Analysis of the net charge-compensation contribution in the fine structure of EPR defect centers: Cr^{3+} , Fe^{3+} , and Gd^{3+} in A_2MX_4 -, AMX_3 -, and MX_2 -type crystals

Czesław Rudowicz

Research School of Chemistry, Australian National University, G.P.O. Box 4, Canberra A.C.T. 2601, Australia

(Received 21 April 1987)

The net charge-compensation (NCC) model recently proposed by us is applied to EPR defect centers: Cr^{3+} , Fe^{3+} , and Gd^{3+} in A_2MX_4 -, AMX_3 -, and MX_2 -type crystals, where A is an alkali metal, M is an alkaline-earth metal, and X is a halide ion. The NCC model expresses the zerofield-splitting (ZFS) Hamiltonian for a charge-compensated center in terms of a ZFS Hamiltonian for a nonlocally compensated center and a ZFS Hamiltonian describing the net effect of charge compensation. This partition enables, using the transformation properties of the Stevens operators, extraction of the net contribution due to charge compensation. It is shown that the previous Takeuchi et al. model for charge-compensated Cr^{3+} $(S = \frac{3}{2})$ centers in A_2MF_4 is a particular case of a more general NCC model. Analysis of EPR data for the Cr^{3+} centers II (nearly trigonal) in A_2MF_4 and A_2MCl_4 crystals, in terms of our model, shows that the net charge-compensation contribution exhibits a significant monoclinic component neglected in the previous model. Numerical results for the ZFS parameters describing the net effect of charge compensation are given in the special axis system with $[b_2^{1}] = 0$ and in the trigonal axis system. EPR data on trigonal and tetragonal Cr^{3+} , Fe^{3+} , and Gd^{3+} centers in AMF_3 crystals are also considered in terms of the NCC model. Discussion of the orthorhombic Gd^{3+} centers in MX_2 crystals indicates that the use of the "parameter shifts" by some authors, i.e., the differences between the rhombic and cubic parameters (referred to the same axis system), is equivalent to an implicit use of the NCC model. Expressions enabling application of the NCC model to EPR centers with higher spin, e.g., Fe^{3+} ($S=\frac{5}{2}$) and Gd^{3+} $(S=\frac{7}{2})$, in the crystals considered are provided.

I. INTRODUCTION

Recently the EPR data on charge-compensated Cr³⁺ $(S = \frac{3}{2})$ centers in several A_2MF_4 - (A represents an alkali metal and M represents an alkaline-earth metal ion) type crystals of K₂NiF₄-like structure have been interpreted¹⁻³ in terms of a superposition of two uniaxial zero-field-splitting (ZFS) terms: $D_1 S_{z'}^2$ for a vacancy-free (i.e., nonlocally charge-compensated) Cr³⁺ center in A_2MF_4 and $D_2S_{2''}^2$ for the corresponding charge-compensated Cr^{3+} center in AMF_3 . It seems worthwhile to apply and subsequently test the model¹ for the EPR centers with higher spin $S \ge 2$. To this end a derivation of the model formulas for the fourth- and sixth-order ZFS terms has been attempted⁴ (cf. also Ref. 5, Chap. IV B 1) using the transformation matrices $S_k(\Phi,\Theta)$ for the Stevens operators⁶ and the algebraic program ALTRAN.⁷ Further considerations have, however, revealed that the model¹ has only an ad hoc justification. Instead, a net charge-compensation (NCC) model, which correlates in a symmetry-consistent way the fine structure for a charge-compensated EPR defect center with that for a nonlocally compensated one, has been proposed.⁸ The NCC model⁸ comprises the previous one¹ as a special case. The NCC model has been applied⁸ to $M'^{3+} - V_M$ (cation vacancy) and $M'^{3+} - A'^+$ (\hat{M}' represents Cr, Fe, and Gd; A' represents Li and Na) centers in A_2MF_4 (Refs. 1-3) and A_2MCl_4 .⁹ In this paper the EPR data on several defect centers, namely Cr^{3+} , Fe^{3+} , and Gd^{3+} in A_2MF_4 -, A_2MCl_4 -, AMF_3 -, MF_2 -, and MCl_2 -type crystals, are analyzed in terms of the net charge-compensation model. Relationships between the NCC model⁸ and the description^{10,11} of the EPR results for Gd^{3+} in MX_2 crystals as well as the models¹² of the crystal field for Yb³⁺ in CaF₂ are also discussed. Other possible applications of the NCC model are suggested.

II. OUTLINE OF THE MODEL

Since a detailed derivation of the net chargecompensation model is given elsewhere,⁸ we quote here only the final result. The considerations⁸ are based on the superposition idea originally developed for the crystal-field Hamiltonian¹³ and later extended for the spin Hamiltonian.¹⁴ [Note the relationships¹⁵ between the superposition model formulas^{13,14} and the transformation matrices $S_k(\Phi, \Theta)$ for the Stevens operators.⁶] We denote the experimentally observed ZFS Hamiltoni an for a charge-compensated (CC) EPR center by \mathcal{H}_{expt} and that for an otherwise undistorted (und) vacancy center in the same crystal by \mathcal{H}_{expt}^{und} . The symmetry of \mathcal{H}_{expt} , given by a point group G, is lower than that of \mathcal{H}_{expt}^{und} , i.e., G_0 , due to the presence of the charge compensator in the nearest (NN) or next-nearest (NNN) neighborhood of the CC EPR center. A vacancy or a charge-compensating ion is likely to introduce distortions of the NN ligands, further lowering the symmetry around the CC EPR center. The NCC model relates the two Hamiltonians as follows:

$$\mathcal{H}_{expt}(G) = \mathcal{H}_{expt}^{und}(G_0) + \mathcal{H}_{CC}(G')$$
(1)

or, explicitly in terms of the Stevens operators,⁶

$$\sum_{k,q} B_k^q O_k^q = \sum_{k,q} B_k^q (\text{und}) \{ O_k^q \} + \sum_{k,q} B_k'^q \{ O_k^q \}', \qquad (2)$$

where the curly brackets denote the operators in the original^{6,16} (local) axis system. The term \mathcal{H}_{CC} in (1) and (2) represents the *net charge-compensation* contribution to the fine structure of the CC EPR defect center. A general restriction on \mathcal{H}_{CC} is that \mathcal{H}_{CC} must be of a symmetry G' (to be established) which does not lead to \mathcal{H}_{expt} on the left-hand side (lhs) of Eq. (1) of symmetry lower than actually observed. The net charge-compensation contribution parameters B_k^{q} can then be expressed in terms of B_k^{g} and B_k^{g} (und) known from experiment. The transformation matrices $S_k(\Phi, \Theta)$ and/or the relations between the parameters B_k^{g} in various axis systems¹⁶ are then very useful.

