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Simulation of the structure of amorphous silicon dioxide
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Computer models of amorphous silicon dioxide have been generated by systematic procedures.
The models are all stoichiometric, perfectly coordinated and periodic, and composed of Si04
tetrahedra sharing corners to form a random network. Starting from various random arrange-
ments, each example is subjected to a series of modifications of its connectivity which reduce its
potential energy under a valence-force type of potential function. Several examples have been con-
structed for each of four choices of starting point and method of connectivity modification. The
number of silicon atoms in the repeating unit has been varied from 30 to 108, with twice as many

oxygen atoms. The force constants have been chosen by comparison with experiment of the com-
puted density and elastic moduli. The calculated neutron scattering of many of the examples is in

excellent agreement with recent experiments of high precision. However, examples containing
rings of three or four tetrahedra show scattering at small momentum transfer which deviates in-

creasingly from experiment as the numbers of these rings increase.

I. INTRODUCTION

Amorphous silica is, from several viewpoints, so im-
portant as to justify the many attempts that have been
made to account for its properties at a fundamental lev-
el. Glassy Si02 is invariably obtained on cooling from
the melt, and the product is well-characterized provided
precautions are taken, especially to exclude water. Mix-
tures of Si02 with other oxides are the most common
commercial glasses, and the oxidation of silicon yields
amorphous insulating films that now dominate the
semiconducting-device industry. Although the uses of
these glasses can hardly be said to have been retarded by
our ignorance of their atomic structures„ it is true that
the atomic structure of amorphous silica (a-Si62) is still
controversial. The reason f'or this situation, which
would not have persisted this long for a crystalline ma-
terial of similar complexity, stems from the nature of
noncrystalline solids. The concept of "atomic structure"
ordinarily means specification of the relative positions of
the constituent atoms to arbitrarily large distances, in-
formation which can be derived in principle from
difFraction measurements on crystals. Such a measure-
ment always yields only a pair-distribution function,
which, combined with the periodicity condition, is
sufhcient to define the atomic structure in the usual
sense for a crystal. For a glass, difFraction data alone
are insufticient to define the structure, even if only a sin-
gle element is present, and if there are two or more com-
ponents, as in Si02, several independent difFraction mea-
surements are needed to determine even the pair-
distribution functions.

%'e have recalled these well-known facts in order to
lay the groundwork for our method of attacking the
structural problem, which is to test our structural mod-
els primarily by comparison of their calculated structure

factors directly with difFraction data. %e regard this
procedure as subject to fe~er untestable assumptions
than the customary comparison of calculated and "ob-
served" real-space radial distribution functions (RDFs),
and equally as precise computationally. However, be-
cause features of the structure factor are not uniquely as-
sociated with particular structural features, we have also
made use of calculated RDFs for secondary compar-
isons.

Earlier studies of this kind have largely been confined
to hand-built models. To draw accurate conclusions
from such models, it is necessary at least to simulate
them by computer and to determine the atomic positions
by relaxation under a well-defined potential. This has
been done by Gaskell and Tarrant' for the Hell-Dean
model and by Evans, Gaskell, and Nex for four models
of Si02 derived from previously constructed models of
amorphous silicon. However, as remarked by these au-
thors, the results for these or any other finite model are
subject to serious surface efFects which are dificult to es-
timate. %e have adopted the accepted remedy for this
problem, which is to use periodic boundary conditions.
The absence of free surfaces presumably reduces the size
efFects greatly, and upper bounds to the residual efFects
can perhaps be estimated from the variations of proper-
ties as the size of the repeating unit is changed by a large
factor.

