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Nonradiative recombination via deep impurity levels in semiconductors:
The excitonic Auger mechanism
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%e present a theoretical investigation of excitonic Auger recombination via deep impurity levels

in semiconductors. A calculation of the transition matrix elements is carried out for several levels

of approximation. The inhuence of carrier density and temperature is studied by taking into ac-
count the screening of the Coulomb interaction at high carrier densities and the thermal ionization
of the excitons. The results of our calculations are then compared to our experimental results,

which originally led to the development of our model of excitonic Auger recombination via deep
impurities.

I. INTRODUCTION

It is generally accepted' that the recombination of ex-
cess charge carriers via deep impurity levels in semicon-
ductors occurs by a two-step process where electrons
and holes are captured successively into the deep level.
The model of Shockley and Read and Hall (SRH) ac-
counts for this two-step nature of the recombination and
yields a good description of the basic recombination ki-
netics. Within this model, however, the physical mecha-
nism of the capture process remains unso1ved. There
have been numerous attempts, experimentally as well as
theoretically, to solve this open question.

In a preceding paper' we have presented our experi-
mental results on nonradiative recombination via deep
impurity levels in silicon. We have shown that none of
the previously proposed models for capture into deep
levels, namely multiphonon capture, cascade cap-
ture, ' ' or Auger capture of free carriers, " can ac-
count for the experimental facts. From our experimen-
tal data, especially from a direct proof of Auger recom-
bination via the deep level, ' ' we have developed a new
model for deep level recombination, the model of exci-
tonic Auger recombination via deep impurities. ' The
model is based on the fact that a free exciton meeting
the impurity site always contains one particle to be cap-
tured, e.g., an electron, and one particle to take over the
excess energy in an Auger process (e.g., a hole). Due to
the spatial correlation of the electron and the hole
within the exciton a very eScient excitonic Auger cap-
ture mechanism becomes possible. Since free excitons
exist in thermal equilibrium with free electrons and
holes, excitonic Auger recombination can give a
significant contribution to the nonradiative recombina-
tion via deep levels.

Previously, only Auger capture processes of free elec-
trons and holes at deep impurities and the Auger decay
of excitons bound to the impurities have been con-
sidered. Landsberg et a/. , Robbins and Landsberg,
Haug, ' Robbins, " Neumark, ' and Riddoch and

Jaros' have studied free-carrier Auger processes involv-

ing deep traps, whereas Auger recombination of excitons
bound to shallow impurities were investigated by Nelson
et al ,

' Sch.mid, ' and Lyon et al. ' There have been
only a few investigations considering an Auger decay of
free excitons at shallow impurity centers.

In the present paper we will present a quantitative cal-
culation of the properties of the excitonic Auger capture
mechanism. The paper is subdivided into the following
sections. First we will elucidate the basic idea of our
new model and give the equations necessary to calculate
the transition probability. Then, a general calculation
without any detailed assumptions about the impurity
wave functions will be carried out. In order to get quan-
titative results, several approximations concerning the
wave functions involved will then be introduced. The
dependence of the capture coe%cients on carrier density
and temperature will be investigated in the next section.
Finally, the results of the calculation will be compared
to our experimental results reported earlier. '

II. BASIC CONCEPTS

The basic processes of an excitonic Auger recombina-
tion via a deep impurity level are sketched in Fig. 1.
The capture of an electron into the deep level, for exam-
ple, may occur when a free exciton meets the impurity.
The electron from the exciton is captured by the impuri-
ty, whereas the excess energy is transferred to the hole
which is highly excited into the valence band. Analo-
gously, a hole may be captured into the deep level there-
by exciting the electron into the conduction band. The
complete recombination of an electron-hole pair re-
quires, of course, the successive capture of an electron
and a hole by the impurity, just as usually envisioned for
Shockley-Read-Hall recombination. ' We shall refer to
such capture processes as "excitonic Auger capture"
throughout this paper.

It is also possible that the electron and the hole of the
exciton recombine transferring their energy to the parti-

Oc1988 The American Physical Society



NQNRADIATIVE RECOMBINATION VIA DEEP IMPURITY. . . 2595

) FE)
ET

(a) electron capture (1) hole capture

FIG. 1. Excitonic Auger capture processes into deep impur-

ity level ET. One particle out of the free exciton (FE) is cap-
tured, transferring its excess energy to the other one.

