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Difference in total energy between bcc anti fcc iron

15 FEBRUARY 1988-I

H. J. F. Jansen and S. S. Peng
Department of Physics, Oregon State University, Corvallis, Oregon 9733l

(Received 13 April 1987)

Motivated by discrepancies in recent calculations of the stability of bcc versus fcc iron, based on
density-functional theory, we have investigated the eff'ects of various approximations on the total
energy of bcc and fcc iron. %e find that in order to discuss phase stability on a 1 mky/atom scale
a careful analysis of the integrations in the Brillouin zone is necessary. A mu5n-tin approxima-
tion to the shape of the potential and charge density induces errors of about 4 mRy/atom for the
difFerence between fcc and bcc iron, and indicates that the e8'ects of the atomic-sphere approxima-
tions must be investigated more thoroughly. Employing diferent approximations to the local-
density form of the exchange and correlation energy yields changes in the relative values of the to-
tal energy of 2 mRy/atom, and hence this approximation also is important when total-energy
differences are small.

Practical implementations of density-functional theory
require some kind of approximation for the functional
describing exchange and correlation (and part of the ki-
netic energy). At present most calculational schemes
rely on a local approximation, in which the exchange-
correlation energy at a given point in space depends only
on the value of the charge and spin density at that same
point. These calculations have shown a rather remark-
able ability to reproduce experimental results in discus-
sions of stability and phase transitions. Such discussions
raise the important question of where these local approx-
imations break down. One recent calculation for iron'
shows that the local spin-density approximation yields
the prediction that for iron the fcc phase is the most
stable, in convict with experiment. This conclusion has
been contradicted, however, by other calculations in
which bcc ferromagnetic iron is predicted to be more
stable, albeit with a very small energy difference. Reso-
lution of these conflicting results requires discussion of
the numerical precision of the computational procedures
involved. These calculations differ in two ways: they
use difkrent spin-polarized forms of the 1ocal-density
exchange-correlation potential, and the calculations in
Ref. 2 make a sphericalization assumption not made in
Ref. 1. In this Brief Report we present results of de-
tailed calculations which explain the numerical
difFerences, verify the results of Ref. 1, and support the
conclusion that the local spin-density approximation
indeed gives incorrect results when applied to iron.

Our computational procedures are basically the same
as those used in Ref. 1, but the programs are developed
independently. Our results agree with the results given
in Ref. 1 for the equilibrium lattice constant and bulk
modules of bcc iron using the parametrization of Vosko,
Wilk, and Nusair (VWN) of the exchange and correla-
tion potential. %e obtain an absolute value of the total
energy which differs by only 1 mRy/atom from Ref. 1.
In this paper we use the von Barth —Hedin (vBH) form
of the exchange-correlation potential as parametrized by
Janak. This change in the exchange-correlation poten-

tial reduces the bcc-fcc difference in the equilibrium
va1ue of the total energy from 6+1 mRy/atom to 4+1
mRy/atom, with fcc iron still being more stable. Hence
the effect of the choice of the approximation to the ex-
change and correlation potential is about 2 mRy/atom
and cannot be ignored in studies where one discusses
phase transitions between crystal structures with energy
differences of less than 1 mRy/atom for a large range of
volumes.

The main problem in electronic structure calculations
is the integration in reciprocal space. The convergence
of any method of integration in k space is determined by
the Fermi surface of the material being studied, and
analytical error behavior only holds when the density of
sampling points in the Brillouin zone is suSciently large
and describes the Fermi surface very well. %'e employ
the linear tetrahedron method, in which the Brillouin
zone is divided into small tetrahedra. Inside each
tetrahedron energy eigenvalues are linearly interpolated
between the four corner points. The dominant error in
this scheme is due to a misrepresentation of the Fermi
surface. It is easy to show that one introduces an error
proportional to the inverse fourth power of the size of a
small tetrahedron for each tetrahedron which intersects
the Fermi surface. An integration over the whole Bril-
louin zone then leads to an error proportional to the in-
verse square of the size of a small tetrahedron, or pro-
portional to the number of points in the Brillouin zone
to the power ——', . This asymptotic behavior is observed
in previous calculations.

In Fig. 1 we plot the value of the di6'erence in total
energy from a calculation with 210 points versus the
number of points in the Brillouin zone to the power —

—,',
which should give a straight line in the asymptotic re-
gion. This is approximated for more than 100 points in
the irreducible wedge of the Brillouin zone. Because of
the thermal broadening used in the special k-point tech-
nique of Ref. 1 a slightly smaller number of points is
probably needed there, although one should investigate
the effect of the thermal broadening on a mRy/atom
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TABLE I. Total energy changes for difFerent shape approxi-
mations to the charge density and the potential. Values are in

mRy/atom and give the difFerence with respect to a full poten-
tial calculation.
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FIG. 1. Total energy (with respect to a 210-k-point calcula-
tion) as a function of the number of k points to the power —

3

for bcc paramagnetic (O), bcc ferromagnetic (Cl), and fcc
paramagnetic (6 ).

sca]e. From Fig. 1 we predict that our calculations for
210 k points still have absolute errors of about
mRy/atom. The relative errors between bcc paramag-
netic, bcc ferromagnetic, and fcc paramagnetic are less
than 1 mRy/atom, however, and therefore the k-space
integration is not responsible for the discrepancies in to-
tal energy of fcc and bcc iron as found in Refs. 1 and 2.