II. CONSTRUCTION OF MODELS

%e have assumed, with the majority of workers in the
field, that a-SiOz is made up of Si04 tetrahedra sharing
corners, the whole constituting a continuous (nearly)
random network. Then the Si atoms are perfectly
fourfold-coordinated to oxygen and the 0 atoms
twofold-coordinated to Si. As others have noted, the Si
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atoms themselves form a four-coordinated random net-
work. Therefore it is possible to generate s topologically
acceptable model of a-Si02 from s model of amorphous
silicon (a-Si) simply by inserting an oxygen atom be-
tween every pair of Si atoms. A11 of our models have be-
gun as perfectly four-coordinated nets of Si atoms, but
have followed diferent paths in their later development.
In all cases, the Si networks made by any qussirandom
process are not acceptable as realistic models of a-Si, nor
are they acceptable as models of a-Si02 after conversion.
Hence it is always necessary to carry out a lengthy series
of modifications of the network connectivity which im-
prove the realism of the model, mainly by reducing the
deviations of interatomic distances snd interbond angles
from their ideal values (i.e., those in the crystalline
phases). The choice arises at once of whether to under-
take this process before or after conversion to SiOz. If
the former, the result would be an improved model of a-
Si, which could then be converted to a-SiOz, if the latter,
the result would be directly an improved model of a-
Si02. Our first attempts were along the second path, be-
cause we were influenced by the following considera-
tions. In a-Si, s ring of fewer than five atoms forces
bond angles deviating at least 49' (for a three-membered
ring) or 19' (for a four-membered ring) from the
tetrahedral angle, much more than the observed value of
about 11'. Hence such rings are not likely to be found
frequently in a realistic model of a-Si. On the other
hand, insertion of 0 atoms into these small rings pro-
duces rings of six or eight atoms which can exist in
configurations that are not highly strained, and might
well be present in a-Si02. In other words, we did not ex-
pect to succeed in modeling a-Si0z by trying first to
model a-Si. As it turned out, experience hss proven oth-
erwise.

The prescription for our first attempts is the following.
1. Place the desired number of Si atoms at random po-

sitions in a cubical box.
2. Connect each atom in turn to four of its neighbors,

choosing from the nearest remaining atoms that have
not yet been fully bonded. Periodic boundary conditions
are maintained, and rings of any size above three are al-
lowed; models containing three-membered rings tended
to consist of tightly interconnected islands of these rings
with only s few external bonds to other islands.

3. Insert an oxygen atom between each pair of Si
atoms. A ring of a certain number of Si atoms becomes
a ring of the same number of tetrahedra.

4. Move the atoms to positions that minimize sn as-
surned potential energy function and allow the box edge
also to take the value that minimizes the potential ener-

gy (i.e., that produces the natural density of the model).
5. Change the connections among some subset of

atoms, maintaining periodic boundary conditions and
tetrahedral coordination, but putting no restrictions on
the ring size.

6. Repeat step 4.
7. Compare the tentative new potential energy and

density with the previous values. If both have de-
creased, keep the new configuration and repeat step 5; if
either has increased, keep the old configuration and re-

peat step 5 with some other subset.
When this procedure is followed, changes in the

configurstion become progressively rarer, and continuing
the process becomes unprofitable at some point. The
model must then be either discarded as unrealistic, or re-
tained for further examination, if it meets certain stan-
dards which we describe later.

As mentioned above, we have found that acceptable
models of a-Si02 can be produced, contrary to our preju-
dices, by following a similar procedure except that oxy-
gen atoms are inserted only as the final step, rather than
at the outset. In a few cases, the starting network was
made from atoms arranged on the sites of a bcc crystal,
and rings of fewer than five Si atoms were excluded
throughout; these models were the basis of some earlier
studies of a-Si.

When the model was treated as a-Si until the very
end, its density was fixed at the density of crystalline Si,
instead of being allowed to assume its natural value at
every stage. A new configuration w'as accordingly re-
quired only to have a lower potential energy, but not to
have also a lower natural density than its predecessor.
Since the natural density wss always higher than that of
the crystal, changes which lowered the potential energy
in the expanded state would probably also have lowered
the natural density, so this procedure is very like the
other in this respect, snd is computationally faster.