H =H,b+H,'b ——H,d+H, '~ .

The transition probability from the initial to the final
state can be written as

3I ~ 2 (2)

Here, M(k) is the transition matrix element, z(k) is the
density of states in k space of the final state, and the 5
function between the initial energy E; and the anal ener-

gy Ef enforces energy conservation. Assuming parabol-
ic energy bands and an isotropic matrix element one ob-
tains

cle bound to the impurity (an electron or a hole). In
effect, this is equivalent to the capture of a hole or an
electron„respectively, by the impurity. However, we
shall show below that the probability of these processes
is much lower than that of the direct excitonic capture
described in the preceding paragraph, so that they can
be neglected.

Processes like the ones outlined above are known in
scattering theory as "rearrangement collisions. " For in-
stance, the excitonic Auger capture of an electron by an

impurity is quite similar to the scattering of a proton by
a hydrogen atom where the electron is picked up by the
incident proton. Collision processes of this kind difFer
from simple two-particle collisions in that the total
Hamiltonian of the system has to be split up into a
steady-state part and a perturbation in diiTerent ways for
the initial and for the 6nal state of the process. For a re-
action a +b ~c +d one may write

H =(Htl+ Ui2)+( Vi+ V2)

=(Htl+ Vt)+(Ul2+ Vp)

in the spirit of Eq. (1).
%e note that this Hamiltonian consists of contribu-

tions of the electron-electron interaction as well as of the
electron-impurity interaction. In most previous investi-
gations of Auger processes involving deep impurity
states ' only the electron-electron interaction has been
considered as a perturbation causing the transition.
There is, however, no a pnori reason why the electron-
impurity interaction should not be able to induce such a
nonradiative transition. Therefore, we will treat the
electron-electron and the electron-impurity interaction
on an equal basis throughout this paper.

The transition matrix element in the Born approxima-
tion may now be written as

M=&~k
I V2+Ul2 Ix; &=&1k

I V2+Vl Ix; &,

where Ix; & is an eigenstate of Ha+Ut2 (an exciton)
and

I Ik & is an eigenstate of Ho+ V, (the electron bound
to the impurity plus the highly energetic hole). We actu-
ally perfer the post form of the matrix element over the
prior form since it does not involve an explicit expres-
sion for the electron-impurity interaction. %e note that
the use of all three interactions of Fig. 2(a) in the matrix
element in previous work appears to be incorrect in

electron electron electron

element. In a first approximation (Born approximation),
one may replace the exact wave functions X+b and X,d by
the zero-order functions, getting

M(k) = & u,d I H,'d I u, b & = & u,d I H,'b I u, b & .

Let us now demonstrate the calculation for the case of
an electron being captured into a positively charged ion-
ized donorlike impurity. Such an Auger process in-
volves an exciton and a charged impurity core in the ini-
tial state and an electron bound to the impurity and a
highly excited hole in the final state. The complete
Hamiltonian that describes the electron, the hole, and
the impurity contains a background term Ho plus the
three interaction terms shown schematically in Fig. 2(a),
so that

lV=
I
M(tt)

I

where a is the wave vector in the final state.
The exact matrix element M(k) is given by

M(k) = & u,d I H,'d I X,b & = &X,d I
H,'„

I u,b &, (4)
Impurity core impurity core hole

where u,d and u,b are the solutions of H,d and H,b, re-
spectively, and 7+b and g,d are the outgoing and incom-
ing solutions of the full Hamiltonian. The two expres-
sions for the matrix element (4) are usually referred to as
the "post" and "prior" forms of the transition matrix

(a) electron capture (b) hole capture

FIG. 2. Interactions between the particles participating in
excitonic Auger capture processes.
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the light of rearrangement scattering theory.
The next step is to give explicit wave functions for

~x,. ) and ~Ik). The eigenstates of a free exciton with
a center-of-mass momentum E are expanded in terms of
eigenstates of the crystal by

1 i'
&

i {K—P)r&g AK pe 'e 'u, p(r, )u„K p(r~),
V p

with u, „(r, ) and u„k(r2) being the periodic parts of the
Bloch functions. A.z& is the Fourier transform of the
"internal" wave function g„'(r„r2) of the exciton.

