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An attempt is made to extend the theories of Hjalmarson et al. and Ren et al. for a substitu-
tional defect in an unrelaxed sp3-bonded semiconductor to calculate the wave functions of elec-
trons localized near the Jahn-Teller distorted single vacancies (positively charged vacancy ¥+ and
negatively charged vacancy ¥ 7) in Si. The extent of the defect potential is firstly localized at the
vacancy site in the central-cell potential approximation and then is extended to the nearest-
neighbor sites considering both diagonal and off-diagonal matrix elements of the defect potential.
From the calculated wave functions the hyperfine interactions of the electrons with 2°Si nuclei
around the single vacancies (¥'* and ¥V ~) are obtained to compare with those determined experi-
mentally by electron paramagnetic resonance or electron-nuclear double resonance. Good agree-
ments are obtained for the nearest-neighbor atoms of both ¥+ and ¥V~ with the central-cell poten-
tial and closer agreements with the extended potential.

I. INTRODUCTION

Both electron paramagnetic resonance (EPR) and
electron-nuclear double resonance (ENDOR) are power-
ful tools for the study of point defects in semiconduc-
tors. From the hyperfine-interaction terms which are re-
vealed in the EPR or ENDOR spectrum of a defect, im-
portant information about the defect such as the distri-
bution of the unpaired electron nearby the defect and
the nature of the impurities involved in the defect can be
obtained and a microstructural model of the defect may
be proposed. The hyperfine interaction is due to the
coupling of the magnetic moment of the unpaired elec-
tron with a nuclear magnetic moment nearby the defect.
In order to calculate the hyperfine interactions we must
get the theoretical wave function of the unpaired elec-
tron of the defect at first.

Considerable progress has been made in theoretical
understanding of electronic structures of defects in semi-
conductors.'~*  Although the self-consistent Green’s-
function theories®® are capable of producing accurate
defect energy levels and wave functions, they typically
require very large computer resources. So the empirical
non-self-consistent Green’s-function methods have also
been advanced. The theory of Hjalmarson et al.” is one
of them. In their theory the central-cell defect potential
(CCDP) approximation and the Koster-Slater Green’s
function method are involved. Their method has been
modified to calculate 4, (T,; point group) (Ref. 8) and
T, (T;) (Ref. 9 symmetric deep state wave functions of
substitutional defects in covalent semiconductors of dia-
mond or zinc-blende structure. Because the symmetry
lowering due to lattice distortion around the defect is
not considered in their model, the possible symmetry
type of a deep state produced by a substitutional defect
is either 4, (T,) or T, (T,) under the CCDP approxi-
mation.

In fact, the lattice around a defect is subject to distor-
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tion in many cases. One important cause for the distor-
tion is the Jahn-Teller effect. Such a distortion occurs
when an electron is going to occupy the degenerate state.
As a consequence of distortion, the point-group symme-
try about the defect is lowered and this can be revealed
in EPR experiment. One of the best examples of Jahn-
Teller distorted point defects is a single vacancy in Si.
An ideal vacancy in Si should have T, symmetry. In
fact, the positively charged vacancy in Si has D,; sym-
metry and the negatively charged vacancy has C,, sym-
metry from EPR experiment.!® In Fig. 1 a one-electron
linear combination of atomic orbitals (LCAOQ)
molecular-orbital treatment of the single vacancy in Si
given by Watkins!® illustrates the symmetry lowering
due to Jahn-Teller distortion. The electronic structure
of a single vacancy in Si has been studied by various au-
thors with various methods.!! However, none of the
theoretical papers, to our knowledge, does present a cal-
culation of hyperfine interactions of a distorted vacancy
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FIG. 1. One-electron molecular orbital treatment for the
single vacancy in Si given by Watkins (Ref. 10). The linear
combinations of the four broken bonds on the atoms around
the vacancy formed the defect molecular orbitals, an A, (T})
singlet and a T, (T,) triplet for an ideal vacancy. The partial-
ly occupied degenerate orbitals caused the Jahn-Teller distor-
tions thus lowering the defect symmetry from T, to D,; and
further from D,, to C,,.
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(V* or ¥7) in Si and serves as direct comparison with
experimental results of EPR (Ref. 12) or ENDOR."

