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Analysis of the net charge-compensation contribution in the fine structure of EPR defect centers:
Cr3+, Fe3+, and Gd3+ in A 2MX4-, AMX3-, and MX2-type crystals
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The net charge-compensation (NCC) model recently proposed by us is applied to EPR defect
centers: Cr'+, Fe +, and Gd + in A2MX4-, AMX3-, and MX&-type crystals, where A is an alkali
metal, M is an alkaline-earth metal, and X is a halide ion. The NCC model expresses the zero-
6eld-splitting (ZFS) Hamiltonian for a charge-compensated center in terms of a ZFS Hamiltonian
for a nonlocaBy compensated center and a ZFS Hamiltonian describing the net effect of charge
compensation. This partition enables, using the transformation properties of the Stevens opera-
tors, extraction of the net contribution due to charge compensation. It is shown that the previous
Takeuchi et a/. model for charge-compensated Cr'+ (S = —,') centers in 32MF4 is a particular case

of a more general NCC model. Analysis of EPR data for the Cr'+ centers II {nearly trigonal) in

A2MF4 and A2MC14 crystals, in terms of our model„shows that the net charge-compensation con-
tribution exhibits a signi6cant monoclinic component neglected in the previous model. Numerical
results for the ZFS parameters describing the net effect of charge compensation are given in the
special axis system with [b, ]=0 and in the trigonal axis system. EPR data on trigonal and tetra-
gonal Cr +, Fe'+, and Gd'+ centers in AMF3 crystals are also considered in terms of the NCC
model. Discussion of the orthorhombic Gd'+ centers in MX2 crystals indicates that the use of the
"parameter shifts" by some authors, i.e., the difkrences between the rhombic and cubic parame-
ters {referred to the same axis system), is equivalent to an implicit use of the NCC model. Expres-
sions enabling application of the NCC model to EPR centers with higher spin, e.g., Fe'+ (S = —,')
and Gd3+ (S = 2), in the crystals considered are provided.

I. INTRODUCTION

Recently the EPR data on charge-compensated Cr +

(S = —,'} centers in several A2MFe- (A represents an al-
kali metal and M represents an alkaline-earth metal ion)
type crystals of K2NiF4-like structure have been inter-
preted' in terms of a superposition of two uniaxial
zero-field-splitting (ZFS) terms: D, S,. for a vacancy-free
(i.e., nonlocally charge-compensated) Cr + center in
A 2M F4 and D2S „ for the corresponding charge-
compensated Cr + center in AM F3. It seems
worthwhile to apply and subsequently test the model' for
the EPR centers with higher spin S)2. To this end a
derivation of the model formulas for the fourth- and
sixth-order ZFS terms has been attempted (cf. also Ref.
5, Chap. IV 8 1) using the transformation matrices
S„(4,8) for the Stevens operators6 and the algebraic
program AI.TRAN. Further considerations have ho%'ev-
er, revealed that the model' has only an ad hoc
justification. Instead, a net charge compensa-tion (NCC)
model, which correlates in a symmetry-consistent way
the Sne structure for a charge-compensated EPR defect
center with that for a nonlocaBy compensated one, has
been proposed. The NCC model comprises the previ-
ous one' as a special case. The NCC model has been ap-
plied to M' +-Vst (cation vacancy) and M' +-A'+ (M'
represents Cr, Fe, and Gd; A' represents Li and Na)
centers in AzMF4 (Refs. 1 —3}and AzMC1~. In this pa-

per the EPR data on several defect centers, namely
Cr +„Fe +, and Gd + in AzMF4-, AzMC1~-, AMFs-,
MFz-, and MClz-type crystals, are analyzed in terms of
the net charge-compensation model. Relationships be-
tween the NCC models and the descriptionlo, i i of the
EPR results for Gd + in MX2 crystals as mell as the
models' of the crystal field for Y13+ in CaF2 are also
discussed. Other possible appHcations of the NCC mod-
el are suggested.