For example, in the case of the Cr^{3+} centers III and IV associated with a vacancy at the nearest divalent cation site and an A'^+ ion (A' represents Na and Li), respectively, in A_2MF_4 (Refs. 1-3) or A_2MCl_4 , ${}^9\mathcal{H}_{expt}$ is orthorhombic and \mathcal{H}_{expt}^{und} (center I) is tetragonal. It has been shown⁸ that the model of Takeuchi *et al.*¹ for Cr^{3+} $(S=\frac{3}{2})$ corresponds to the choice \mathcal{H}_{CC} (axial) in Eq. (1). However, the most general form of \mathcal{H}_{CC} for centers III and IV in these crystals is orthorhombic with the principal axis taken along the vacancy (or A'^+ ion) axis. Numerical results⁸ indicate the orthorhombic component induced by charge compensation (B'_2) is significant for these centers and hence the approximation¹⁻³ $B'_2 \equiv 0$ is not justified. Analysis for the M'^{3+} centers II in A_2MF_4 (Ref. 1) and A_2MCl_4 (Ref. 9) associated with a vacancy at the nearest A^+ site is more complex and is presented below.

III. Cr^{3+} , Fe^{3+} , AND Gd^{3+} TYPE-II CENTERS IN A_2MF_4 AND A_2MCl_4 CRYSTALS

The immediate neighborhood of center II in A_2MX_4 crystals is depicted in Fig. 1. Takeuchi et al.¹ considered the superposition of $D_1 S_{z'}^2$ and $D_2 S_{z''}^2$, which yields an orthorhombic ZFS Hamiltonian in a special axis system with the angle φ given by the relation $D_1/D_2 = \sin(2\phi)/\sin(2\phi)$. Their x and y axes are along the -y and +x axes in Fig. 1, respectively. The symmetry of the site is monoclinic with the monoclinic axis along the y axis in Fig. 1. There are three choices of the monoclinic axis C_2 possible;¹⁷ one¹ corresponds to $x \parallel C_2$ and yields the monoclinic term $B_2^{-1}O_2^{-1}$, whereas our choice corresponds to $y \| C_2$ and yields the monoclinic term $B_2^1O_2^1$. The latter choice is more convenient and has also been used⁹ for Cr^{3+} in Cs_2CdCl_4 . This choice corresponds to the trigonal axis system with $x'' \parallel [11\overline{2}]$ and $y'' \| [\overline{1}10]$ being adopted for the $D_2 S_{z''}^2$ term. The

FIG. 1. The axis system for the A^+ -vacancy-associated Cr^{3+} center II in A_2MX_4 crystals.

choice of Takeuchi *et al.*¹ corresponds to adopting the trigonal axis system with $x'' \parallel [1\overline{10}]$ and $y'' \parallel [1\overline{12}]$. The two axis systems have been denoted^{16,5} "Watanabe" and "Orton," respectively. The third possible trigonal axis system is that of "Hutchings" ($x'' \parallel [\overline{112}], y'' [1\overline{10}]$)—for detailed references, see Refs. 16 and 5.

The NCC model, Eq. (2), yields for center II the following second-order equation:

$$B_{2}^{0}O_{2}^{0} + B_{2}^{2}O_{2}^{2} + B_{2}^{1}O_{2}^{1} = B_{2}^{0}(I)\{O_{2}^{0}\} + B_{2}^{\prime 0}\{O_{2}^{0}\}' + B_{2}^{\prime 2}\{O_{2}^{2}\}' + B_{2}^{\prime 1}\{O_{2}^{1}\}', \qquad (3)$$

where the operators O_k^q , $\{O_k^q\}$, and $\{O_k^q\}'$ are expressed in the axis systems (x,y,z), (x'||a, y'||b, z'||c), and $(x''||[11\overline{2}], y''||[\overline{1}10], z''||[111])$, respectively. The monoclinic parameter B_2^1 can be set to zero by a rotation $\alpha/0y$ with the angle α given by¹⁷

$$\tan(2\alpha) = B_2^1 / (3B_2^0 - B_2^2) . \tag{4}$$

Since the experimental values^{1,9} of $D(\sim B_2^0)$ and $E(\sim B_2^2)$ are given in this special axis system, i.e., with $B_2^1 = 0$ (Ref. 9) $[B_2^{-1} = 0$ (Ref. 1)] and $\varphi = \alpha$, it is most convenient to adopt this system for the ZFS term on the lhs of Eq. (3). On the other hand, an arbitrary rotation around the monoclinic axis leaves the form of $\mathcal{H}_{\rm CC}$ in (3) invariant with the parameters $B_2^{\prime 0}$, $B_2^{\prime 2}$, and $B_2^{\prime 1}$ modified.¹⁵ Hence transformation of $\mathcal{H}_{\rm expt}$ and $\mathcal{H}_{\rm CC}$ in (3) to this axis system yields

$$[B_{2}^{0}][O_{2}^{0}] + [B_{2}^{2}][O_{2}^{2}] = B_{2}^{0}(I)\{O_{2}^{0}\} + [B_{2}^{\prime 0}][O_{2}^{0}] + [B_{2}^{\prime 2}][O_{2}^{2}] + [B_{2}^{\prime 1}][O_{2}^{1}], \quad (5)$$

where the square brackets indicate that the parameters and operators are now expressed in the special axis system. Using the transformation $(45^\circ, 0^\circ)$ followed by a rotation by α around the new y' axis,¹⁶ we obtain the following relations:

$$[B_{2}^{\prime 2}] = [B_{2}^{2}] - \frac{3}{2}(\sin^{2}\alpha)B_{2}^{0}(I) ,$$

$$[B_{2}^{\prime 1}] = 3\sin(2\alpha)B_{2}^{0}(I) , \qquad (6)$$

$$[B_{2}^{\prime 0}] = [B_{2}^{0}] - \frac{1}{2}(3\cos^{2}\alpha - 1)B_{2}^{0}(I) .$$

Numerical results are given in Table I using $[b_2^0] = D$ and $[b_2^2] = -3E$ of Ref. 1 [the minus sign arises because the (x, y, z) system¹ is rotated by $(\pm 90^{\circ}, 0^{\circ})$ with respect to the (x,y,z) system in Fig. 1] and $[b_2^2]=3E$ of Ref. 9. The procedure of Takeuchi et al.¹ corresponds to setting $B_2'^2 = B_2'^1 \equiv 0$ in (3) and results in a different set of equations. In order to enable direct comparison between their results and ours, the parameters b_2^{iq} in the axis system (x'', y'', z'') obtained by a rotation $\phi = 54.73^{\circ} - \alpha$ around the y axis¹⁶ are also given in Table I. For example, for the Cr^{3+} center II in K_2ZnF_4 at 77 K the authors¹ adopt $D_2(=b_2^{\prime 0}) = -1613 \times 10^{-4}$ cm⁻¹ taken from the trigonal center in KZnF₃, as compared with the value -1849.7×10^{-4} cm⁻¹ derived in Table I without the implausible⁸ resort to data on AMF_3 . The values of $b_2^{\prime 1}$ in Table I indicate the approximation¹

.