In the present work we follow the methods provided
by Hjalmarson et al.” and Ren et al.® for calculating the
electronic structure of an unrelaxed substitutional im-
purity and extend them to calculate the electron wave-
function distribution around the symmetry-lowering sin-
gle vacancy (V* or V) in Si. From the calculated
wave functions we calculate further the hyperfine in-
teractions for the vacancy and compare our results with
EPR or ENDOR data. The main points of this work
are the following: (i) to show if and how the empirical
tight-binding Green’s function method under the CCDP
approximation can be used to deal with the electron
wave function of a distorted defect; (ii) to show how the
extension of the defect potential can be made to the
nearest neighbors of the vacancy, and then calculations
of electron wave functions can be performed in this case;
(iii) to give a quantitative explanation for the first time
on the hyperfine interactions from EPR or ENDOR for
the single vacancy in Si.

II. CALCULATIONS OF WAVE FUNCTIONS
OF DISTORTED SINGLE VACANCY

A. Central-cell defect potential approximation

Let
A\ Y)=Hy+P)|¢)=E|¢) (D

be the Schrodinger equation of the imperfect semicon-
ductor containing a lattice vacancy. Here ﬁo is the
one-electron Hamiltonian of the perfect crystal, which is
treated with the empirical tight-binding nearest-neighbor
approximation of Vogl et al.,* and A is the one-electron
Hamiltonian of the defect-containing crystal. P is the
defect potential. If there is such a relaxation in the vi-
cinity of the vacancy that the symmetry of V is lower
than T, the vacancy is referred to as a distorted vacan-
cy. From group theory, | ) is the state transforming
according to a definite irreducible representation / of the
symmetry point group of A. Hence | 4) is expanded in
a set of bases |I,R,m ) (Ref. 8)

Y= |LR,m){L,R,m | ¢}, )
R,m

where |I,R,m ) are orthogonal symmetric combinations
of sp*® hybrid orbitals around the vacancy. ! labels the
irreducible representation of the state |#'). R indexes
the Rth shell around the vacancy site, e.g., R =0 for the
vacancy site and R =1 for the shell of the nearest neigh-
bors in this work. m indexes the mth basis of the Rth
shell transforming according to the /-irreducible repre-
sentation. In diamond or zinc-blende structure semicon-
ductors the possible symmetries of Jahn-Teller distorted
single vacancies are Dy, C;,, or Cy,, and the possible
symmetry types (irreducible representation /) of deep
states produced by these defects are listed in Table I.
Because the defect state occupied by an unpaired elec-
tron must be a nondegenerate one due to Jahn-Teller
effect, only one-dimensional representation / in the
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tight-binding expansion of the wave function in Eq. (2)
will be considered in this work.

As has been indicated in Fig. 1, the degenerate T,
(T4) level of an ideal single vacancy in Si splits due to
the perturbation when the lattice around the vacancy is
distorted. The splitting is only a few tenths of an elec-
tron volt from the experiments.!®!* Thus we have a de-
generate perturbation problem. We divide the defect po-
tential ¥ in Eq. (1) into two parts as

P="y+AP, (3)

where 90 is the defect potential for an ideal single va-
cancy with T; symmetry, and AP stands for the pertur-
bation potential with lower symmetry due to the lattice
distortion. Considering AP asa symmetry-lowering per-
turbation, the zero-order wave function of the nondegen-
erate state after the perturbation can be constructed ac-
cording to the symmetry of the state and may be ex-
pressed as Eq. (2). The energy level position after the
perturbation has not been calculated in this paper, be-
cause AP is not known quantitatively. However, the
zero-order wave function of the state associated with the
distorted defect can be calculated if we know the sym-
metry of AP.

Koster-Slater Green’s-function technique has been
widely used in the calculations of deep-level problems.
The fundamental equations for a deep level state in the

gap are! 3

det|1-GV | =0, 4)
where

G=(E—-RA,) !, (5)
and

[¥)=G6P |¢') . (6)

Under the CCDP approximation, nonzero matrix ele-
ments of ¥ are only (1,0,m |f>|l,0,m) of different [/
and m. In Ref. 7, [ was either 4, (T;) or T, (T,) and
m =1. In this work / will be B, (D,;) for V* or B,
(Cy,) for ¥~ in Siand m =1. Let

V,=(L,0,1|9|1,0,1) . @)

TABLE 1. Possible symmetries of the ideal and the Jahn-
Teller distorted single vacancies in diamond or zinc-blende
semiconductors and the possible symmetry types (irreducible
representations) of the states of a distorted single vacancy.