The final state
~
Ik ) is described by a product of the

wave functions of the electron bound to the impurity
and that of a highly excited hole. In general, the wave
function of the electron bound to the impurity is a su-
perposition of all Bloch functions of the crystal

1 ik+(r))=, , QCJke 'u„k(r, ),y&/2

whereas the highly excited hole with momentum x is de-
scribed by

tKf2$2(r2)=e u„(r2) .

Finally, the interaction potentials between the particles
are of the form

2

V(r)= e
EP

In order to take into account many-particle effects in a
simple approximation, we have used a screened Coulomb
potential with a screening vector k, for this interaction.

Now we have all the prerequisites to calculate the
transition matrix element M. Using the wave functions
and interaction potentials given above, we finally get (for
details refer to subsection 1 of the Appendix, where the
calculation of the first term is carried through in detail;
the other term is completely analogous)

M=M, +M»

4me' ~K,pF,', C,"p'

«o p k,'+(SC K p)'——
24ve ~ g p t)p

me K,p UU

eV X ki+(~ p)j ep ~ n, K —s- nc
Tc~ (12)

Here, F„denotes an overlap integral between the bands
n and m, e.g.,

1
FUU d 2uv «uuK —a '

0

From the above form of the matrix element, which does
not contain any special assumptions about the shape of
the wave functions, several general conclusions can be
drawn. First, we note that, since interband overlap in-
tegrals are much smaller than intraband ones (i.e.,
I'„,=5„,) even for the second term of the matrix ele-
ment which contains a sum over the contributions of all
bands, the conduction-band contribution to the impurity
wave function (C, K „)will dominate. Thus we can con-
clude that electron capture into deep levels by an exci-
tonic Auger process is by far dominated by the
conduction-band portion of the impurity wave function.

For hole capture, on the other hand, the picture is
somewhat different. For this case, the interactions be-
tween the particles involved are depicted in Fig. 2(b).
The complete Hamiltonian for that system reads

H=(Ho+ Vi+ U23)+( Vz+ V3+ Ui2+ Ui3)

=(H +oV, +V, +U»+U„+ U»)+(V, ) . (14}

The initial state consists of an exciton and an electron
bound to the impurity. In the final state only a hot elec-

4me' ~K,pI'"-C.,K p-
k,'+(K —P)' (15)

In this case, only the valence-band contribution to the
impurity wave function enters into the matrix element.
Thus one may conclude that for an effective recombina-
tion center the wave functions must be constructed from
comparable contributions from the valence band and
from the conduction band. This is usually the case for
deep impurities, whereas shallow donors or acceptors be-
ing described satisfactorily by effective-mass theory are
coupled to one band only and therefore do not contrib-
ute to the recombination.

Let us finally consider the processes mentioned briefly
in the introduction to this section, namely capture pro-

tron is left. Even though the electron 1 and the hole 2
have already recombined in the final state, we still need
to include their interactions with electron 3 and with the
impurity in order to make the Hamiltonian consistent (of
course, these interactions cancel out in the final state).
Again, we choose the prior form of the transition matrix
element which means that we have to calculate the ma-
trix element of Vz (the details of the calculation are
completely analogous to the calculation shown in subsec-
tion 1 of the Appendix)

M=(f
( V2 (i )
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cesses where the electron and the hole recombine
transferring their energy to the particle bound at the im-

purity, which is either an electron or a hole. The calcu-
lations for these processes can be carried through in a
straightforward manner, similarly as demonstrated here.
However, all the matrix elements in these cases contain
interband overlap integrals instead of the inrraband ones
in the matrix elements above (i.e., I'„ instead of F,„or
F„), since they always involve a direct transition of an
electron from the conduction band to the valence band.
Since interband overlap integrals are very small com-
pared to intraband overlap integrals, we will neglect
this kind of processes in the further discussion.

III. APPROXIMATIONS AND RESULTS
FOR THE EXCITONIC GROUND STATE

In order to get quantitative results, we have to intro-
duce some approximations concerning the expansion
coefficients C„k of the impurity wave function and ARAB
for the exciton wave function. In addition, the overlap
integrals have to be estimated. For simplicity, we as-
sume that the overlap integrals containing functions of
the same band are equal to unity, whereas those with
functions of different bands vanish

' 1/2
0!

a+ p — K

2 2

P, (r)=5

2m

1/2
1 —r»
r

(20)

The most diScult problem remaining now is to get a
realistic yet simple approximation for the wave function
of the electron deeply bound to the impurity. Since an a
priori calculation of the impurity wave function is
beyond the scope of the present investigation, we use
two simple models frequently employed in the literature.
Some of the general results of a more realistic
theory, ' ' however, can be transferred to these sim-

ple models. The most important one appears to be the
fact that for deep impurities there is no direct relation
between the energetic position of the impurity level and
the spatial localization of the impurity wave function.