III. POTENTIAI. FUNCTION

For models of a-Si we used the Kesting potential
with the ratio of force constants P/a=0. 3, as found by
Keating to best fit the elastic rnoduli of crystalline Si.
For a-Si02, we have used a simple extension of the Keat-
ing potential, namely,

V =a g (r 2s o —a ) +2~ X (ros" rosi' —a costa)

+)'g( oo —&')'. (1)

In this expression, the number of terms in the first sum
is equal to the number of Si—0 bonds (4Ns;), the second
sum has N terms, and the third sum has 3%0 terms,
where Ns; and No are the numbers of Si atoms and 0
atoms, respectively; %0 =2Ns;. The Si—0 bond length
a =1.61 A was taken from experiment, ' 6 =a &8/3, and
the angle (()0 was assumed to be 142.5'. The computed
properties of all examples given in what follows are
those in static equilibrium, as judged by the constancy of
each of the terms in V after many steps of relaxation. In
each step, every atom in turn is moved a distance 5r
whose x component is proportional to
—(BV/Bx)/(8 V/Bx )„with similar formulas for y and
z. The equilibrium atomic positions of any example de-
pend only on the ratios P/a and y/a, and are not very
sensitive to these ratios, so that s reasonable approxima-
tion suSces during the process of model construction.
Narrower limits for these ratios can be found only after
completion of the construction.

It wss implied in the preceding section that the crud-
est test of a model is that its density should be close to
the observed value, 2.23 g cm . Those examples whose
properties are described in the fo11owing sections gen-
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erally had densities not more than 4% greater, and
several actually reached slightly lower densities than ex-
perimental. Note that the computed density is subject to
three times the uncertainty in the assumed bond length
Q.

Another useful property which depends only on the
ratios (p/y ) and (y ja ) is the ratio of the shear modulus

IM to the bulk modulus k; this has the value 0.85. For a
given model, k is approximately proportional to
(t) V/t)e ) near the minimum of V, where e is the frac-
tional change in box length; this is evaluated automati-
cally in ending the natural density. Because the models
are anisotropic, various values of shear modulus are
found, depending on the shear mode. We chose for sim-

plicity to perform the three deformations in which one
box edge is increased and another decreased equally, and
to average the results. The "bulk modulus" is also
aft'ected by the anisotropy: strictly we should have al-
lowed the repeating unit to become the parallelepiped
whose size and shape result when all six components of
the applied stress vanish, and then to apply equal
stresses, i.e., a uniform pressure, along each axis. We
judged this to be an unwarranted refinement, since the
necessary deformations would have been only 1-2 %.

We stated in the Introduction that we rely primarily
on difFraction measurements for validation of our mod-
els. Fortunately, a-Si02 has recently been the subject of
a neutron scattering study of great accuracy and range.
We also had access somewhat earlier to similar results
obtained in this laboratory„and have used these in the
graphs shown in the next section. The two sets of data
are in remarkable agreement (see Fig. 1; we show here
and later the "interference function, " q[S(q) —1], first
because this is the quantity whose Fourier transform is
the RDF, and second, because all deviations of this func-
tion from zero are due to structural order). Johnson

et a/. have derived from their data, particularly at
larger momentum transfer, rms values of the variations
in the two smallest interatomic distances, namely, 3.1%
for the Si—0 bond length, and 3.4% for the 0—0 dis-
tance. These values together with the elastic modulus
ratio have been used to fix tolerable limits for (p/a) and

(y /u ) for each example, and we have then calculated the
neutron scattering structure factor for a range of
momentum transfer for various pairs p/a, y/n within
these limits.

IU. STATIC PROPERTIES OF THE MODELS

A. Models treated as SiO, from the beginning (type I)

Only three models made this way were judged to have
satisfactory densities and variations in interatomic dis-
tances; their properties are summarized in Table I, and
their neutron scattering structure factors are shown in

Figs. 2(a) —2(c), along with the observeds factor. The
values of p/u and y ju [Eq. (1)] have been taken to be
0.4 and 0.3, respectively, for all three examples, although
somewhat better choices might have been made in indi-
vidual cases.