II. OUTLINE OF THE MODEL

Since a detailed derivation of the net charge-
compensation model is given elsewhere„we quote here
only the Snal result. The considerations are based on
the superposition idea originally developed for the
crystal-Beld Hamiltonian' and later extended for the
spin Hamiltonian. ' [Note the relationships" between
the superposition model formulas' *' and the transfor-
mation matrices St, (4,8) for the Stevens operators. ]
%'e denote the experimentaHy observed ZFS Hamiltoni-
an for a charge-compensated (CC) EPR center by &,„~,
and that for an otherwise undistorted (und) vacancy
center in the same crystal by &,"„",. The symmetry of
&,„~„given by a point group G, is lower than that of
~e„"~„ i.e., Go, due to the presence of the charge com-
pensator in the nearest (NN) or next-nearest (NNN)
neighborhood of the CC EPR center. A vacancy or a
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charge-compensating ion is likely to introduce distor-
tions of the NN ligands, further lowering the symmetry
around the CC EPR center. The NCC model relates the
two Hamiltonians as follows:

W,„p,(G)=&,"~p,(GO)+&cc(G')

or, explicitly in terms of the Stevens operators,

z [oo~]

XBfOf =XBf(und) {Of l+ XBk'{Of l'
k, q

(2)

where the curly brackets denote the operators in the
original ' (local) axis system. The term &cc in (1) and
(2) represents the net charge com-pensation contribution
to the fine structure of the CC EPR defect center. A
general restriction on &cc is that %cc must be of a sym-
metry G' (to be established) which does not lead to &,„„,
on the left-hand side (lhs) of Eq. (1) of symmetry lower
than actually observed. The net charge-compensation
contribution parameters Bkq can then be expressed in
terms of Bf and Bf(und) known from experiment. The
transformation matrices Sk(&,e) and/or the relations
between the parameters Bf in various axis systems' are
then very useful.

For example, in the case of the Cr + centers III and
IV associated with a vacancy at the nearest divalent cat-
ion site and an A'+ ion (A' represents Na and Li), re-
spectively, in AzMF& (Refs. 1-3) or AzMClz, R,„~, is
orthorhombic and &,"„"„(center I) is tetragonal. It has
been shown that the model of Takeuchi et a/. ' for Cr +
(S=—,') corresponds to the choice &co(axial} in Eq. (1).
However, the most general form of &cc for centers III
and IV in these crystals is orthorhombic with the princi-
pal axis taken along the vacancy (or A '+ ion) axis. Nu-
merical results indicate the orthorhombic component
induced by charge compensation (Bz ) is significant for
these centers and hence the approximation' Bz ——0 is
not justified. Analysis for the M' + centers II in
AzMF4 (Ref. 1) and AzMC1~ (Ref. 9) associated with a
vacancy at the nearest A + site is more complex and is
presented below.

choice of Takeuchi et al. ' corresponds to adopting the
trigonal axis system with x "ll[110] and y "ll[112]. The
two axis systems have been denoted' ' '"%atanabe" and
"Orton, " respectively. The third possible trigonal axis
system is that of "Hutchings" (x "ll[112],y "[110])—for
detailed references, see Refs. 16 and 5.

The NCC model, Eq. (2), yields for center II the fol-
lowing second-order equation:

BzOz+BzOz+BzOz ——Bz(I){Ozl+Bz {Oz l

+Bz'{Oz]'+Bz' {Oz I'

where the operators Of, {Of], and {Of]' are expressed
in the axis systems (x,y, z), (x'lla, y'll»
(x "ll[112], y "fl[110], z "ll [111]), respectively. The
monoclinic parameter 82 can be set to zero by a rotation
a/Oy with the angle a given by'

tan(2a) =8 ' /(38 —8 ) . (4)

FIG. 1. The axis system for the A+-vacancy-associated
Cr'+ center II in A2MX4 crystals.