Symmetry Irreducible representation

Ideal vacancy T, A, T, A, +T,
Distorted vacancy D,, A, B,+E A, B,+E

C,, 4, A\ +E 24, +E

Cy 4, A\ +B,+B, 24,+B,+8,
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The solutions of Egs. (4) and (6) for the above potential
reduce to’

(1,0,1|G|1,0,1)=V" (8)
and?®
(LR,m | G |1,0,1)
(1,0,1|G |1,0,1)
where (1,0,1|¢') can be obtained by®
((1,0,1|G |1,0,1))

d

—({1,0,1|G [1,0,1

1E « |G| ))

In the orbital-removal approximation'® for a lattice va-
cancy,

(1,0,1]¢')=0. (11)

Egs. (11) and (10) determine the energy level of a single
vacancy before the perturbation splitting. This energy
level should be equal to the T, (T;) state level of an
ideal vacancy, which is 0.51 eV above the valence-band
edge in Si.°

(LR,m |¢') =

(L,o,1|¢"), 9)

| €1,0,1]¢") | =~ (10)

B. Extended defect potential approximation

From the self-consistent Green’s-function work on the
single vacancy in Si (Refs. 4 and 5) it has been found
that the vacancy potential is short ranged and extends
up to the nearest neighbors of the vacancy. The diago-
nal matrix elements of the defect potential on the nearest
neighbors of the vacancy were first introduced by
Pecheur et al.'” to respond to different charge states of
the vacancy which remained T,; symmetry. In the
present study, both the diagonal matrix elements of the
defect potential ¥ on the nearest neighbors of the dis-
torted vacancy and the off-diagonal matrix element of f),
which couple the defect to its nearest neighbors, are con-
sidered. Such a defect potential is referred to as extend-
ed defect potential (EDP) being relative to the CCDP in
this paper. By use of the EDP approximation and the
empirical tight-binding Green’s-function method in the
preceding part of this section, the wave function of the
distorted vacancy can again be calculated.

We attempt to describe the EDP with the following
parameters:

V,=(1,0,1|9|1,0,1), (12a)
W=(,0,1|P|1,1)=(},1,1|P|,0,1),  (12b)
V,=(L,1,1|P|L1,1), (12¢)

where |/,1,1) is the symmetric combination of the four
nearest sp° hybrid orbitals directed to the vacancy site.
Only these three nonzero matrix elements of ¥ are con-
sidered in this work. When W =V, =0, we have again
the CCDP approximation.

The solution of Eq. (6) for the EDP reduces to

(LR,m |¢')=(L,R,m |G |1,0,1)C,

+{(LR,m |G |1,1,1)C,, (13a)
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where
C =V {L,0,1|¢")+W(L1,1|¢") (13b)
and
C,=W{L0,1|¢")+V,(L1,1|¢') . (13¢)
From Egs. (11) and (13a) we have
(1,0,11611,0,1)C,+(1,0,1| G |,1,1)C,=0. (14)

By use of the normalization condition for |1/JI ) we ob-
tain

1=(y¢'|¢')
= (| PGGV | ¢')

2 d

=—Cigg

(1,0,1| G |1,0,1)

—2clc2;i%<l,o,1 |G 1,1,1)

2 d_
2dE

The vacancy level cannot be given theoretically in the
EDP approximation because of the uncertainty of V,,
W, and V,. However, the experimental energy level will
be used to obtain the wave function. If the energy level
of the defect is given, C; and C, can be determined from
Egs. (14) and (15) and finally {/,R,m |¢') can be calcu-
lated from Eq. (13a).

The above calculated wave functions of the unpaired
electron localized near the defect will be used to get
hyperfine interactions in the next section.