 $b_2'^1 \equiv 0$ is hardly justified for the Cr³⁺ centers II in all A_2MX_4 crystals studied. Moreover, the neglect¹ of $b_2^{\prime 2}$ for the Cr³⁺ centers II in all K₂MgF₄ and Cs₂CdCl₄ appears also not justified.

Extension of the NCC model for the higher-spin EPR centers II in A_2MX_4 leads to the following equations [in the notation used in Eq. (5)]:

$$\sum_{q=1}^{4} [B_{4}^{q}][O_{4}^{q}] = B_{4}^{0}(I)\{O_{4}^{0}\} + B_{4}^{4}(I)\{O_{4}^{4}\} + \sum_{q=1}^{4} [B_{4}^{\prime q}][O_{4}^{q}]$$
(7)

and

$$\sum_{q=1}^{6} [B_{6}^{q}][O_{6}^{q}] = B_{6}^{0}(I)\{O_{6}^{0}\} + B_{6}^{4}(I)\{O_{6}^{4}\} + \sum_{q=1}^{6} [B_{6}^{\prime q}][O_{6}^{q}] .$$
(8)

Solving Eqs. (7) and (8) in the same way as in the derivation of Eq. (6), we obtain the relations

$$[B_{4}^{\prime 4}] = [B_{4}^{4}] + B_{4}^{4}(I)\frac{1}{8}(\cos^{4}\varphi + 6\cos^{2}\varphi + 1) - B_{4}^{0}(I)\frac{35}{8}\sin^{4}\varphi ,$$

$$[B_{4}^{\prime 3}] = [B_{4}^{3}] + B_{4}^{4}(I)\sin\varphi\cos\varphi(\cos^{2}\varphi + 3) + B_{4}^{0}(I)35\sin^{3}\varphi\cos\varphi ,$$

$$[B_{4}^{\prime 2}] = [B_{4}^{2}] + B_{4}^{4}(I)\frac{1}{2}\sin^{2}\varphi(\cos^{2}\varphi + 1) - B_{4}^{0}(I)\frac{5}{2}\sin^{2}\varphi(7\cos^{2}\varphi - 1) ,$$

$$[B_{4}^{\prime 1}] = [B_{4}^{1}] + B_{4}^{4}(I)\sin^{3}\varphi\cos\varphi + B_{4}^{0}(I)5\sin\varphi\cos\varphi(7\cos^{2}\varphi - 3) ,$$

$$[B_{4}^{\prime 0}] = [B_{4}^{0}] + \frac{1}{8}B_{4}^{4}(I)\sin^{4}\varphi - B_{4}^{0}(I)\frac{1}{8}(35\cos^{4}\varphi - 30\cos^{2}\varphi + 3) ,$$

(9)

and

$$[B_{6}^{\prime 6}] = [B_{6}^{6}] + B_{6}^{4}(I) \frac{11}{32} \sin^{2}\varphi(\cos^{4}\varphi + 6\cos^{2}\varphi + 1) - B_{6}^{0}(I) \frac{231}{32} \sin^{6}\varphi ,$$

$$[B_{6}^{\prime 5}] = [B_{6}^{5}] + B_{6}^{4}(I) \frac{11}{8} \sin\varphi \cos\varphi(3\cos^{4}\varphi + 10\cos^{2}\varphi - 5) + B_{6}^{0}(I) \frac{63}{8} \sin^{5}\varphi \cos\varphi ,$$

$$[B_{6}^{\prime 4}] = [B_{6}^{4}] + B_{6}^{4}(I) \frac{1}{16} (33\cos^{6}\varphi + 35\cos^{4}\varphi - 65\cos^{2}\varphi + 13) - B_{6}^{0}(I) \frac{63}{16} \sin^{4}\varphi(11\cos^{2}\varphi - 1) ,$$

$$[B_{6}^{\prime 3}] = [B_{6}^{3}] + B_{6}^{4}(I) \frac{5}{8} \sin\varphi \cos\varphi(11\cos^{4}\varphi + 2\cos^{2}\varphi - 5) + B_{6}^{0}(I) \frac{105}{8} \sin^{3}\varphi \cos\varphi(11\cos^{2}\varphi - 3) ,$$

$$[B_{6}^{\prime 2}] = [B_{6}^{2}] + B_{6}^{4}(I) \frac{5}{32} \sin^{2}\varphi(33\cos^{4}\varphi - 10\cos^{2}\varphi + 1) - B_{6}^{0}(I) \frac{105}{32} \sin^{2}\varphi(33\cos^{4}\varphi - 18\cos^{2}\varphi + 1) ,$$

$$[B_{6}^{\prime 1}] = [B_{6}^{1}] + B_{6}^{4}(I) \frac{1}{4} \sin^{3}\varphi \cos\varphi(33\cos^{2}\varphi - 13) + B_{6}^{0}(I) \frac{21}{4} \sin\varphi \cos\varphi(33\cos^{4}\varphi - 30\cos^{2}\varphi + 5) ,$$

$$[B_{6}^{\prime 0}] = [B_{6}^{0}] + B_{6}^{4}(I) \frac{1}{16} \sin^{4}\varphi(11\cos^{2}\varphi - 1) - B_{6}^{0}(I) \frac{11}{16} (231\cos^{6}\varphi - 315\cos^{4}\varphi + 105\cos^{2}\varphi - 5) .$$

TABLE I. Zero-field-splitting parameters for the Cr^{3+} type-II centers in A_2MX_4 crystals (all in 10^{-4} cm⁻¹). Experimental values of $b_2^0(I)$, $[b_2^0]$, $[b_2^2]$, and α are taken from references as indicated. The primed parameters $[b_2'^q]$ and $b_2'^q$ derived here describe the net effect of charge compensation in the special axis system with $[b_{2}^{1}]=0$ and the trigonal axis system, respectively. RT denotes room temperature.

	T (K)	$b_{2}^{0}(I)$	$[b_{2}^{0}]$	$[b_2^2]$	α (deg)	[<i>b</i> ^{'0} ₂]	[<i>b</i> ^{'1} ₂]	$[b_{2}^{\prime 2}]$	b '_{2}^{0}	b'1	b'2
$K_2ZnF_4^{a}$	293	- 381	-1872	-288	44.0	- 1766.8	-1142.3	-12.2	- 1779.6	872.6	0.6
	77	- 374	- 1937	-279	44.5	-1838.6	-1121.8	-3.4	- 1849.7	876.9	7.7
	4.2	- 376	- 1948	-279	44.1	- 1845.1	-1127.4	- 5.9	-1853.2	955.4	2.2
K ₂ MgF ₄ ^a	293	-419	- 1861	- 141	43.1	-1735.4	1254.2	+ 152.4	-1750.3	964.9	167.3
Cs ₂ CdCl ₄ ^b	RT?	±228	∓758	±108	~35	∓ 873.5	±642.8	∓4.5	∓622.2	±2159.1	∓255.8
		±228	±758	∓ 108	~ 35	±642.5	±642.8	∓ 220.5	±622.2	∓ 869.3	∓ 200.2

^aReference 1.