III. Cr'+, Fe'+, AND Gd'+ TYPE-II CENTERS
IN A2 j)JIFF AND A2MClg CRYSTALS

The immediate neighborhood of center II in AzMX~
crystals is depicted in Fig. 1. Takeuchi et al. ' con-
sidered the superposition of D,S,. and D2S „, which

yields an orthorhombic ZFS Hamiltonian in a special
axis system with the angle y given by the relation
D, /Dz ——sin(2$}/sin(2y). Their x and y axes are along
the —y and +x axes in Fig. 1, respectively. The sym-
metry of the site is monoclinic with the monoclinic axis
along the y axis in Fig. 1. There are three choices of the
monoclinic axis Cz possible one' corresponds to x llCz
and yields the monoclinic term 82 '02 ', whereas our
choice corresponds to yllCz and yields the monoclinic
term BzOz. The latter choice is more convenient and
has also been used for Cr + in Cs2CdC14. This choice
corresponds to the trigonal axis system with x "ll[112]
and y "ll[110] being adopted for the DzS „ term. The

Since the experimental values' ' of D ( —8 z ) and
E(-Bz ) are given in this special axis system, i.e., with

Bz =0 (Ref. 9) [Bz ' ——0 (Ref. 1)] and y=a, it is most
convenient to adopt this system for the ZFS term on the
lhs of Eq. (3). On the other hand, an arbitrary rotation
around the monoclinic axis leaves the form of &cc in (3)
invariant with the parameters 82, 82, and 8 2'

modified. ' Hence transformation of JY,„~, and %cc in
(3) to this axis system yields

[Bz][Oz]+[Bz][Oz]=8',(I){O', I+[8,'][0', ]

+ [8z'][Oz]+[Bz' 1[Oz]

where the square brackets indicate that the parameters
and operators are now expressed in the special axis sys-
tem. Using the transformation (45,0') followed by a ro-
tation by o. around the new y' axis, ' we obtain the fol-
lowing relations:
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[Bz ]=[Bz]——', (sin a)Bz(I),

[8z ]=3 sin(2tx )8 z (I),
[Bzo]=[8,]——,'(3cosza —1)Boz(I) .

Numerical results are given in Table I using [bz]=D
and [bz]= 3E—of Ref. 1 [the minus sign arises because
the (x,y, z) system' is rotated by (+90',0'} with respect to
the (x,y, z) system in Fig. 1] and [bz]=3E of Ref. 9.
The procedure of Takeuchi et al. ' corresponds to setting
Bz ——Bz' ——0 in (3) and results in a different set of equa-
tions. In order to enable direct comparison between
their results and ours, the parameters b'z» in the axis sys-
tem (x",y",z") obtained by a rotation /=54. 73'—a
around they axis' are also given in Table I. For exam-
ple, for the Cr + center II in K2ZnF4 at 77 K the au-
thors' adopt Dz( =bz )= —1613)&10 cm ' taken
from the trigonal center in KZnF3, as compared with
the value —1849.7)& 10 cm ' derived in Table I
without the implausible resort to data on AMF3. The
values of b2' in Table I indicate the approximation'

bz' —=0 is hardly justi5ed for the Cr + centers II in all

A2MX4 crystals studied. Moreover, the neglect' of bz
for the Cr + centers II in all K&MgF4 and Cs2CdCl4 ip-
pears also not justi6ed.

Extension of the NCC model for the higher-spin EPR
centers II in AzMX„ leads to the following equations [in
the notation used in Eq. (5}]:

g [Bf)[o))=84(I}I04I +84(I}to4 I

q=1

+ g [84 )[oil

6 6

y [8~][0~]=8',(I)tO', I+8', (I)IO,'j+ g [8,'»][0)] .

Solving Eqs. (7) and (8) in the same way as in the deriva-
tion of Eq. (6), we obtain the relations

and

[84 )=[84]+84(I)—,'(cos y+6cos q+1)—84(I)—", sin qr,

[84 ]=[8»]+8»(I)sinqz cosqz(cos (p+3)+84(I)35 sin qz cosqz,

[8» ]=[84]+8»(I)—,'sin qz(cos qz+1) —84(I)-,'sin (p(7cos (p
—1),

[8» ]= [8„']+84(I)sin qz cosqz+84(I)5 sinqz comp(7 cos y —3),
[84~]= [8», )+-,'84(I)sin Ip —84(I)—,'(35 cos qz 30 co—s'Ip+ 3),