Inspection of Fig. 2 shows that, except at the smallest
values of momentum transfer q, the calculated structure
factors reproduce the observed values very well, both in
magnitude and in positions of maxima and minima.
However, all three examples exhibit very little intensity
at the position of the first observed peak, but large maxi-
ma at a small value of q where the real material does not
scatter at all. The corresponding real-space distance,
2trjq, while large, is not of course outside the repeat dis-
tance of even the 30-atom models. The associated in-
teratomic correlation must be an artifact of the method
of model construction whose origins are presently un-

clear; we return to this question later.
Although many attempts were made to generate other

examples of the same sizes or larger, none was
successful —the densities achieved were always unac-
ceptably high and the distance distortions too large.
Figure 2(d) includes S(q) for the best model with 96 Si
atoms. The calculation was not carried further in q be-
cause of the poor behavior at small q.

B. Models treated as a-Si from the beginning,
and containing no small rings {type II)

~1
~y

~y

n
Pl

l6.0

FIG. 1. Comparison of experimental interference functions,
q[S(q) —1], data from Ref. 5 (extending to q =0), and from
Ref. 8.

The static properties of these examples are shown in
Table II, p/a and y/a having values that gave the
"best" overall 6t to the density and modulus ratio in
each case. These choices were necessarily subjective, on
the one hand because there is no obvious limit on what
deviations from the experimental values are tolerable,
and on the other hand, because the anisotropy of the
models introduces uncertainties of 15—20% in the aver-
age modulus ratio. The examples shown dift'ered consid-
erably in their realism as models of a-Si. The calculated
structure factors of 5 of these examples are exhibited in
Fig. 3. Note that there is no scattering at smaller q than
the first observed peak.
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Si

TABLE I. Models treated as quartz from start.

Modulus
ratio

Cell
edge

Dist.
dev. (%)

Si—0 0—0
30
30
48

11
6

14

0.83
0.965
0.77

0.975 20
0.975 59
1.00914

2.6
3.0
3.9

3.1
3.0
3.9

Observed
3.1 3.4

To give some idea of the sensitivity of the density and
modulus ratio to the force constant ratios, we show a
selection of these data in Table III. A more complete
survey of the (P, y) space did not seem to be worthwhile.

C. Models treated as a-Si from the beginning,

but containing small rings (types Ill and IV)

The absence of any scattering by the models of type II
at values of momentum transfer below the first observed
maximum, in contrast to that by the models of type I,
suggested strongly that the numbers of three- and four-
membered rings (three or four tetrahedra, thus three or
four Si and 0 each) were features whose influences need-
ed further examination. Models of a-Si were constructed
therefore in which the rings were no longer required to
be larger than five atoms. These models were converted
to a-SiOz when their asymptotic structures seemed near-

ly to have been attained, even though their angular dis-
tortions were usually much larger than would have been
acceptable if the purpose had been to model a-Si. The

resultant models of a-SiOz (type III), whose static prop-
erties are shown in Table IV, were quite realistic on the
whole, and their structure factors (Figs. 4 and 5) were
generally free of scattering at small q. The starting point
in all cases was a 54-atom body-centered cube of Si, with
four bonds chosen randomly from first and second
neighbors, as in type II. Although the formation of
three-membered rings was permitted, the numbers of
these rapidly diminished to zero, so they are absent in all
of these examples. To illustrate the efFects of their pres-
ence, Fig. 6 presents the calculated neutron scattering of
a single example at a series of stages of its development;
it is evident that the scattering generally decreases at the
lowest values of q, while rising at the position of the first
observed maximum as the number of three-membered
rings falls from seven to zero.

The products of the preceding e8orts were encourag-
ing enough to warrant attempts to generate larger mod-
els. In these, the a-Si atoms were initially placed at ran-
dom in a cubical box, and the density was kept at the
density of crystalline silicon subsequently. In earlier

Ib)

GO 40 &0 1RO 180 SLO SLO

q (A-&)

FIG. 2. Interference function calculated for four examples treated as a-Si0z from the start (type I). The numbers of Si atoms are
(a) and (b) 30, (c) 48, (d) 96. Points, simulation; curves, experimental (Ref. 8).
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no small rings, 54 Si atoms.TABLE II. Models wi

No.

Rings
Force

constants
r.