^bReference 9.

Analysis of the net charge-compensation contributions $[B'_4^q]$ and $[B'_6^q]$ is not possible at present because of lack of relevant EPR data on M'^{3+} ($S \ge 2$) centers II in A_2MX_4 . The results on Fe³⁺ in K_2ZnF_4 are expected to become available in the near future.¹⁸

IV. Cr³⁺, Fe³⁺, and Gd³⁺ CENTERS IN AMF₃ CRYSTALS

EPR studies¹⁹⁻²⁴ on the Cr³⁺ ions in AMF_3 perovskite fluorides reveal the centers analogous to the Cr³⁺ centers¹⁻³ I-IV in A_2MF_4 . Temperature dependence of the EPR spectrum provides useful information on the structural phase transitions in KCdF₃ (Ref. 23) and RbCdF₃ (Refs. 25 and 26). However, since the symmetry of the nonlocally charge-compensated Cr³⁺ centers I in the cubic phase AMF_3 studied so far²² is cubic (and hence no ZFS is observed), the experimentally observed axial parameter D (= b_2^0) for the chargecompensated centers II (trigonal), III, and IV (both tetragonal) is entirely due to the charge compensation, i.e., $b'_2^0 \equiv b_2^0$.

Two types of the vacancy associated Fe^{3+} centers in AMF_3 have been observed: trigonal—due to an A^+ vacancy along a $\langle 111 \rangle$ axis in KZnF₃ (Ref. 27) and KMgF₃ (Ref. 28), and tetragonal—due to an M^{2+} vacancy along a $\langle 100 \rangle$ axis in KZnF₃,¹⁹ RbCdF₃, and CsCdF₃.²⁰ The cubic parameter a_c for the vacancy-free Fe³⁺ center has been reported for several AMF_3 crystals.^{29–33} The Fe³⁺ ion has been used as a probe in EPR and electron-nuclear double-resonance (ENDOR) studies of the structural phase transitions in RbCaF₃ (Ref. 34) and RbCdF₃ (Ref. 35), respectively. The NCC model, Eq. (2), yields for the trigonal centers the fourth-order equation

$$B_{4}^{0}O_{4}^{0} + B_{4}^{3}O_{4}^{3} = B_{4}(\{O_{4}^{0}\} + 5\{O_{4}^{4}\}) + B_{4}^{\prime 0}O_{4}^{0} + B_{4}^{\prime 3}O_{4}^{3} ,$$
(11)

where $B_4 = B_4^0(I)$ and the operators O_4^q are expressed in one of the three trigonal axis systems^{5,16} (see Sec. III), and $\{O_4^q\}$ are referred to the cubic axis. Hence, the relations follow

$$B_{4}^{\prime 0} = B_{4}^{0} + \frac{2}{3}B_{4} ,$$

$$B_{4}^{\prime 3} = B_{4}^{3} \pm (40\sqrt{2}/3)B_{4} , \qquad (12)$$

where the upper and lower signs refer to the Watanabe and Hutchings systems, respectively. The relations (12) also apply for the parameters b_4^q , provided consistent scaling^{14,5} is used (then $b_4 = a_c/2$). The authors^{27,28} use the Hutchings axis system. Using the relations⁵ for conversion of the conventional parameters²⁷ a and F to $B_4^q(b_4^q)$, we obtain the same results as quoted in Ref. 28. The corresponding net charge-compensation contributions are listed in Table II. (Note that for Fe³⁺ at cubic sites in KMgF₃ there is a disagreement concerning the value a_c at 300 K in Refs. 29 and 28. We believe the value $|a_c| = 6.5 \times 10^{-4}$ cm⁻¹ of Ref. 29 is, instead, a misprint—cf. also Ref. 32.) For the tetragonal Fe³⁺ centers in AMF_3 (Refs. 19 and 20) we have Eq. (11) with q = 3 replaced by q = 4 and all the operators expressed in the cubic axis. Hence the relations are straightforward:

$$B_4^{\prime 0} = B_4^0 - B_4 , \quad B_4^{\prime 4} = B_4^4 - 5B_4 , \quad (13)$$

and using the conversion relations⁵ we obtain

$$b_4'^0 = \frac{1}{2}(a - a_c) + F/3$$
, $b_4'^4 = \frac{5}{2}(a - a_c)$. (14)

The corresponding numerical results are also included in Table II. Tetragonal Fe³⁺ centers have also been observed²⁰ in CsCdF₃; however, no data on a_c have been found in the literature for this case (cf. e.g., Ref. 32). The Stevens operator notation enables, unlike the conventional notation, direct conclusions on the relative size of the charge-compensation contributions to the fine structure of the defect centers. Table II reveals that an approximation of the net charge-compensation contribution \mathcal{H}_{CC} in Eq. (2) by a uniaxial term $b'_4{}^{0}O'_4{}^{0}$, which follows from a straightforward extension of the model,¹ would be highly inappropriate for the trigonal and tetragonal Fe³⁺ centers in AMF_3 crystals.

There exists another type of strongly tetragonal Fe³⁺ defect center in AMF_3 crystals which is associated with an O²⁻ ion substituted for a NN fluorine.³⁵⁻³⁸ The fourth-order ZFS parameters for this (FeOF₅) cluster center at room temperature have been determined for Fe³⁺ in KZnF₃ partially as a=25 with F neglected³⁶ and for Fe³⁺ in KMgF₃ as $b_4^0 = +75$ and $b_4^4 = +269$ with $b_2^0 = -3572$ (in 10⁻⁴ cm⁻¹).³⁸ The latter b_4^q values yield, using Eq. (13), which applies to this center too, the net charge-compensation contributions as $b_4'^0 = 49.4$ and $b_4'^4 = 141$ (10⁻⁴ cm⁻¹). Comparing these values with

TABLE II. The net charge-compensation contributions $b'_k{}^q$ derived from the experimental data for Fe³⁺ at the vacancyassociated trigonal and tetragonal sites in perovskite fluorides at T = 300 K (in 10^{-4} cm⁻¹).

		Trigon	al sites	Tetragonal sites					
	KZnF ₃	Ref.	KMgF ₃	Ref.	KZnF ₃	Ref.	RbCdF ₃	Ref.	
$b_4 = a_c / 2$	+ 26.4	30	+ 25.6	28	+ 26.4	30	+ 22.3	31	
$b_{2}^{\prime 0} = b_{2}^{0}$	+ 103.4	27	+ 87.2	28	-759.0	20	-422.2	20	
$b_{4}^{\bar{0}}$	-16.5	27	-13.7	28	+ 29.8	20	+ 24.9	20	
$b_{4}^{3}(b_{4}^{4})$	+ 429.9	27	+ 356.0	28	(+97.5)	20	(+93.3)	20	
$b_{4}^{'0}$	+ 1.07	а	+3.37	а	+3.5	а	+2.7	a	
$b_4^{\prime 3}(b_4^{\prime 4})$	-67.0	а	- 126.7	а	(-34.3)	а	(-18.0)	а	

^aThis work.

those in Table II for the vacancy-associated Fe^{3+} centers in AMF_3 , one notes a much higher NCC contribution to $B_4^{\prime 0}$ as well as a higher contribution (with opposite sign) to $b_4^{\prime 4}$ in the former case.