[86 ]=[86]+86(I)—,",sin'qz(cos q+6cos qz+1) —86(I)—",,'sin p,
[86' ]= [86]+86 (I) ", sinqz cos—q&(3 cos4(p+ 10coszqz —5)+8 o6 (I)—",' sin'p cosq,

[86 ]=[86 ]+8 6(I) —,', ( 33 cos q+ 35 cos qz 65 cos p—+ 13 ) —8 6 (I) —",,sin (p( 11 cos qz 1), —

[86 ]=[86]+86(I)—58sinqz comp( 1 1 cos qz+2 cos qz 5)+86(I)+o'sin—qz cosqz( 1 1 cos qz —3),

[8& )=[86)+86(I)—,'zsinzy(33 cos y —10cosz()z+1)—86(I)—",,'sin (P(33 cos qz
—18 cos q + 1),

[86 ]= [86]+86(I)-„'sin p cosq&(33 cos qz 13)+8—6(I)—", sing cosy(33 cos y —30cos qz+5),

[86 ]=[86]+86(I)—,', sin g(11 cos (p
—1)—86(I)—,', (231 cos p —315 cos qz+ 105 cos qz —5) .

(10)

TABLE I. Zero-Geld-splitting parameters for the Cr'+ type-II centers
values of b, (I), [bz], [bz], and a are taken from references as indicated.
scribe the net efFect of charge compensation in the special axis system with
denotes room temperature.

in A2MX4 crystals (a11 in 10 cm '). Experimental
The primed parameters [bg] and bz~ derived here de-
[bz]=0 and the trigonal axis system, respectively. RT

T (K} b (I) [boz] [b'] a (deg) [b', ] [b ] [b z']

K2ZnF4' 293
77
4.2

—381 —1872 —288
—374 —1937 —279
—376 —1948 —279

44.0
44.5
44. 1

—1766.8
—1838.6
—1845.1

—1142.3
—1121.8
—1127 4

—12.2 —1779.6
—3.4 —1849.7
—5.9 —1853.2

872.6
876.9
955.4

0.6
7.7
2.2

K2MgF4 ' 293

Cs2CdC14 R17

'Reference 1.
Reference 9.

—419 —1861 —141

T- 758 +108
+758 + 108

+ 873.5
+642.5

+642.8
+642.8

+4.5
+ 220.5

5 622.2 +2159.1 T- 255.8
+622.2 + 869.3 +200.2

43.1 —1735.4 —1254.2 + 152.4 —1750.3
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Analysis of the net charge-compensation contributions
[8~~) and [8~~] is not possible at present because of lack
of relevant EPR data on M' + (S)2} centers II in

A zMX4. The results on Fe + in K2ZnF4 are expected to
become available in the near future. '

where 84 8&(I) and th——e operators Of are expressed in

one of the three trigonal axis systems ' (see Sec. III},
and (0f ) are referred to the cubic axis. Hence, the re-
lations follow

84 ——84+ —', 84,
84 =Bqk(40&2/3)84, (12)

IV. Cr'+, F93+, and G83+ CENTERS
IN AMF3 CRYSTALS

EPR studies' on the Cr + ions in AM F3
perovskite fluorides reveal the centers analogous to the
Cr + centers' I-IV in A&MF4. Temperature depen-
dence of the EPR spectrum provides useful information
on the structural phase transitions in KCdF3 (Ref. 23)
and RbCdF3 (Refs. 25 and 26). However, since the sym-

metry of the nonlocally charge-compensated Cr +

centers I in the cubic phase AMF3 studied so far is cu-
bic (and hence no ZFS is observed), the experimentally
observed axial parameter D ( =b z ) for the charge-
compensated centers II (trigonal), III, and IV (both
tetragonal) is entirely due to the charge compensation,
s.e., b2 =b2.