Modulus
Dist.

dev. (%)

0—O

1

2
3
4
5

6

29
31
36
30
29
27

35
24
23
27
35
38

23
19
16
30
22
26

1

6
0
0
0
2

0.5
0.5
0.5
0.5
0.5
0.5

0.3
0.3
0.3
0.2
0.4
0.3

0.93
0.89
0.89
0.83
0.91
0.74

0.981 15
0.992 35
0.993 25
0.973 62
0.989 12
0.984 83

1.7
2.0
2. 1

1.8
1.8
1.8

2.8
3.0
3.0
4.1

2.4
2.5

Observed
(1.0) 3.4
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m les 1-5.t s f«examp11 s,
.
zc and mo u usforce constants on ce

o

TABLE III. EA'ect of vary1ng

No. 3 No.2 No. 5

0.3
0.4
0.5
0.5
0.5

0.4
0.3
0.2
0.3
0.4

Cell
edge

0.9717
0.9734
0.9842
0.9812
0.9782

1.33
1.35
0.75
0.93
1.05

0.9901

0.9924

Cell
CdgC

0.9877
0.9910

0.9933
0.9947

1.14
0.95

0.89
0.73

Cell
edge

0.9647
0.9736

0.9630 1.20

Cell
CdgC

0.9834
0.9890

0.9892

1.16
0.89

0.91

rin s, 54 Si atoms.1 with four-membered rings,TABLE IV. Models mi

Rings Force
constants

Modulus
ratio

Cell
CdgC

Dist.
dev. (%)

Si—0 0—0
1

2
3

5

3

6
6
5

29
22
28
25
27

27
26
13
22
25

0
0
2

1

1

0.5
0.5
0.5
0.5
0.4

0.3
0.3
0.3
0.3
0.3

0.89
0.90
0.84
0,89
0.73

0.991 14
1.007 35
1.01163
0.992 30
1.008 32

1.9
2.0
1.5
2.0
1.4

3.0
3.1

2.2
3.0
2.2

0.85
Observed

(1.0) 3.1 34

I
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I
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No.
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Modulus
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Dist.
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Si—0 0—0
11
18

12
13
15

56
54
54
52
57
53

61
55
62
57
62
66

40
40
58
53
30
37

23
13
20
21
24
11

3
11

1

9
3

0.82
0.85
0.96
0.95
0.90
0.81

0.998 10
1.003 28
0.996 69
0.998 65
1.006 12
1.002 23

1.8
1.9
1.4
1.6
1.7
1.9

2.7
2.9
2.0
2.6
2.8
2.7

0.85
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FIG. 9. Radial distribution functions of two examples with maximal difference in numbers of four-membered rings. Upper
figures, nine rings (no. 3 in Table V); lower figures, 18 rings (no. 2 in Table V). Horizontal lines are drawn at g =1.0 for each set.

should exist between a scattering feature at small q,
therefore large distance, and a structural element at
moderate distance, at any rate smaller than distances
typical of larger rings. If such a correlation exists, it
ought to be apparent in the real-space radial distribution
function, g(r), at distances near 2m/0. 6, about 10 A.
Unfortunately, this is a region that is hard to examine
with models of the present size. In sampling g (r), when
r exceeds half the size of the unit cell, d, more and more
pairs are encountered whose actual distance is less than
d/2 because of the periodic boundary conditions. The
sampling must then be restricted to volume elements
bounded by only parts of the full spherical surface, and
this part vanishes exactly at —,'&3d. The statistical error
in g thus increases for d/2&r (—,'&3d. Reciprocally,
the structure factor cannot be computed for q &2n/d,
ar.d its statistical error is large for q only slightly
greater; i.e., only a few Bragg rejections contribute to
S(q) near this lower limit.

