a,|=6.5x10"* cm~' of Ref. 29 is, instead, a
misprint—cf. also Ref. 32.) For the tetragonal Fe’*
centers in AMF; (Refs. 19 and 20) we have Eq. (11) with
q =3 replaced by g =4 and all the operators expressed
in the cubic axis. Hence the relations are straightfor-
ward:

B=BY-B,, B}=B}-5B,, (13)
and using the conversion relations® we obtain
bY=La—a )+F/3, bil=%a—a,). (14)

The corresponding numerical results are also included in
Table II. Tetragonal Fe** centers have also been ob-
served® in CsCdF;; however, no data on a, have been
found in the literature for this case (cf. e.g., Ref. 32).
The Stevens operator notation enables, unlike the con-
ventional notation, direct conclusions on the relative size
of the charge-compensation contributions to the fine
structure of the defect centers. Table II reveals that an
approximation of the net charge-compensation contribu-
tion #cc in Eq. (2) by a uniaxial term 5,207, which fol-
lows from a straightforward extension of the model,!
would be highly inappropriate for the trigonal and
tetragonal Fe’* centers in AMF; crystals.

There exists another type of strongly tetragonal Fe**
defect center in AMF; crystals which is associated with
an O?~ ion substituted for a NN fluorine.**** The
fourth-order ZFS parameters for this (FeOFs) cluster
center at room temperature have been determined for
Fe’* in KZnF, partially as a =25 with F neglected®®
and for Fe’* in KMgF; as b=+75 and b} = 4269
with b= —3572 (in 10~* cm~').’® The latter b§ values
yield, using Eq. (13), which applies to this center too, the
net charge-compensation contributions as b7 =49.4 and
bit=141 (107* cm™!). Comparing these values with

TABLE II. The net charge-compensation contributions b;? derived from the experimental data for Fe’* at the vacancy-
associated trigonal and tetragonal sites in perovskite fluorides at T=300 K (in 10~* cm™").

Trigonal sites

Tetragonal sites

KZnF, Ref. KMgF, Ref. KZnF, Ref. RbCdF; Ref.
by=a, /2 +26.4 30 +25.6 28 +26.4 30 +22.3 31
b =b% + 103.4 27 +87.2 28 —759.0 20 —422.2 20
b —16.5 27 —13.7 28 +29.8 20 + 249 20
b3(bd) +429.9 27 + 356.0 28 (4 97.5) 20 (+93.3) 20
b + 1.07 a + 3.37 a +3.5 a +2.7 a
b2(b) —67.0 a —126.7 a (—34.3) a (—18.0) a

2This work.
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those in Table II for the vacancy-associated Fe’* centers
in AMF;, one notes a much higher NCC contribution to
B2 as well as a higher contribution (with opposite sign)
to b4 in the former case.

The Gd**-V,, centers and Gd**-0’~
centers**424-%8 analogous to the two types of tetrago-
nal Fe’* centers discussed above are observed only in
the cubic phase 4CaF; and 4 CdF;, where the Gd** ion
enters the M2" octahedral site. In 4MF; hosts with
smaller M?* ions (Zn®*, Mg?*) the Gd** ion substi-
tutes for the alkaline-earth 4 * ion at a 12-coordinated
site (cf. e.g., Refs. 42 and 49). These tetragonal Gd’™*
centers provide® 4447 4 gensitive EPR probe for
studying the structural phase transitions® in RbCdF,
and RbCaF;. Application of the NCC model for these
studies has to be deferred to a separate paper. Recently
also the Gd**-Li* centers have been observed*’ in the
cubic-phase 4 CaF; and ACdF;. These centers exhibit
the same tetragonal symmetry as the Gd**-¥,, centers.*
The NCC model, Eq. (2), yields for the three types of
tetragonal centers the sixth-order equation (in the cubic
axis system)

B0?+Bi0¢{=B,(0%-210H)+BL02+ B0t , (15)

3945

and hence the relations
B?=B?—-B,,

(16)
B =Bt+21B, .

Among the pertinent EPR studies,”* ~* the most exten-

sive one, combining the investigations of the Gd>*-¥V,,
and Gd-Li* centers, are those of Arakawa et al.** Us-
ing Egs. (13) and (16) the net charge-compensation con-
tributions b;? are derived and listed in Table III for the
two types of Gd** centers in several AMF; hosts. In
order to reduce the size of this tabulation the original
values of the tetragonal b7 and cubic b, parameters are
not given here but only the original source reference is
indicated. Table III provides information on the tem-
perature variation of the parameters b,? for some AMF,
hosts. Comparison of Table II with Tables I and II of
Ref. 45 and Table I of Ref. 44 reveals the following.

The b, contribution to bJ is substantial and of opposite
sign to that of the cubic b,, whereas the b} contribution
to b} is substantial and of the same sign as the cubic cu-
bic contribution (5b,) for both Gd** centers in all
AMF, hosts studied. The b contribution to b{ is rath-
er small in all the hosts and changes sign with tempera-
ture for RbCdF; and CsCdF;. The bg' contribution is
also small in all the hosts, except KCdF;, and no uni-
form sign behavior is observed. An approximation of
the charge-compensation contribution by a uniaxial term
for both the fourth- and sixth-order ZFS terms would
fail for the Gd**-¥,, and Gd>*-Li* centers in AMF,.