The $Gd^{3+}-V_M$ centers³⁹⁻⁴⁵ and $Gd^{3+}-O^{2-}$ centers^{40,42,46-48} analogous to the two types of tetragoand $Gd^{3+}-O^{2-}$ nal Fe³⁺ centers discussed above are observed only in the cubic phase $ACaF_3$ and $ACdF_3$, where the Gd^{3+} ion enters the M^{2+} octahedral site. In AMF₃ hosts with smaller M^{2+} ions (Zn^{2+}, Mg^{2+}) the Gd³⁺ ion substitutes for the alkaline-earth A^+ ion at a 12-coordinated site (cf. e.g., Refs. 42 and 49). These tetragonal Gd^{3+} centers provide^{40-43,46,47} a sensitive EPR probe for studying the structural phase transitions⁴⁸ in RbCdF₃ and RbCaF₃. Application of the NCC model for these studies has to be deferred to a separate paper. Recently also the $Gd^{3+}-Li^+$ centers have been observed⁴⁵ in the cubic-phase $A CaF_3$ and $A CdF_3$. These centers exhibit the same tetragonal symmetry as the $Gd^{3+}-V_M$ centers.⁴⁵ The NCC model, Eq. (2), yields for the three types of tetragonal centers the sixth-order equation (in the cubic axis system)

$$B_{6}^{0}O_{6}^{0} + B_{6}^{4}O_{6}^{4} = B_{6}(O_{6}^{0} - 21O_{6}^{4}) + B_{6}^{\prime 0}O_{6}^{0} + B_{6}^{\prime 4}O_{6}^{4}, \quad (15)$$

and hence the relations

$$B_{6}^{\prime 0} = B_{6}^{0} - B_{6}^{0} ,$$

$$B_{6}^{\prime 4} = B_{6}^{4} + 21B_{6}^{0} .$$
(16)

Among the pertinent EPR studies,³⁹⁻⁴⁵ the most extensive one, combining the investigations of the $Gd^{3+}-V_M$ and $Gd-Li^+$ centers, are those of Arakawa *et al.*⁴⁵ Using Eqs. (13) and (16) the net charge-compensation contributions $b'_k{}^q$ are derived and listed in Table III for the two types of Gd^{3+} centers in several AMF_3 hosts. In order to reduce the size of this tabulation the original values of the tetragonal b_k^q and cubic b_k parameters are not given here but only the original source reference is indicated. Table III provides information on the temperature variation of the parameters $b'_k{}^q$ for some AMF_3 hosts. Comparison of Table II with Tables I and II of Ref. 45 and Table I of Ref. 44 reveals the following. The $b_4^{\prime 0}$ contribution to b_4^0 is substantial and of opposite sign to that of the cubic b_4 , whereas the $b_4^{\prime 4}$ contribution to b_4^4 is substantial and of the same sign as the cubic cubic contribution $(5b_4)$ for both Gd^{3+} centers in all AMF_3 hosts studied. The $b_6^{\prime 0}$ contribution to b_6^0 is rather small in all the hosts and changes sign with temperature for RbCdF₃ and CsCdF₃. The $b_6^{\prime 4}$ contribution is also small in all the hosts, except KCdF₃, and no uniform sign behavior is observed. An approximation of the charge-compensation contribution by a uniaxial term for both the fourth- and sixth-order ZFS terms would fail for the Gd³⁺- V_M and Gd³⁺-Li⁺ centers in AMF_3 .

The EPR data on the $Gd^{3+}-O^{2-}$ centers in AMF_3 are rather patchy. For illustration, using the tetragonal $b_4^0=2$, $b_4^4=-100$, $b_6^0=-3$, $b_6^4\sim 0$ and the cubic $b_4=-4.92$, $b_6=+0.83$ for the $Gd^{3+}-O^{2-}$ center⁴² in RbCaF₃ at 300 K, we obtain $b_4'^0=6.92$, $b_4'^4=-75.4$, $b_6'^0=-3.83$, and $b_6'^4=+17.4$ (all in 10^{-4} cm⁻¹). The conclusions on the $b_4'^q$ contributions for the $Gd^{3+}-V_M$ and $Gd^{3+}-Li^+$ centers hold also for this $Gd^{3+}-O^{2-}$ center, while the experimental accuracy⁴² of the parameters b_6^0 and b_6^4 does not warrant any definite conclusion in the present case.

Although, to the best of our knowledge, no trigonal Gd^{3+} centers have been observed in AMF_3 crystals, for possible future use we give here the corresponding expressions for this case also:

$$B_{6}^{\prime 0} = B_{6}^{0} - \frac{16}{9}B_{6}$$

$$B_{6}^{\prime 3} = B_{6}^{3} \pm (140\sqrt{2}/9)B_{6}$$

$$B_{6}^{\prime 6} = B_{6}^{6} - \frac{154}{9}B_{6},$$
(17)

where the same notation as in Eqs. (11) and (12) is used.

V. ORTHORHOMBIC Gd³⁺ CENTERS IN *MX*₂ CRYSTALS

EPR studies of Gd^{3+} in the alkaline-earth halides CdF_2 , ⁵⁰ CaF_2 , ⁵¹, ¹⁰, ¹¹, ⁵³ BaF_2 , ¹¹ $SrCl_2$, ⁵² and SrF_2 (Ref. 54) reveal orthorhombic centers due to the $Gd^{3+}-A'^+$ (A' represents Li-Ca) complexes. Two axis systems

TABLE III. The net charge-compensation contributions $b'_{k'}$ derived from the experimental data taken from the references as indicated, for the tetragonal Gd³⁺ centers in AMF_3 (in 10⁻⁴ cm⁻¹).