Finally, we have investigated the changes in total en-

ergy due to approximations to the shape of the potential
and the charge density. %'e defined a sphere of radius
2 25 a u. around each iron atom, and inside these
spheres we expand the potential and charge density in
spherical harmonics, outside in plane waves. Each of
these expansion can be truncated to the first term only.
The so-called warped-mu5n-tin approximation takes a
spherical charge density and potential inside the spheres,
while the muf6n-tin approximation in addition takes a
constant value of these quantities outside the spheres.
The self-consistent results of these two approximations
are shown in Table I, where we present the increase in
total energy as compared to a full potential calculation.
These values pertain to 30-k-point calculations, but they
are representative for the numerical errors because at
this level of convergence the errors due to diferent ap-
proximations are almost independent.

%e see that in these highly symmetric crystal struc-
tures the nonspherical terms inside the muon-tin sphere
make only a small contribution to the total energy. This
is due to the fact that the 6rst I value which contributes
is l=4. Relative values between bcc and fcc change by
0.7 and 1.7 mRy/atom. A much larger contribution, in
the opposite direction, is due to the interstitial terms.
They have a similar effect for ferromagnetic and
paramagnetic bcc iron, but a much stronger effect for fcc
iron. It is reassuring to find that the shape approxirna-

tions to the potential and change density do not severely
aSect difkrences between paramagnetic and ferromag-
netic bcc iron. Accordingly, the difference in equilibri-
um total energy between these two states is 23
mRy/atom in Ref. 2, 21 mRy/atom in Ref. 1, and also
21 mRy/atom in our previous work. Therefore, we
only compare our bcc results with paramagnetic fcc
iron, because we expect that the differences between

paramagnetic and ferromagnetic fcc iron will be very
similar to the results of Ref. 1. These conclusions are, of
course, not general and are only valid here because the
interstitial charge density in iron is mainly due to the s-p
electrons, which are only slightly antipolarized in the
magnetic phases.

The interstitial charge densities in bcc and fcc iron are
difFerent due to the change in local environment (8-fold
versus 12-fold coordination). The effect of the warping
terms in the interstitial on the self-consistent energy is
found by taking the dift'erence of the muSn-tin and
warped-muSn-tin columns in Table I. For bcc iron this
yields values of 8.0 and 7.2 mRy/atom, while for fcc
iron we obtain the much larger value of 13.0 mRy/atom.
If we assume a numerical uncertainty of 1 mRy/atom
for the relative value of the energies, which is reasonable
in view of our findings pertaining to the k-point conver-
gence, we see that the fult potential calculation puts fcc
iron 6+1 mRy/atom below bcc ferromagnetic iron in the
VWN approximation' and 4+1 mRy/atom in the vBH
approximation. Our warped-muIn-tin calculation then
changes this difference to 221 mRy/atom (VWN) and
0+1 mRy/atom (vBH), essentially reproducing the re-
sults of Ref. 2. This is consistent with our limited ex-
perience of comparing total energies calculated by our
full potential method and a linear muIn-tin-orbital
method in the atomic-sphere approximation, where for
the 31 transition metals the latter always seems to put
the bcc structure slightly lower in energy than the fcc
structure as compared to the full potential method. The
difference in energy depends on the size of the muSn-tin
radius. In our full potential program we cannot evaluate
the efkct of overlapping muf6n-tin spheres, and hence
we have no way of determining the el'ect of this approxi-
mation on the total energy. This is an important ques-
tion, though, in cases where one is discussing structural
energy difFerences on the order of 1 mRy/atom. There-
fore this point needs further investigation.

In this Brief Report we show that the muSn-tin ap-
proximation has a non-negligible e8'ect on the total-
energy difference between diff'erent crystal structures of
the same material and when the approximation is avoid-
ed, the fcc phase of iron is lower in energy than the bcc
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phase. The sphericalization assumption is thus shown to
have a more drastic effect on the fcc energies than on
the bcc energies. Apparently in this sense we conclude
that in density-functional theory the iron atoms in the
bcc structure are more spherical than in the fcc struc-
ture. This conclusion also points to a cause of the
failure of the local-density approximation. At a given
time, a specific iron atom will be in one of its multiplet
states and certainly nonspherical. The neighboring
atoms will then experience a more distorted crystal field

and adjust their electronic structure accordingly. %e
have concluded that the atoms in bcc iron are more
spherical. This indicates that for bcc iron more multi-
plet states are included in our ground-state density. The
diN'erence in energy between the lowest multiplet state
and the average as found in our calculation is therefore
larger in bcc iron. Allowing the atoms to be in their
lowest multiplet state will then lower the energy of fer-
romagnetic bcc iron more than that of fcc iron and wi11

stabilize bcc iron.
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