The EPR data on the Gd**-O?~ centers in AMF; are
rather patchy. For illustration, using the tetragonal
b3=2, b3=-100, b2=—3, b¢~0 and the cubic
by=—4.92, bg=+0.83 for the Gd>*-O>~ center® in
RbCaF; at 300 K, we obtain b,>=6.92, by'=—75.4,
bX=—3.83, and b =+17.4 (all in 10~* cm~!). The
conclusions on the b} contributions for the Gd**-V,,
and Gd*>*-Li* centers hold also for this Gd’*-O?~
center, while the experimental accuracy*? of the parame-
ters b2 and b¢ does not warrant any definite conclusion
in the present case.

Although, to the best of our knowledge, no trigonal
Gd** centers have been observed in AMF; crystals, for
possible future use we give here the corresponding ex-
pressions for this case also:

BY=B¢— 5 Be
B =B}+(140V'2/9)B, (17)
BS=B¢— 1B,

where the same notation as in Egs. (11) and (12) is used.

V. ORTHORHOMBIC Gd** CENTERS
IN MX, CRYSTALS

EPR studies of Gd’* in the alkaline-earth halides
CdF,, % CaF,,’" 101153 BaF, ! §rCl,,%? and SrF, (Ref.
54) reveal orthorhombic centers due to the Gd**-4'"
(A’ represents Li—Ca) complexes. Two axis systems

TABLE III. The net charge-compensation contributions b;? derived from the experimental data taken from the references as in-

dicated, for the tetragonal Gd*>* centers in AMF; (in 10~* cm~!).

Reference Gd**+-V,, center Gd**+-Lit centers
Host T (K) b by by by b be by by b b
KCdF, 487 45 44,49 + 1.30 —17.9 —-0.20 + 6.30 + 1.09 —15.0 —0.10 +5.30
RbCdF, 487 45 44 +2.19 —189 + 0.05 —2.67 + 2.12 —17.3 —0.04 —2.67
302 (300) 45 (42) + 2.28 —19.6 —0.04 —1.05 + 2.00 —16.3 + 0.01 + 0.65
RbCaF; 297 (300) 45 (42) + 2.06 —18.3 + 0.00 —0.07 + 1.96 —194 +0.03 -1.77
CsCdF,; 487 45 44 + 2.13 —225 + 0.04 —2.04 +2.25 —22.9 —0.01 —0.54
300 (296) 45 (44) + 2.44 —22.3 —0.05 —0.84 + 2.56 —229 —0.04 —0.94
CsCaF, 487 45 44 +2.42 —-22.1 —0.17 + 1.06 + 2.63 —26.2 + 0.03 —0.94
298 (296) 45 (44) +2.44 —22.4 —0.07 —0.31 + 2.78 —27.0 —0.04 + 0.29
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with the z axis along the Gd>*-4'* direction have been
adopted for these centers: (i) with the y axis®®*"'° and
(i) with the x axis'""3>~3* being parallel to the cube edge
perpendicular to the z axis. The two systems are related
by a £90°/0z rotation and hence the signs of B? and B
are reversed. The fourth- and sixth-order NCC model
equations are then

S BJ0§=B,{03}+5{03})+ 3 B0} (18)
q q

and
S BI0§=B4({0%}—21{0¢})+ 3 BJO§ . (19)
q q

Upon transforming the cubic term, as is appropriate for
the two systems, we obtain

B?=Bi{+1B,,

B}=B;F5B,, (20)
BQ4=Bi—’“45‘B4 ’
and
3%0232”%36 ’
BZ=B{+%B,
21
B¢ =B+ B,
Bf=Bi{+2B,

where the upper and lower signs refer to the above
defined (i) (Refs. 50, 51, and 10) and (ii) (Refs. 11, and
52-54) axis systems, respectively.

The early experimental data® for Gd** in GdF, were
given in the mixed-axis system notations (for details, see
the review’) with the fourth-order ZFS term truncated to
a cubiclike term only. That enabled a direct, although
approximate, comparison of the cubic B, and the noncu-
bic B, parameters.’® The authors'® measured all bf,
k=2, 4, and 6, for the Gd**-Na™ centers in CaF,. Ad-
ditionally they gave their fourth-order results in terms of
the “parameter shifts,” i.e., the differences between the
rhombic and cubic parameters (referred to the same axis
system®). This approach is thus an example of an impli-
cit use of the NCC model as given by the relations (20).
The approach!® has later been used by Bijvank et al.,'!
although in both cases'®!! no explicit relations were
given and the discussion'' of the parameter shifts was
again limited to the fourth-order parameters. An exten-
sion of the NCC model analysis to the sixth-order ZFS
terms is possible for the data,'® while the data'
comprise only B2. Using the values'® 6%=1.4, b2=7.4,
bt=0.7, b¢=15.8, and the value®*® b, =(1d) (Ref. 57)
=1 (in 107* cm ™), we obtain, from (21), the sixth-order
net charge-compensation contributions for the Gd**-
Na* centers in CaF, at room temperature as
b=-0.23, b>=14.0, b =13.8, and b2 =30.2 (in
10~* cm™!). This analysis shows the significance of the
b;z, b[{‘, and b}f contributions for the present case. Cau-
tion is, however, necessary since Table II of the review>?