		Reference			$Gd^{3+}-V_M$ center			$Gd^{3+}-Li^+$ centers			
Host	T (K)	b_k^q	b_k	b'0	b'4	b'0	b'4 6	b' ⁰	b'4	b'0 6	b'4
KCdF ₃	487	45	44,49	+ 1.30	-17.9	-0.20	+ 6.30	+ 1.09	-15.0	-0.10	+ 5.30
RbCdF ₃	487	45	44	+ 2.19	- 18.9	+ 0.05	-2.67	+ 2.12	-17.3	-0.04	-2.67
	302 (300)	45	(42)	+2.28	- 19.6	-0.04	-1.05	+ 2.00	-16.3	+ 0.01	+ 0.65
RbCaF ₃	297 (300)	45	(42)	+ 2.06	-18.3	+ 0.00	-0.07	+ 1.96	- 19.4	+ 0.03	- 1.77
CsCdF ₃	487	45	44	+ 2.13	-22.5	+ 0.04	-2.04	+ 2.25	-22.9	-0.01	-0.54
	300 (296)	45	(44)	+ 2.44	-22.3	-0.05	-0.84	+ 2.56	-22.9	-0.04	-0.94
CsCaF ₃	487	45	44	+ 2.42	-22.1	-0.17	+ 1.06	+ 2.63	-26.2	+ 0.03	-0.94
	298 (296)	45	(44)	+ 2.44	-22.4	-0.07	-0.31	+ 2.78	-27.0	-0.04	+ 0.29

$$\sum_{q} B_{4}^{q} O_{4}^{q} = B_{4} (\{ O_{4}^{0} \} + 5\{ O_{4}^{4} \}) + \sum_{q} B_{4}^{\prime q} O_{4}^{q}$$
(18)

and

$$\sum_{q} B^{q}_{6} O^{q}_{6} = B_{6}(\{O^{0}_{6}\} - 21\{O^{4}_{6}\}) + \sum_{q} B^{\prime q}_{6} O^{q}_{6} .$$
(19)

Upon transforming the cubic term, as is appropriate for the two systems, we obtain

$$B_{4}^{\prime 0} = B_{4}^{0} + \frac{1}{4}B_{4} ,$$

$$B_{4}^{\prime 2} = B_{4}^{2} \mp 5B_{4} ,$$

$$B_{4}^{\prime 4} = B_{4}^{4} - \frac{15}{4}B_{4} ,$$
(20)

and

$$B_{6}^{\prime 0} = B_{6}^{0} - \frac{13}{8}B_{6} ,$$

$$B_{6}^{\prime 2} = B_{6}^{2} \pm \frac{105}{16}B_{6} ,$$

$$B_{6}^{\prime 4} = B_{6}^{4} + \frac{105}{8}B_{6} ,$$

$$B_{6}^{\prime 6} = B_{6}^{6} \pm \frac{231}{16}B_{6} ,$$

(21)

where the upper and lower signs refer to the above defined (i) (Refs. 50, 51, and 10) and (ii) (Refs. 11, and 52-54) axis systems, respectively.

The early experimental data⁵⁰ for Gd^{3+} in GdF_2 were given in the mixed-axis system notations (for details, see the review⁵) with the fourth-order ZFS term truncated to a cubiclike term only. That enabled a direct, although approximate, comparison of the cubic B_4 and the noncubic B_4 parameters.⁵⁰ The authors¹⁰ measured all b_k^g , k = 2, 4, and 6, for the Gd³⁺-Na⁺ centers in CaF₂. Additionally they gave their fourth-order results in terms of the "parameter shifts," i.e., the differences between the rhombic and cubic parameters (referred to the same axis system⁵). This approach is thus an example of an implicit use of the NCC model as given by the relations (20). The approach¹⁰ has later been used by Bijvank *et al.*,¹¹ although in both cases^{10,11} no explicit relations were given and the discussion¹¹ of the parameter shifts was again limited to the fourth-order parameters. An extension of the NCC model analysis to the sixth-order ZFS terms is possible for the data,¹⁰ while the data¹¹ comprise only B_6^0 . Using the values¹⁰ $b_6^0 = 1.4$, $b_6^2 = 7.4$, $b_6^4 = 0.7$, $b_6^6 = 15.8$, and the value^{55,56} $b_6 = (\frac{1}{4}d)$ (Ref. 57) =1 (in 10^{-4} cm⁻¹), we obtain, from (21), the sixth-order net charge-compensation contributions for the Gd³⁺-Na⁺ centers in CaF₂ at room temperature as $b_{6}^{\prime 0} = -0.23$, $b_{6}^{\prime 2} = 14.0$, $b_{6}^{\prime 4} = 13.8$, and $b_{6}^{\prime 6} = 30.2$ (in 10^{-4} cm⁻¹). This analysis shows the significance of the $b_{6}^{\prime 2}, b_{6}^{\prime 4}$, and $b_{6}^{\prime 6}$ contributions for the present case. Caution is, however, necessary since Table II of the review⁵⁸

indicates the values of b_6 for Gd^{3+} in MX_2 crystals vary with dilution. No more pertinent data on Gd^{3+} in MX_2 , particularly in CaF_2 , than those already discussed here are listed in the recent review.⁵⁹ Hence, a more detailed analysis of the NCC model parameters $b_6^{\prime q}$ for the orthorhombic Gd^{3+} centers in alkaline-earth halides must await more accurate measurements of $b_6^{\prime q}$ and b_6 .

The second-order ZFS parameters b_2^0 and b_2^2 are wholly due to the charge compensation for the Gd³⁺-M⁺ centers in MX_2 crystals. In the axis systems (i) and/or (ii), for some centers, the ratio $\lambda = b_2^2/b_2^0$ appears to be in the nonstandard range (for definitions, see Ref. 60). Application of the standardization of the parameters b_k^g for these cases has already been discussed.^{5,60} The standardization⁶⁰ may be helpful for comparison of the nonstandard results with those standardized.⁵

VI. DISCUSSION

The above applications of the net charge-compensation model indicate its usefulness, especially for paramagnetic centers at low-symmetry sites involving a charge-compensation mechanism. The NCC model provides a clear relationship, based on symmetry, between the ZFS Hamiltonian for the undistorted (i.e., remotely compensated) centers and that for the distorted (i.e., locally compensated centers). The relations derived here enable determination of the net contributions to ZFS parameters due to the charge compensation. The NCC model turns out to be more general than the superposition of two uniaxial ZFS terms proposed by Takeuchi et al.¹ for the Cr³⁺ centers in A_2MX_4 crystals. Moreover, the present model is applicable to any order ZFS terms. The previous model¹ has been applied only to the second-order ZFS terms.¹⁻³ Our preliminary calculations⁴ have shown that not all the model parameters could be extracted from the equations resulting from a straightforward extension of the model¹ to the fourthand sixth-order ZFS terms.

The NCC model has been applied to the trivalent EPR defect centers in A_2MX_4 (cf. also Ref. 8), AMX_3 -, and MX_2 -type crystals. Interestingly, the model is found to have earlier been implicitly used^{10,11} for the Gd³⁺- M^+ centers in MX_2 crystals. A survey of the literature reveals other possible applications of the NCC model. The orthorhombic and axial Mn²⁺ centers in alkali halides have been extensively studied by EPR (cf. e.g., Refs. 61-67, and references therein). However, the isolated Mn^{2+} (cubic) centers have been observed only in NaCl at room temperature and the available cubic parameter a is rather tentative.⁶⁸ EPR studies of the orthorhombic Eu²⁺ centers in alkali halides are also extensive (cf. e.g., Refs. 69-76, and references therein), whereas the data on the cubic Eu^{2+} centers concern NaCl (Ref. 77) and KCl (Ref. 78) at room temperature only. The trivalent impurities, like Cr^{3+} and Fe^{3+} , in MgO (Refs. 79-82) and $SrTiO_3$ (Refs. 81-84), and the related crystals may serve as other possible systems for the NCC model studies. The EPR centers are known as good probes for studying structural phase transitions.⁸⁵