%e have nevertheless computed the three functions
Qsjsj p gsjQ, and goo for two examples containing 108 Si
atoms, denoted by nos. 2 and 3 in Table V; these exam-
ples have the fewest and the most four-membered rings
of their class, and should therefore differ most in g. The
distance extended to d/&2 in r, at which distance only
about 3% of the pairs remained unsampled. The results,
in Fig. 9, show, if anything, less structure at large r for
the example having the larger scattering at small q, and
are of no help in clarifying the observations. Moreover,
the maximum in S(q) appears in all three of the partial
structure factors (not shown here), so that the structural
correlation responsible is common to all types of pairs,
as might be expected at an interatomic separation that is
much larger than the Si—0 bond length.

Ibj
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FIG. 10. Intertetrahedral angle distribution. Solid line,
Mozzi and %'arren (Ref. 9}; dashed line„Dupree and Pettifer
(Ref. 10). Points, simulation: (a) 48 Si, Table I, no. 3; (b) 30 Si,
Table I, no. 2; (c) 54 Si, Table IV, no. 4; (d) 54 Si, Table II, no.
3; (e) 108 Si, Table V, no. 2; and (f) 108 Si, Table V, no. 3.
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VII. INTKRTKTRAHKDRAL ANGLE
AND MHKDRAL ANGLE DIS'MIBUTIQNS ib) ,'C)

The angles between the O—Si bonds at a common
oxygen atom should tend, according to the second term
in Eq. (1), to be close to Po. In actuality, these angles
are broadly distributed, both in the real material and in
our models. Representative values are shown in Fig. 10,
for comparison with those measured by x-ray diff'raction
and by a nuclear magnetic resonance technique. ' The
models all show much narrower distributions than either
of the experimental results, but are more like that of
Mozzi and Warren. Further, the models of type I dift'er

more from Mozzi and Warren's result than do those of
the other types, confirming the view that the latter are
more realistic.

The orientation of a tetrahedron with respect to near-
by atoms must also be specified by the value of an angle
of rotation about one of its Si—0 axes. One such
definition is the dihedral angle between two planes, one
containing an oxygen atom and its two silicon neighbors,
the other containing that oxygen atom, one of the Si
atoms, and another 0 atom in the same tetrahedron.
This is the definition adopted by Gaskell and Tarrant' in
their study of the Bell-Dean model of a-Si02, and is ap-
parently that used by Galeener" in his analysis of the
dihedral angle distribution.

The distribution of dihedral angles g has been calcu-
lated for the examples of types II, III, and IV, and is
plotted in Figs. 11, 12, and 13, respectively. Within the
rather large scatter imposed by the number of angles
(three times the number of Si atoms) these figures gen-
erally show no deviations from randomness.

Although the dihedral angle distribution is not direct-
ly measurable, it does a8ect the distribution of Si—0
second-neighbor distances, shown in Figs. 14 and 15 for
the examples of types II and IV, respectively. As dis-
cussed for their models by Evans et al. , this function
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typically has two maxima, a narrow one at 4.2 A coming
from pairs for which f is near 180', and a much broader
one near 3.5 A, for f near O'. If the Si04 tetrahedra
were perfect, these maxima could be attributed to distri-
butions of P which could be called "staggered" and
"eclipsed, " and a greater prominence of the peak at
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FIG. 12. Dihedral angle distribution, models of type III.
(a)-(e) Examples in order of Table IV, (f) average.
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FIG. 11. Dihedral angle distribution, models of type II.
(a)-(e) Examples in order of Table II, (f) average.
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FIG. 13. Dihedral angle distribution, models of type IV.
(a)-(f) Examples in order of Table V, (g) average.
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FIG. 14. Radial distribution function for pairs of unlike atoms, examples of type II in the order of Table II.

smaller distance could be attributed to a tendency to-
ward the eclipsed form (contrary to the statement by
Evans et al. ). The experimental radial distribution func-
tion' has less structure near 3.5 A than any of the mod-
els treated by Evans et al. , suggesting that staggered ar-
rangements are favored in the real material. The Si—0
radial distribution functions of Figs, 13 and 14 exhibit
the 3.5-A maximum only rather weakly, but this cannot
be so clearly connected with staggered P distributions, as
the latter are generally random. In fact, the 3.5-A peak
is least evident in the example whose P distribution is

most clearly eclipsed (type II, no. 3). We conclude that
a proper analysis must take into account other correla-
tions, such as that between bond lengths and bond an-
gles, especially that between the Si—0—Si angle and ad-
jacent dihedral angles.