—Ci——=(L1,1|G |1,1,1) . (15)

III. CALCULATION OF HYPERFINE INTERACTION

From the wave function of the unpaired electron, the
hyperfine interactions with 2°Si nuclei around the defect
in Si can be calculated. The general form of hyperfine
interaction terms in the spin Hamiltonian for an EPR or
ENDOR spectrum is

3sA, (16)
J

where the sum on j goes over all atoms whose nuclei
have nuclear spins I; around the defect. S is the spin
vector of the unpaired electron. _From quantum
mechanics the tensor components of A; in Eq. (16) are

given by'®

A4 aff =8e8nMBMn

8 3rarp 1
5O ot (S5 b 1 '

(17)

where r,, rg=x,y,z, are the components of the position
vector r from the jth nucleus to the electron. g, is the g
factor of the unpaired electron and g, is that of the jth
nucleus. pp is the Bohr magneton and p, the nuclear
magneton. The term with |¥(0) |2 the electron proba-
bility density at the jth nucleus, is the so-called contact
interaction term, which is isotropic. The second term in
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Eq. (17) is the dipole-dipole interaction term, which is
anisotropic.

The calculated wave function |¢') in the preceding
section can be expressed as

|4 =3 (Cls |S)+C}p_|jP)+Cjp | jP,)
J

+c;,,z |iP,)), (18)

where Cis=(jS|¥"), Cjp =(jP,[¢¥), etc. |jS),
| jP.), |jP,), and |jP,) are atomic 3S and 3P orbitals
of the jth Si atom. It is commonly adopted that only
the atomic orbitals centered on the jth atom contribute
to A; and the contribution of the other atomic orbitals
are neglected. Then we obtain the relationships between
all components of A; and the coefficients C jIS’ C J'IPX’ C !Py’

j
and CJ'IPZ from Egs. (17) and (18):

Ay =C3F,+(2C} —c},y —Cp )Fp (19a)

A, =C3F, +(2C,§y —Cp —Cj )Fg, (19b)

A, =CiF,+(2C} —Cj — c,%y )Fg , (19¢)

Ay =4,,=3Cp Cp Fg , (19d)

Ay, =A,,=3Cp Cp Fg , (19e)

A= A,;=3Cp Cp Fp (19f)
where

F,= ‘831&;&1#5#" [ ¥35(0) | 2 (19g)
and

Fy= 2 8eattattn(rap | (19h)

All suffixes j and / of the coefficients are dropped in Egs.
(192)-(19f). | ¢35(0)|? in Eq. (19g) is the probability
density of the 3S orbital of the Si atom at its nucleus
site, and {7 ~3),, in Eq. (19h) is the expectation value of
r~3 weighted over the 3P orbital of the Si atom. Two
groups of values for | 35(0) |2 and {r~*);, have often
been used in the literatures on EPR and ENDOR studies
of defects in Si: |¢5(0)|2=31.5x10* cm~® and
(r=3);p=16.1x10* cm~3 from Ref.  19;
| ¥35(0) | 2=34.5x10** cm~3 and (r~3);p=18.2x10%
em™® from Ref. 20. Because the difference between
them is about 10%, the calculating tensor components in
Egs. (19a)-(19f) will also be 10% different with the two
groups of values. The latter group is used in this work.
In EPR or ENDOR experiments, each hyperfine ten-
sor is usually reduced to diagonal form by a coordinate
transformation to its principal axes. The largest princi-
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pal value is taken as A, the second largest as 4,. New
parameters a, b, and c are determined by

A4, 0 0
A=|0 4, 0
0 0 A,
a+2b 0 0
= 0 a—b+c 0 . (20)
0 0 a—b-—c

Here a =§TrK represents the isotropic part of the
hyperfine interaction. b gives the purely axial symmetric
part of the hyperfine tensor and c¢ takes account for the
deviation from axial symmetry. It has been generally
found in EPR and ENDOR experiments that ¢ <<b, i.e.,
the hyperfine tensor is a nearly axial symmetric tensor,
for most point defects.

To compare the theoretical results with the experi-
ments, the hyperfine tensor from Egs. (19a)-(19f) is re-
duced to the diagonal form with

A, =C3F,+2(C} +c,%y +C3 )Fg (21a)
Ay=A;=C3F,—(C} +c,%y +C} )Fp . (21b)

The hyperfine parameters a, b, and ¢ can be obtained by

a=CiF,, (22a)
b=(C}, +c,%y +Cp )Fg (22b)
c=0. (22¢)

The tensor is purely axial symmetric from calculations
and the axial direction is determined by the direction
cosines which are proportional to Cpx, pr, and C”z’ re-
spectively.