Although the applications of the NCC model con-

sidered here concern the spin-Hamiltonian analysis, similar applications to the crystal-field analysis seem feasible. Hence it is worthwhile to consider the relationship between the NCC model and the models of the crystal field for a trigonal Yb^{3+} site in CaF₂ discussed by Baker and Davies.¹² The three models are described by the following Hamiltonians:

$$\begin{aligned} \mathcal{H}_{T} &= \mathcal{H}_{c} + A_{2}^{0}O_{2}^{0} \pmod{\mathrm{I}}, \\ \mathcal{H}_{T} &= \mathcal{H}_{c} + A_{2}^{0}O_{2}^{0} + A_{4}^{0}O_{4}^{0} + A_{6}^{0}O_{6}^{0} \pmod{\mathrm{II}}, \\ \mathcal{H}_{T} &= \tau \mathcal{H}_{c} + A_{2}^{0}O_{2}^{0} + A_{4}^{0}O_{4}^{0} + A_{6}^{0}O_{6}^{0} \pmod{\mathrm{III}}, \end{aligned}$$

where \mathcal{H}_c is the crystal field of the cubic site and τ is a scaling parameter. (For references on the use of each of the models see Ref. 12.) From the point of view of the NCC model, applied to the crystal-field Hamiltonian for this particular case, the most general form of the trigonal $\mathcal{H}_T = \mathcal{H}_c + \mathcal{H}(CC)$ requires the net chargecompensation contribution $\mathcal{H}(CC)$ to be of the same form as \mathcal{H}_T , Eq. (2) in Ref. 12, in a given trigonal axis system, i.e.,

- ¹H. Takeuchi, M. Arakawa, H. Aoki, T. Yosida, and K. Horai, J. Phys. Soc. Jpn. **51**, 3166 (1982).
- ²H. Takeuchi and M. Arakawa, J. Phys. Soc. Jpn. **52**, 279 (1983).
- ³M. Arakwa, H. Ebisu, and H. Takeuchi, J. Phys. Soc. Jpn. 55, 2853 (1986).
- ⁴C. Rudowicz, in Conference Handbook—11th Condensed Matter Physics Meeting, Pakatoa Island, New Zealand, 1987.
- ⁵C. Rudowicz, Magn. Res. Rev. 13, 1-89 (1987).
- ⁶C. Rudowicz, J. Phys. C 18, 1415 (1985).
- ⁷C. Rudowicz, Aust. Phys. 21, 275 (1984), and references therein.
- ⁸C. Rudowicz, Solid State Commun. (to be published).
- ⁹D. Kay and G. L. McPherson, J. Phys. C 14, 3247 (1981).
- ¹⁰A. Edgar and D. J. Newman, J. Phys. C 8, 4023 (1975).
- ¹¹E. J. Bijvank, H. W. den Hartog, and J. Andriessen, Phys. Rev. B 16, 1008 (1977).
- ¹²J. M. Baker and E. R. Davies, J. Phys. C 8, 1869 (1975).
- ¹³See, D. J. Newman, Adv. Phys. 20, 197 (1971), and references therein.
- ¹⁴See, D. J. Newman and W. Urban, Adv. Phys. 24, 793 (1975), and references therein.
- ¹⁵C. Rudowicz, J. Phys. C (to be published).
- ¹⁶C. Rudowicz, J. Magn. Res. 63, 95 (1985).
- ¹⁷C. Rudowicz, J. Chem. Phys. 84, 5045 (1986).
- ¹⁸H. Takeuchi (private communication).
- ¹⁹M. Binois, A. Leble, J. J. Rousseau, and J. C. Fayet, J. Phys. (Paris) Colloq. **34**, C9-285 (1973).
- ²⁰J.-J. Rousseau, J.-Y. Gesland, M. Binois, and J. C. Fayet, C. R. Acad. Sci. Paris **279B**, 103 (1974).
- ²¹R. Yu. Abdulsabirov, L. D. Livanova, and V. G. Stepanov, Fiz. Tverd. Tela (Leningrad) 16, 2135 (1974) [Sov. Phys.— Solid State 16, 1395 (1975)].
- ²²J. L. Patel, J. J. Davies, B. C. Cavenett, H. Takeuchi, and K. Horai, J. Phys. C 9, 129 (1976).
- ²³M. Arakawa and H. Ebisu, J. Phys. Soc. Jpn. 46, 1571 (1979).

$$\mathcal{H}(CC) = A_2^0 O_2^0 + A_4^0 O_4^0 + A_4^3 O_4^3 + A_6^0 O_6^0 + A_6^3 O_6^3 + A_6^6 O_6^6 .$$

Hence it turns out that the first two models¹² are subsequent approximations to the most general NCC model,⁸ while model III is rather unphysical since it assumes a modified cubic crystal field.

Finally, we note that in several papers discussed here the ZFS parameters are inappropriately called the crystal-field parameters. This contributes to the confusion between the spin Hamiltonian and the crystal-field Hamiltonian, which has been discussed at length in the recent review.⁵

ACKNOWLEDGMENTS

The author would like to thank Dr. R. Bramley for helpful discussions and a critical reading of the manuscript. Helpful correspondence with Dr. M. Arakawa and Dr. H. Takeuchi is gratefully acknowledged.

- ²⁴H. Takeuchi and M. Arakawa, J. Phys. Soc. Jpn. **53**, 376 (1984).
- ²⁵M. Arakawa, J. Phys. Soc. Jpn. 46, 1245 (1979).
- ²⁶P. Studzinski and J.-M. Spaeth, Phys. Status Solid B **136**, 735 (1986).
- ²⁷J. J. Krebs and R. K. Jeck, Phys. Rev. B 5, 3499 (1972).
- ²⁸H. Murrieta S., F. J. Lopez, T. Rubio O., and G. Aguilar S., J. Phys. Soc. Jpn. **49**, 499 (1980).
- ²⁹T. P. P. Hall, W. Hayes, R. W. H. Stevenson, and J. Wilkens, J. Chem. Phys. **38**, 1977 (1963).
- ³⁰R. K. Jeck and J. J. Krebs, Phys. Rev. B 5, 1677 (1972).
- ³¹J. J. Rousseau, M. Rousseau, and J. C. Fayet, Phys. Status Solidi 73, 625 (1976).
- ³²J. Rubio O., H. Murrieta S., and G. Aguilar S., J. Chem. Phys. 71, 4112 (1979).
- ³³R. C. DuVarney, J. R. Niklas, and J. M. Spaeth, Phys. Status Solid B 103, 329 (1981).
- ³⁴F. A. Modine, E. Sonder, W. P. Unruh, C. B. Finch, and R. D. Westbrook, Phys. Rev. B 10, 1623 (1974).
- ³⁵D. C. Stjern, R. C. DuVarney, and W. P. Unruh, Phys. Rev. B 10, 1044 (1974).
- ³⁶J. Y. Buzare and J. C. Fayet, Phys. Status Solid B **74**, 393 (1976).
- ³⁷J. Y. Buzare and J. C. Fayet, Solid State Commun. 21, 1097 (1977).
- ³⁸H. Murrieta S., J. Rubio O., and G. Aguilar S., Phys. Rev. B 19, 5516 (1979).
- ³⁹M. Arakawa, J. Phys. Soc. Jpn. 47, 523 (1979).
- ⁴⁰J. Y. Buzare, J. C. Fayet, W. Berlinger, and K. A. Müller, Phys. Rev. Lett. **42**, 465 (1979).
- ⁴¹M. Fayet-Bonnel, J. Y. Buzare, and J. C. Fayet, Solid State Commun. 38, 37 (1981).
- ⁴²J. Y. Buzare, M. Fayet-Bonnel, and J. C. Fayet, J. Phys. C 14, 67 (1981), and references therein.
- ⁴³M. Arakawa and H. Ebisu, J. Phys. Soc. Jpn. 51, 191 (1982).
- ⁴⁴M. Arakawa, H. Aoki, H. Takeuchi, T. Yosida, and K. Horai, J. Phys. Soc. Jpn. 51, 2459 (1982).