The absence of significant deviations of dihedral an-
gles from a random distribution for the present models is
Just what we would expect, since the potential function
does not depend explicitly on the dihedral angle. If non-
random distributions have developed, as shown oc-
casionally in Figs. 10 and 12, this must have occurred as
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FIG. 15. Radial distribution function for pairs of unlike atoms, examples of type IV in the order of Table V.
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a consequence of the final topology, especially when one
recalls that all of the models of types II—IV were treated
as a-Si during the process which generated that topolo-

gy

VIII. CQNCI. USIONS

To the preceding discussion, which has been directed
to the details of the topology of our models, we should
add the general statement that our results confirm the
continuous random network structure. It may also be
claimed that our procedure has exhausted the informa-
tion content of the experimental neutron-difFraction
data. Random network models differing from ours in to-
pology, or models of other types, if they conformed
equally well to the diffraction data, could equally claim

legitimacy. However, it seems likely that substantial
progress in modeling could be achieved only by making
more use of the values of S(q) at its extrema, which re-
quires that the nonzero temperature effects be included.

Our potential function has the virtues of simplicity
and convenience, but ss noted earlier, its validity extends
at most to determining the static structure snd a few
bulk properties. The Si—0 bonds must be appreciably
ionic, snd consequently long-range forces must also play
a role in these properties and to an even greater extent

in the vibrational spectrum. A logical approach to s
more comprehensive investigation could use the struc-
tures of our most realistic examples as conditions on the
parameters of a potential function which includes
Coulombic terms. Additional conditions would be pro-
vided by the observed infrared absorption spectrum and
neutron inelastic scattering. %'e plan to calculate the vi-

brational spectra of these models. Finally, in
justification of having presented these findings at such
length, we want to stress the variability of structural
models of glasses, and the dangers of basing general con-
clusions on single examples. Our procedures are far
freer of subjective influences than is usual in this field,
and yet we have seen how much the properties of one

example of a given type msy difFer from those of another
constructed according to the same rules.

ACKNO%'I. KDGMKNTS

%e are grateful to David Price for providing the neu-
tron scattering data in digital form before publication.
Extensive computations were carried out on the Energy
Research Cray X-MP and Cray 2 at the Magnetic
Fusion Energy Computing Center. S.R. would like to
thank Beloit College, Beloit, Wisconsin for financial sup-
port.

Permanent address: Allegheny College, Meadville, PA 16335.
'P. H. Gaskell and I. D. Tarrant, Philos. Mag. 8 42, 265

(1980).
2K. M. Evans, P. H. Gaskell, and C. M. M. Nex, in Structure

of Ãon Crystalline lrI-aterials, edited by P. H. Gaskell, J. M.
Parker, and E. A. Davis (Taylor and Francis, London, 1982),
p. 426.

3L. Guttman, %. Y. Ching, and J. Rath, Phys. Rev. Lett. 44,
1513 (1980).

~P. Keating, Phys. Rev. 145, 637 {1966).
5A. V. Johnson, A. C. %'right, and R. N. Sinclair, J. Non-

Cryst. Solids 58, 109 (1983).
6G. K. %'hite and J. A. Birch, Phys. Chem. Glasses 6, 85

(1986).
7American Institute of Physics Handbook, 2nd ed. (McGraw-

Hill, New York, 1963), pp. 3-88.
M. Arai and D. L. Price (unpublished).
R. L. Mozzi and B. E. Warren, J. Appl. Crystallogr. 2, 164

(1969).
'0E. Dupree and R. F. Pettifer, Nature (London) 308, 523

{1984).
"F.L. Galeener, J. Non-Cryst. Solids 75, 399 (1985).
'2A. C. Wright and R. N. Sinclair, in Physics of SiOz and Its

Interfaces, edited by S. T. Pantelides (Pergamon, New York,
1978), p. 133.