If a point defect in diamond or zinc-blende structure
semiconductors has a {110} mirror plane, two of | Cp, |,

|pr |, and | Cp, |, when the coordinate directions are

along the cubic axes, should be equal to each other for
an atom located in the mirror plane. This is the case of
the vacancy in Si. Thus the axial direction of the
hyperfine tensor is in the mirror plane where the atom is
located giving rise to the hyperfine tensor. In this case
the axial direction is presented by the angle 6
(0°< 0 <90°) between the axial direction and the (110)
direction in the mirror plane. Suppose | CPy | =] sz |

# | Cp, |, 6 can be given by
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CP
| (23)
V2G,,

O =arctan

IV. RESULTS

A. Positively charged single vacancy ¥V * in Si

Let the unpaired electron of ¥+ occupy a B, (D,,)
symmetric state as has been indicated in Fig. 1. Because
no ENDOR data for V' are available, we calculate the
hyperfine interactions arising from the nearest-neighbor
atoms and compare them with EPR data.!? [100] axis is
taken to be the cross line of the two {110} mirror planes
of ¥t with D,; symmetry. Then the calculated wave
function on the nearest-neighbor atom along the [111]
direction is given by Cg=0.1577, CPX =0.2071, and

pr =CPz =0.1920 under the CCDP approximation. The

wave function on the other three nearest-neighbor atoms
can be obtained from the transforming properties of a
B, (D,,) state. Thus the hyperfine tensors for the four
nearest atoms are the very same except for their different
axial directions, in agreement with EPR results.!> The
energy level of V't is located at 0.13 eV above the
valence-band edge from the experiment of Watkins and
Troxell.'” This experimental energy level is needed as
input in the calculation under the EDP approximation.
Detailed comparison is presented in Table II. As usual
7° represents probability of the unpaired electron on one
atom, ie., 7°=C§+Cph_ +C§'y +Cp and @ is the per-
centage S character of the wave function on the atom
which is given by a*=C2 /1% The angle 6 for the four
nearest-neighbor atoms are the same value. But
remember that the axial directions are different for the
four atoms while 6 is associated with a special (110)
direction which is in the {110} mirror plane containing
the corresponding atom. The theoretical results of
CCDP calculations coincide with the EPR data quite
well and the results of EDP calculations give an even
better description of the V" defect state especially on

a?, a, and 6, as can be seen in Table II.

B. Negatively charged single vacancy ¥V ~ in Si

From the ENDOR data of ¥V~ in Si, some assign-
ments of hyperfine tensors to lattice positions were given
particularly along a (110) chain of atoms passing
through the vacancy site.!*> Our results of B, (C,,) state

TABLE II. Calculated results of wave-function and
hyperfine parameters for the nearest-neighbor atoms of ¥ in
Si and the EPR data taken from Ref. 12. The CCDP results
are in the first line and the EDP results in the second line. 8 is
35.3° for {111) directions.

7’ a? a b c 0

(%) (%) (MHz) (MHz) (MHz) (deg)
CCDP 147 219 146.9 13.2 0 35.6
EDP 142 17.6 113.2 13.4 0 37.3
EPR data 14.8 15.1 103.3 14.3 0 42
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show that the electron distributes almost only on two of
the four nearest-neighbor atoms, 17°>=29.5% for each of
the two atoms in the symmetric mirror plane of the B,
(C,,) state and 1? <0.1% for the other two atoms from
the CCDP approximation results. These results agree
well with the ENDOR data (27.3% and 0.6%, respec-
tively), and this confirms again that the unpaired elec-
tron of ¥~ occupies a state of symmetry type B, (C,,)
as has been proposed by Watkins.!®!? On account of the
uncertainty of the experimental energy level of V'~ in
the gap, we have taken the energy level equal to 0.75 eV
or 0.90 eV above the valence-band edge in the EDP cal-
culations so as to coincide with experimental 5’ or a?
separately. The results for some atom sites and the
ENDOR data with the assignments from Ref. 13 are
shown in Table III. Our results agree well with the EN-
DOR data only for the nearest-neighbor atoms. In both
cases of the EDP calculations (E,+0.75 eV and
E, +0.90 eV), closer agreements with the ENDOR data
are obtained than those of the CCDP calculations as can
be seen in Table III.