- ⁴⁵M. Arakawa, H. Ebisu, and H. Takeuchi, J. Phys. Soc. Jpn. 54, 3577 (1985).
- ⁴⁶J. Y. Buzare, J. J. Rousseaum, and J. C. Fayet, J. Phys. (Paris) Lett. 38, L445 (1977).
- ⁴⁷J. Y. Buzare, J. C. Fayet, W. Berlinger, and K. A. Müller, Phys. Rev. Lett. **42**, 465 (1979).
- ⁴⁸J. C. Fayet, Helv. Phys. Acta 58, 76 (1985).
- ⁴⁹M. Arakawa, H. Ebisu, T. Yosida, and K. Horai, J. Phys. Soc. Jpn. 46, 1483 (1979).
- ⁵⁰S. R. P. Smith and T. Cole, J. Chem. Phys. 52, 1286 (1970).
- ⁵¹M. V. Vlasova, N. G. Kakazei, and L. A. Sorin, Kristallografiya **19**, 395 (1974) [Sov. Phys.—Crystallogr. **19**, 243 (1974)].
- ⁵²E. J. Bijvank and H. W. den Hartog, Phys. Rev. B 12, 4646 (1975).
- ⁵³A. N. Lefferts, E. J. Bijvank, and H. W. den Hartog, Phys. Rev. B 17, 4214 (1978).
- ⁵⁴E. J. Bijvank, A. G. Zandbergen-Beishuizen, and H. W. den Hartog, Solid State Commun. **32**, 239 (1979).
- ⁵⁵W. Low, Phys. Rev. 109, 265 (1958).
- ⁵⁶W. Low and R. S. Rubins, Phys. Lett. 1, 316 (1962).
- ⁵⁷A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance of Transition Ions* (Oxford University Press, Oxford, 1970), p. 336.
- ⁵⁸H. A. Buckmaster and Y. H. Shing, Phys. Status Solidi A 12, 325 (1972).
- ⁵⁹S. K. Misra and G. C. Upreti, J. Magn. Reson. Rev. 10, 333 (1986).
- ⁶⁰C. Rudowicz and R. Bramley, J. Chem. Phys. 83, 5192 (1985).
- ⁶¹For a review, see N. Narayana, V. S. Sivasankar, and S. Radhakrishna, Phys. Status Solidi B **105**, 11 (1981).
- ⁶²H. Murrieta S., G. Aquilar S., J. Rubio O., and E. Muñoz P., J. Chem. Phys. **61**, 2987 (1974).
- ⁶³J. Rubio O. and W. K. Cory, J. Chem. Phys. **69**, 4792 (1978).
- ⁶⁴U. Oseguera V., H. Murrietta S., C. Medrano P., J. Rubio O., and C. Ruiz-Mejia, J. Chem. Phys. 73, 1132 (1980).

- ⁶⁵A. Edgar and E. Siegel, J. Chem. Phys. 76, 5657 (1982).
- ⁶⁶M. Ikeya, Phys. Status Solidi B 111, 525 (1982).
- ⁶⁷M. T. Barriuso and M. Moreno, Phys. Rev. B 29, 3623 (1984).
- ⁶⁸G. D. Watkins, Phys. Rev. 113, 79 (1959).
- ⁶⁹V. M. Maevskii and E. N. Kalabukhova, Fiz. Tverd. Tela (Leningrad) 15, 1622 (1973) [Sov. Phys.—Solid State 15, 1090 (1973)].
- ⁷⁰J. Rubio O., H. Murrieta S., E. Muñoz P., J. Boldú O., and G. Aquilar S., J. Chem. Phys. **63**, 4222 (1975).
- ⁷¹D. J. Newman, Aust. J. Phys. 29, 263 (1976).
- ⁷²J.-M. Moret and R. Lacroix, Helv. Phys. Acta **49**, 313 (1976).
- ⁷³J. Boldú O., E. Muñoz P., W. K. Cory, and J. Rubio O., J. Chem. Phys. 67, 2391 (1977).
- ⁷⁴J. Rubio O., C. Rúiz-Mejia, U. Oseguera V., and H. Murrieta S., J. Chem. Phys. **73**, 53 (1980).
- ⁷⁵K. Kawano, R. Nakata, and M. Sumita, Rep. Univ. Electro-Commun. **30**, 179 (1980).
- ⁷⁶K. Kawano, R. Nakata, and M. Sumita, J. Phys. Soc. Jpn. 52, 1402 (1983).
- ⁷⁷R. Rohrig, Phys. Lett. 16, 20 (1965).
- ⁷⁸S. D. Pandey, J. Chem. Phys. 47, 309 (1967).
- ⁷⁹For a review, see B. Henderson and J. E. Wertz, Adv. Phys. 17, 749 (1968).
- ⁸⁰D. J. Newman and E. Siegel, J. Phys. C 9, 4285 (1976).
- ⁸¹E. Siegel and K. A. Müller, Phys. Rev. B 19, 109 (1979).
- ⁸²K. A. Müller and W. Berlinger, J. Phys. C 16, 6861 (1983).
- ⁸³A. P. Pechenyi, M. D. Glinchuk, and V. N. Bliznyuk, Fiz. Tverd. Tela (Leningrad) 23, 2121 (1981) [Sov. Phys.—Solid State 23, 1237 (1981)].
- ⁸⁴K. A. Müller, W. Berlinger, and J. Albers, Phys. Rev. B 32, 5837 (1985).
- ⁸⁵K. A. Müller and Th. von Waldkrich, in Local Properties at Phase Transitions, Proceedings of the International School of Physics "Enrico Fermi," Course LIX, Varenna, 1973, edited by K. A. Müller and A. Rigamonti (North-Holland, Amsterdam, 1976).