Two types of the vacancy associated Fe + centers in

AMF3 have been observed: trigonal —due to an A + va-

cancy along a ( 111) axis in KZnF3 (Ref, 27) and

KMgF3 (Ref. 28}, and tetragonal —due to an M + va-

cancy along a (100) axis in KZnF3, ' RbCdF3, and

CsCdF3. The cubic parameter a, for the vacancy-free
Fe + center has been reported for several AMF3 crys-
tals. The Fe + ion has been used as a probe in EPR
and electron-nuclear double-resonance (ENDOR) studies
of the structural phase transitions in RbCaF3 (Ref. 34)
and RbCdF3 (Ref. 35), respectively. The NCC model,
Eq. (2), yields for the trigonal centers the fourth-order
eqUat1on

Bq04+BqOq ——Bq( 104 1+5(04 l )+84 04+Bq Oq,

where the upper and lower signs refer to the %'atanabe
and Hutchings systems, respectively. The relations (12)
also apply for the parameters b f, provided consistent
scaling' ' is used (then b4=a, /2). The authors ' use
the Hutchings axis system. Using the relations for con-
version of the conventional parameters a and F to
8$(b)), we obtain the same results as quoted in Ref. 28.
The corresponding net charge-compensation contribu-
tions are listed in Table II. (Note that for Fe + at cubic
sites in KMgF3 there is a disagreement concerning the
value a, at 300 K in Refs. 29 and 28. %'e believe the
value

~
a,

~

=6.5X10 cm ' of Ref. 29 is, instead, a
misprint —cf. also Ref. 32.) For the tetragonal Fe +

centers in AMF3 (Refs. 19 and 20) we have Eq. (11}with

q =3 replaced by q =4 and all the operators expressed
in the cubic axis. Hence the relations are straightfor-
ward:

84 ——84 —84, 84 ——84 —584,

and using the conversion relations' we obtain

b4 ———,'(a —a, )+F/3, b~ ==,'(a —a, ) .

(13)

(14)

The corresponding numerical results are also included in
Table II. Tetragonal Fe + centers have also been ob-
served in CsCdF3, however, no data on a, have been
found in the literature for this case (cf. e.g. , Ref. 32).
The Stevens operator notation enables, unlike the con-
ventional notation, direct conclusions on the relative size
of the charge-compensation contributions to the fine
structure of the defect centers. Table II reveals that an
approximation of the net charge-compensation contribu-
tion &cc in Eq. (2) by a uniaxial term b4 0~, which fol-
lows from a straightforward extension of the model, '

would be highly inappropriate for the trigonal and
tetragonal Fe + centers in AMF3 crystals.

There exists another type of strongly tetragonal Fe +

defect center in AMF3 crystals which is associated with
an 0 Ion substltUted for a NN Auorlne. The
fourth-order ZFS parameters for this (FeOF5) cluster
center at room temperature have been determined for
Fe + in KZnF3 partially as @=25 with F neglected
and for Fe + in KMgF3 as b4 ——+75 and b4 ——+269
with b2 ———3572 (in 10 "cm '). The latter bf values

yield, using Eq. (13), which applies to this center too, the
net charge-compensation contributions as b4 =49.4 and

b4 =141 (10 cm '). Comparing these values with

TABLE II. The net charge-compensation contributions bk~ derived from the experimental data for Fe + at the vacancy-
associated trigonal and tetragonal sites in perovskite Auorides at T=300 K (in 10 cm ').

KZnF3
Trigonal sites

Ref. KMgF3 Ref. KZnF,
Tetragonal sites
Ref. RbCdF3

b4 ——a, /2
g&O yO

gO

&4(&4)
b 0

4

b4'(b4 )

'This work.

+ 26.4
+ 103.4
—16.5

+ 429.9
+ 1.07

—67.0

+ 25.6
+ 87.2
—13.7

+ 356.0
+ 3.37

—126.7

+ 26.4
—759.0
+ 29.8

(+ 97.5)
+ 3.5

( —34.3)

30
20
20
20

+223
—422.2
+ 24.9

(+ 93.3)
+27

( —18.0)

31
20
20
20
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those in Table II for the vacancy-associated Fe + centers
in AMF3, one notes a much higher NCC contribution to
8„' as well as a higher contribution (with opposite sign)
to b4 in the former case.