V. DISCUSSION AND CONCLUSIONS

(i) We have calculated the hyperfine interactions on
the nearest-neighbor atoms of both the positive and neg-
ative single vacancies in Si for the first time. Good
agreement with experimental data have been obtained
even from the CCDP approximation. In order to im-
prove the understanding of the distorted vacancy we
have extended the defect potential to the nearest neigh-
bors of the vacancy by the EDP approximation consider-
ing both the diagonal and off-diagonal matrix elements
of the potential. As for the positive vacancy in Si, the
experimental energy level has been used as input in the
EDP calculations to obtain the wave function and then
the hyperfine tensors. Better agreement has been
reached, especially for the fraction S character (a?), the
isotropic part (a), and the axial direction (6) of the
hyperfine tensor. As for the negative vacancy in Si, the
energy level, which has not been determined from exper-
iments, was given to fit the experimental result of 7* or
a? and then the hyperfine tensors have been calculated.
Closer agreement has also been obtained as can be seen
in Table III. Thus the EDP approximation produces a
better description of both positive and negative vacan-
cies than the CCDP approximation.

The theories of Hjalmarson et al.” and Ren et al.? for
a substitutional impurity in unrelaxed sp3-bonded semi-
conductors have been extended to calculate the electron
wave functions of the distorted single vacancies. Consid-
ering that the defect symmetry and the irreducible repre-
sentation according to which the wave function trans-
forms determine the main characters of the wave func-
tion, we have calculated just the zero-order wave func-
tions of the degenerate perturbation theory. However,
good results of hyperfine tensors have been obtained to
be compared with experiments.

The calculating procedure described in this paper can
be extended to deal with distorted single vacancies and
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TABLE III. Calculated results of wave-function and hyperfine tensor parameters for some atoms in
the [011] chain of atoms, which is in the symmetric mirror plane of the B, (C,,) state and passing
through the vacancy. The ENDOR data are taken from Ref. 13. The energy level of V'~ taken in the

EDP calculations is denoted in parentheses.

Atom 7’ a? a b c ]
position (%) (%) (MHz) (MHz) (MHz) (deg)
[111] and [111] CCDP 29.5 21.9 294.7 26.4 0 35.1
EDP
(E, +0.75 eV) 27.4 25.4 316.6 23.4
EDP
(E, 40.90 eV) 25.0 28.1 318.8 20.6 0 35.6
ENDOR 27.3 28.4 355.8 22.3 1.3 35.2
[022] and [022] CCDP 2.8 0.1 0.1 3.3 0 32.2
EDP
(E, +0.75 eV) 3.0 0.0 0.0 3.4 36.4
ENDOR 5.9 18.5 50.2 5.5 0.7 35.0
[133] and [133] CCDP 0.5 6.3 1.5 0.6 0 35.2
EDP
(E, +0.75 eV) 0.3 10.0 1.5 0.3 40.7
ENDOR 3.9 17.1 30.5 3.7 0.3 37.0
[044] and [044] CCDP 0.4 9.2 1.7 0.4 0 31.7
EDP
(E, +0.75 eV) 0.4 13.0 2.3 0.4 0 35.0
ENDOR 1.6 18.3 13.5 1.5 0.2 34.8

vacancy complexes in various sp>-bonded semiconduc-
tors.

(ii) From the EDP calculations we have been able to
see the effects of the defect potential’s modification.
When W=V¥,=0 in Egs. (13b) and (13c), we have again
the CCDP approximation with C,=V,{(L0,1|¢"),
which can be determined in the CCDP calculations, and
C,=0. In Table IV, a comparison is given to show the
differences between the CCDP and the EDP approxima-
tions, where the values of W and V, are obtained from
Egs. (13a)-(13c) on the assumption that the value of
V,{1,0,1|¢') is the same as that from the CCDP calcu-
lations. As can be seen in Table IV, the changes are
2-4% of C, but a remarkable nonzero value of C,. It
can be also seen that W is not negligible compared to
V,, especially for the negative vacancy in Si.

(iii) In our calculation of a hyperfine tensor, only the

TABLE IV. The parameters associated with the CCDP and
EDP approximations. In the CCDP approximation, W, V,,
and C, all equal zero. The energy level of negative vacancy in
Si is taken to be 0.75 eV above the valence-band edge in the
EDP approximation.

CCDP approx. EDP approx.