indicates the values of b, for Gd*>* in MX, crystals vary
with dilution. No more pertinent data on Gd’* in MX,,
particularly in CaF,, than those already discussed here
are listed in the recent review.”® Hence, a more detailed
analysis of the NCC model parameters b ¢ for the ortho-
rhombic Gd’* centers in alkaline-earth halides must
await more accurate measurements of b§ and by.

The second-order ZFS parameters b9 and b3 are whol-
ly due to the charge compensation for the Gd**-M *
centers in MX, crystals. In the axis systems (i) and/or
(i), for some centers, the ratio A=b3 /b9 appears to be
in the nonstandard range (for definitions, see Ref. 60).
Application of the standardization of the parameters b/
for these cases has already been discussed.>® The stan-
dardization® may be helpful for comparison of the non-
standard results with those standardized.’

V1. DISCUSSION

The above applications of the net charge-com-
pensation model indicate its usefulness, especially for
paramagnetic centers at low-symmetry sites involving a
charge-compensation mechanism. The NCC model pro-
vides a clear relationship, based on symmetry, between
the ZFS Hamiltonian for the undistorted (i.e., remotely
compensated) centers and that for the distorted (i.e., lo-
cally compensated centers). The relations derived here
enable determination of the net contributions to ZFS pa-
rameters due to the charge compensation. The NCC
model turns out to be more general than the superposi-
tion of two uniaxial ZFS terms proposed by Takeuchi
et al.! for the Cr®* centers in 4,MX, crystals. More-
over, the present model is applicable to any order ZFS
terms. The previous model' has been applied only to the
second-order ZFS terms.!” Our preliminary calcula-
tions* have shown that not all the model parameters
could be extracted from the equations resulting from a
straightforward extension of the model' to the fourth-
and sixth-order ZFS terms.

The NCC model has been applied to the trivalent
EPR defect centers in 4,MX, (cf. also Ref. 8), AMX;-,
and MX,-type crystals. Interestingly, the model is found
to have earlier been implicitly used'®!'! for the Gd**-
M centers in MX, crystals. A survey of the literature
reveals other possible applications of the NCC model.
The orthorhombic and axial Mn’* centers in alkali
halides have been extensively studied by EPR (cf. e.g.,
Refs. 61-67, and references therein). However, the iso-
lated Mn?* (cubic) centers have been observed only in
NaCl at room temperature and the available cubic pa-
rameter a is rather tentative.®® EPR studies of the or-
thorhombic Eu?* centers in alkali halides are also exten-
sive (cf. e.g., Refs. 69-76, and references therein),
whereas the data on the cubic Eu’t centers concern
NaCl (Ref. 77) and KCI (Ref. 78) at room temperature
only. The trivalent impurities, like Cr’* and Fe’*, in
MgO (Refs. 79-82) and SrTiO, (Refs. 81-84), and the
related crystals may serve as other possible systems for
the NCC model studies. The EPR centers are known as
good probes for studying structural phase transitions.?’

Although the applications of the NCC model con-
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sidered here concern the spin-Hamiltonian analysis,
similar applications to the crystal-field analysis seem
feasible. Hence it is worthwhile to consider the relation-
ship between the NCC model and the models of the
crystal field for a trigonal Yb3* site in CaF, discussed by
Baker and Davies.!> The three models are described by
the following Hamiltonians: ‘

Hr=F.+ A309 (model 1),
FHr=H, + A0+ 4303+ 4202 (model I1) ,
Hr=7F,+ A%0%+ 4502 + 4202 (model III) ,

where 7, is the crystal field of the cubic site and 7 is a
scaling parameter. (For references on the use of each of
the models see Ref. 12.) From the point of view of the
NCC model, applied to the crystal-field Hamiltonian for
this particular case, the most general form of the trigo-
nal Hp=%H,+F(CC) requires the net charge-
compensation contribution #(CC) to be of the same
form as #,, Eq. (2) in Ref. 12, in a given trigonal axis
system, i.e.,

F(CC)=A909+ 4908+ 430} + 420?
+A4203+4%0¢ .

Hence it turns out that the first two models!? are subse-
quent approximations to the most general NCC model,?
while model III is rather unphysical since it assumes a
modified cubic crystal field.

Finally, we note that in several papers discussed here
the ZFS parameters are inappropriately called the
crystal-field parameters. This contributes to the con-
fusion between the spin Hamiltonian and the crystal-field
Hamiltonian, which has been discussed at length in the
recent review.’
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