The Gd +-V centers " and Gd +-0
centers ' ' analogous to the two types of tetrago-
nal Fe + centers discussed above are observed only in
the cubic phase ACaF3 and A CdF3, where the Gd + ion
enters the M + octahedral site. In AMF3 hosts with
smaller M + ions (Zn +, Mg +) the Gd + ion substi-
tutes for the alkaline-earth A+ ion at a 12-coordinated
site (cf. e.g., Refs. 42 and 49}. These tetragonal Gd +

centers provide ' ' a sensitive EPR probe for
studying the structural phase transitions in RbCdF3
and RbCaF3. Application of the NCC model for these
studies has to be deferred to a separate paper. Recently
also the Gd +-Li+ centers have been observed in the
cubic-phase ACaF3 and ACdF3. These centers exhibit
the same tetragonal symmetry as the Gd +-V~ centers.
The NCC model, Eq. (2), yields for the three types of
tetragonal centers the sixth-order equation (in the cubic
axis system}

8',0', +8",0', =8,(0', —210', )+8,"0',+8,"0', , (15)

and hence the relations

B6 =86 —86,to 0

B6 ——B6+2186 .

Among the pertinent EPR studies, the most exten-
sive one, combining the investigations of the Gd +-V~
and Gd-Li+ centers, are those of Arakawa et al. Us-
ing Eqs. (13) and (16) the net charge-compensation con-
tributions bk~ are derived and listed in Table III for the
two types of Gd + centers in several AMF3 hosts. In
order to reduce the size of this tabulation the original
values of the tetragonal bg and cubic bk parameters are
not given here but only the original source reference is
indicated. Table III provides information on the tem-
perature variation of the parameters bk» for some AMF3
hosts. Comparison of Table II with Tables I and II of
Ref. 45 and Table I of Ref. 44 reveals the following.

8 6
——8 6 k(140&2/9)86

B6 ——86 ——,B6,

(17)

where the same notation as in Eqs. (11) and (12) is used.

V. ORTHORHOMSIC Gd'+ CENTERS
IN MX2 CRYSTALS

EPR studies of Gd + in the alkaline-earth halides
CdF2, CaFz, ""' BaF2, " SrC12, and SrF2 (Ref.
54) reveal orthorhombic centers due to the Gd +-A'+
(A' represents Li-Ca) complexes. Two axis systems

The 6& contribution to b„ is substantial and of opposite
sign to that of the cubic b4, whereas the b4 contribution
to b ~ is substantial and of the same sign as the cubic cu-
bic contribution (5b4) for both Gd + centers in all

Akf F3 hosts studied. The 6 6 contribution to b 06 is rath-
er small in all the hosts and changes sign with tempera-
ture for RbCdF3 and CsCdF3. The b6 contribution is
also small in all the hosts, except KCdF3, and no uni-

form sign behavior is observed. An approximation of
the charge-compensation contribution by a uniaxial term
for both the fourth- and sixth-order ZFS terms would
fail for the Gd +-V~ and Gd +-Li+ centers in AMF3.

The EPR data on the Gd3+-0 centers in AMF3 are
rather patchy. For illustration, using the tetragonal
b4=2, b4= —100, b6 ———3, b6-0 and the cubic
b4= —4.92, b6 ——+0.83 for the Gd +-0 center jn

RbCaF3 at 300 K, we obtain b~ =6.92, b4 = —75.4,
b6 ———3.83, and b6 =+17.4 (all in 10 cm '). The
conclusions on the b4q contributions for the Gd +-V
and Gd +-Li+ centers hold also for this Gd +-0
center, while the experimental accuracy of the parame-
ters b6 and b6 does not warrant any de5nite conclusion
in the present case.

Although, to the best of our knowledge, no trigonal
Gd + centers have been observed in AMF3 crystals, for
possible future use we give here the corresponding ex-
pressions for this case also:

to 0B6 ——B6——,B6

TABLE III. The net charge-compensation contributions bj,' derived from the experimental data taken from the references as in-

dicated, for the tetragonal Gd + centers in AMF3 (in 10 cm ').