C, (eV) C, (eV) C, (V) W (V) V, (eV)
Positive 2.472 2.423 —0.494 —0.065 —0.659
vacancy
Negative  2.472 2.350 0.303 —0.165 0.409
vacancy

contributions of the atomic orbitals of the atom to which
the hyperfine tensor belongs are considered, so that we
have the purely axially symmetric tensor, i.e., ¢ =0. The
correction terms coming from the contributions of the
other atomic orbitals allow for deviations from axial
symmetry.2! As can be seen in Table II and III, the ex-
perimental values of ¢ are smaller than the values of a
and b, i.., the tensors are nearly axially symmetric.
Thus the correction terms are thought to be very small
and have been neglected.

(iv) It is particularly worth noticing that the axial
direction of a hyperfine tensor is not exactly along a
(111) direction from both experimental and theoretical
results. In fact, the axial direction can even be along a
(110) or (100) direction from experiments.’? Hence,
as we compare theoretical results with experimental
data, not only the principal values but also the axial
directions of hyperfine tensors should be taken as impor-
tant objects. In fact, the assignments of hyperfine ten-
sors to lattice sites are very difficult in ENDOR stud-
ies.?2 Thus theoretical calculations of both principal
values and axial directions of hyperfine tensors are help-
ful to the assignments.

(v) We had expected that the EDP approximation
would improve the calculated hyperfine tensors of the
next nearest neighbor and perhaps the more distant
atoms. But the results in Table III show that little im-
provement has been obtained, particularly for the a
value. Thus we should think that the simplification of
the defect potential is not the main reason for poor
agreement. It should be pointed out that even for an
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undistorted substitutional impurity in Si, poor agree-
ments of hyperfine tensors have been obtained for the
next nearest neighbor and the more distant atoms.?’
Thus the lattice distortion should not be the main reason
for the poor agreements, too.

In fact if only 1% of the unpaired electron were local-
ized on the S orbital of the next-nearest-neighbor atom,
from Eq. (22a) where the constant F, is 4.55% 10* MHz,
one would derive a comparable a value with the
ENDOR data. A further study is underway to account
for this 1% localization.

(vi) In the ground state of the one-electron model in
Fig. 1, the unpaired electron of ¥~ has the B, (C,,)
symmetric wave function. This implies vanishing of
electron localization on the S orbitals of all atoms in the
antisymmetric plane of the B, (C,,) state and then leads
to zero a values of the hyperfine tensors belonging to
these atoms, in disagreement with the experimental re-
sults. From the ENDOR data the largest nonzero a
value was 2.1 MHz corresponding to about 0.05% locali-
zation on the S orbital of the atom.

In order to overcome the above difficulty, Lannoo?*
has considered the influence of many-electron effects in
some quantitative detail. He discussed the configuration
interaction within the defect molecular model. Consid-
ering V'~ as a five-electron system and the ground-state
configuration as the situation in Fig. 1, there are four ex-
cited states with the same symmetry as the ground state.
Following his notation the ground state is expressed in
the form

|o)=| A1A 1AV AYB,) , (24a)
where the overbar denotes an electron with opposite
spin, and then the four excited states are

|¥,)=| A,4\B,B,B,) , (24b)

|¥,)=| Ay AYB,B,B,) , (24¢)
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|¢;)=| A1AB,B,B,) , (24d)
|¥y)=| Ay A\B,B,B,) . (24e)

By configuration interaction the excited states are mixed
into the ground state. This many-electron effect com-
bined to the coupling between the A (C,,) and A7
(C,,) states can indeed account for the nonzero a values
of the atoms in the antisymmetric plane of the B, (C,,)
state. But a quantitative estimate was arbitrary because
it depended sensitively on several uncertain parame-
ters.*

Sprenger et al.'’ proposed that the effect of exchange
interaction between the unpaired electron and the
closed-shell electrons of the atoms might offer another
explanation of the above nonzero a values. Perhaps both
effects of configuration interaction and exchange polar-
ization have contributions to the nonzero a values.

From the ENDOR experiment!? the nonzero a values
in the antisymmetric plane of the B, (C,,) state are 2
orders smaller than the a value of the nearest-neighbor
atom in the symmetric plane of the state. Thus we
should think that even if the many-electron effects con-
tribute to the electron localization on the nearest-
neighbor atom in the symmetric plane of the state, the
contribution is not important. A further study is needed
to investigate if the many-electron effects have important
contributions to the electron localizations on the next
nearest neighbor and more distant atoms.
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