Host
Reference

bk gtp
4

Gd +-V center
yt4 yto yt4

6

Gd +-Li+ centers
yt4 gto

4 6
yt4

6

KCdF3

RbCdF3

487 45 44,49

(42)

+ 1.30

+ 2.19
+ 2.28

—18.9
—19.6

—18.3

—0.20

+ 0.05
—0.04

+ 0.00

+ 6.30

—2.67
—1.05

—0.07

+ 1.09

+ 2.12
+ 2.00

+ 1.96

—17.3
—16.3

—0.04
+ 0.01

+ 0.03

—15.0 —0.10 + 5.30

—2.67
+ 0.65

CsCaF,

487
300 (296)

298 (296)

+ 2.13
+ 2.44

+ 2.42
+ 2.44

—22.5
—22.3

—22. 1

—22.4

+ 0.04
—0.05

—0.17
—0.07

—2.04
—0.84

+ 1.06
—0.31

+ 2.25
+ 2.56

+ 2.63
+ 2.78

—22.9
—22.9

—26.2
—27.0

—0.01
—0.04

+ 0.03
—0.04

—0.54
—0.94

—0.94
+ 0.29
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with the z axis along the Gd +-A'+ direction have been
adopted for these centers: (i) with the y axis ' " and
(ii) with the x axis" being parallel to the cube edge
perpendicular to the z axis. The two systems are related
by a +90'/Oz rotation and hence the signs of 8k and 86
are reversed. The fourth- and sixth-order NCC model
equations are then

&&Pf =&4( ( o4 l+5 I O~ l )+&&4'of (18)

X&Ã I =&6( I O6 I
—21I O6 I )+X&s'01 (19)

8 &0 80 l38

86 —86+ ~q 86 ~

8 ~4 84+ 1058

6 8 +

(21)

where the upper and lower signs refer to the above
defined (i) (Refs. 50, 51, and 10) and (ii) (Refs. 11, and
52-54) axis systems, respectively.

The early experimental data' for Gd + in GdFq were
given in the mixed-axis system notations (for details, see
the review ) with the fourth-order ZFS term truncated to
a cubiclike term only. That enabled a direct, although
approximate, comparison of the cubic 8~ and the noricu-
bic 8~ parameters. The authors' measured all bg,
k =2, 4, and 6, for the Gd +-Na+ centers in CaF2. Ad-
ditionally they gave their fourth-order results in terms of
the "parameter shifts, " i.e., the differences between the
rhombic and cubic parameters (referred to the same axis
system ). This approach is thus an example of an impli-
cit use of the NCC model as given by the relations (20).
The approach' has later been used by Bijvank et al. ,

"
although in both cases' '" no explicit relations were
given and the discussion" of the parameter shifts was
again limited to the fourth-order parameters. An exten-
sion of the NCC model analysis to the sixth-order ZFS
terms is possible for the data, ' while the data"
compris only 86. Using the values' b6 ——1.4, b& ——7.4,
b6=0.7, b6=15.8, and the value ' b6=( —,'d) (Ref. 57)
=1 (in 10 cm '), we obtain, from (21), the sixth-order
net charge-compensation contributions for the Gd +-
Na+ centers in CaFz at room temperature as
b6 = —0.23, b6 =14.0, b6 =13.8, and b6 =30.2 (in
10 cm '). This analysis shows the significance of the
66, 66, and b6 contributions for the present case. Cau-
tion is„however, necessary since Table II of the review

Upon transforming the cubic term, as is appropriate for
the two systems, we obtain

84 =84+ —,'8~,

84 ——84 7- 58~,
8&4 84

indicates the values of 66 for Gd + in ML2 crystals vary
with dilution. No more pertinent data on Gd + in MX2,
particularly in. CaF2, than those already discussed here
are listed in the recent review. Hence, a more detailed
analysis of the NCC model parameters b 6q for the ortho-
rhombic Gd + centers in alkaline-earth halides must
await more accurate measurements of b ) and b 6.

The second-order ZFS parameters 62 and b2 are whol-

ly due to the charge compensation for the Gd +-M+
centers in MX2 crystals. In the axis systems (i) and/or
(ii), for some centers, the ratio A, =b 2 /b z appears to be
in the nonstandard range (for definitions, see Ref. 60).
Application of the standardization of the parameters bf
for these cases has already been discussed. ' The stan-
dardization may be helpful for comparison of the non-
standard results with those standardized.

~I. DISCUSS&ax

The above applications of the net charge-com-
pensation model indicate its usefuIness, especially for
paramagnetic centers at Ion-symmetry sites involving a
charge-compensation mechanism. The NCC model pro-
vides a clear relationship, based on symmetry, between
the ZFS Hamiltonian for the undistorted (i.e., remotely
compensated) centers and that for the distorted (i.e., lo-

cally compensated centers). The relations derived here
enable determination of the net contributions to ZFS pa-
rameters due to the charge compensation. The NCC
model turns out to be more general than the superposi-
tion of two uniaxial ZFS terms proposed by Takeuchi
et a/. ' for the Cr + centers in A2MX~ crystals. More-
over, the present model is applicable to any order ZFS
terms. The previous model' has been applied only to the
second-order ZFS terms. ' Our preliminary calcula-
tions have shown that not all the model parameters
could be extracted from the equations resulting from a
straightforward extension of the model' to the fourth-
and sixth-order ZFS terms.

The NCC model has been applied to the trivalent
EPR defect centers in A &MX4 (cf. also Ref. 8), AMX&-,
and MXz-type crystals. Interestingly, the model is found
to have earlier been implicitly used' '" for the Gd +-
M+ centers in MX2 crystals. A survey of the literature
reveals other possible applications of the NCC model.
The orthorhombic and axial Mn + centers in alkali
halides have been extensively studied by EPR (cf. e.g. ,
Refs. 61—67, and references therein). However, the iso-
lated Mn + (cubic) centers have been observed only in

NaC1 at room temperature and the available cubic pa-
rameter a is rather tentative. EPR studies of the or-
thorhombic Eu + centers in alkali halides are also exten-
sive (cf. e.g., Refs. 69—76, and references therein),
whereas the data on the cubic Eu + centers concern
NaC1 (Ref. 77) and KC1 (Ref. 78) at room temperature
only. The trivalent impurities, like Cr + and Fe-+, in
MgO (Refs. 79—82) and SrTiOi (Refs. 81—84), and the
related crystals may serve as other possible systems for
the NCC model studies. The EPR centers are known as
good probes for studying structural phase transitions.

Although the applications of the NCC model con-
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sidcrcd heI'c concern thc spin-Hamiltonlan aIlalysis,
similar applications to the crystal-6cld analysis seem
feasible. Hence it is worthwhile to consider the relation-
ship bet@veen the NCC model and the models of the
crystal field for a trigonal Yb + site in CaF2 discussed by
Baker and Davies. ' The three models are described by
the following Hamiltonians:

&r ——%, + 2202 (model I),
&T ——&,+ A 202+ A 4oq+ A 6os (model II),
a,=ra, + Wo2O2o+ ao4O', + a,'O,'(mmei 111),

where &, is the crystal field of the cubic site and r is a
scaling parameter. (For references on the use of each of
the models see Ref. 12.) From the point of view of the
NCC model, applied to the crystal-field Hamiltonian for
this particular case, the most general form of the trigo-
nal &T——%, +%(CC) requires the net charge-
compensation contribution JV(CC} to be of the same
form as %r, Eq. (2) in Ref. 12, in a given trigonal axis
system, i.e.,

%(CC)= A 202+ A 4oq+ A qo4+ A 6os

+3606+3606 .

Hence it turns out that the first two Inodels' are subse-
quent approximations to the most general NCC mode1,
vvhilc model III is rather unphysical since it assumes a
modified cubic crystal 6eld.

Finally, me note that in several papers discussed here
the ZFS parameters are inappropriately called the
crystal-field parameters. This contributes to the con-
fusion between the spin Hamiltonian and the crystal-6eld
Harmltonian, which has been discussed at length in the
recent review.
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