For further discussion we use the 5-potential model of
Lucovsky and a scaled effective-mass model. ' In the
5-potential model, the localized impurity potential is ap-
proximated by a 5 function. The respective wave func-
tion with the localization parameter y reads as

Furthermore, we need the Fourier coeScients of the ex-
citon wave function. For isotropic parabolic bands the
exciton wave function in real space may be written as
(with R being the center-of-mass coordinate and p the
coordinate of relative motion)

' 1/2

mls( g )
eiKR a

e
—ap

For comparison, an effective-mass wave function (ls hy-
drogen wave function) which is scaled to the appropriate
localization ' is also discussed

1/2

PI'(r) =

These impurity wave functions yield the following
Fourier coeScients:

Here, E is the center-of-mass momentum of the exciton,
whereas the reciprocal Bohr radius a determines the ex-
tension of the exciton wave function (p denotes the re-
duced mass of the exciton)

1/2

c"(p)= Smp

(y2+p2)2

' 1/2

( 5(p)
2m' y2+p2

(22)

(18)

Using this wave function we get the Fourier coefFicients

Putting these expansion coe%cients and those of the ex-
citon into the expression (12) for the matrix element of
the electron capture, we get (for details see subsection 2
of the Appendix)

See &2ya'~2 1 1 2a K K
arctan —arctan

eVO K ~2 y2 ~2 —y2 y+k, a+a,
CX +K K

+K {a+ks ) +K

32me2y'/2O. '/2
1 4ay KM"= arctaneP' ~ (a2 y2)3 o.+k,

K—arctan
y+k,

+ (a2 y2)2
y 2+(a+k, )2+a (y+k, ) +R (y +R ) {a+k, ) +sl
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the 1s ground state of the free exciton. There is no ex-
plicit dependence of this transition probability on tem-
perature or carrier density. At Snite temperatures, how-
ever, excited states of the exciton, including scattering
states, which have a larger extension of the wave func-
tion, have to be taken into consideration. In addition, at
6nite carrier densities, many-particle e8'ects, e.g., screen-
ing of the Coulomb interaction, are expected. The
screening of the interaction potentials leads to a weaken-
ing of the excitonic binding and therefore to a decrease
of the transition probability.

For a quantitative calculation of the temperature and
density dependence of the capture coefficients we have to
average the contributions of all the excited states of the
exciton to the transition probability. For this purpose
we need the energies and the wave functions of these ex-
cited exciton states. Since we are considering a system
at finite carrier density, the exciton is no longer bound
by a Coulomb potential but rather by a screened
Coulomb potential (Debye potential ). Therefore we
have to calculate the eigenvalues and eigenfunctions of
the Hamiltonian

4J

10
4d
CY

10 10

0 2 10
TRAP DEPrH (eV)

10

FIG. 3. Capture coefFicient for an excitonic Auger process
vs trap depth with the localization parameter c of the impurity
wave function given in units of the lattice constant a. (a) 5-
potential impurity, (b) efective-mass-like impurity.

IV. INFI.UKNCK GF TEMPERATURE AND CARRIER
DENSITY QN THE TRANSITION PROSABII.ITY

The calculation of the transition probability of an ex-
citonic Auger capture process given above is valid for

From these matrix elements we can easily calculate the
transition probability and the capture coefficients for the
excitonic Auger electron capture. The results for the
capture coeScient as a function of the energetic depth of
the impurity level are depicted in Fig. 3. These results
will be discussed in detail in Sec. V.

The results for the corresponding hole capture
coefficients will not be given in detail here. Ho~ever,
their behavior as a function of the energy of the impuri-
ty level and the localization of its wave function is quite
similar to that of the electron capture case, as it is ex-
pected from the similar structure of the leading term of
(12) and (15). The relative magnitude of the electron or
hole capture coeScients of a particular impurity depends
on the contributions of the conduction and valence band,
respectively, to the impurity wave function. In order to
answer this question, one really needs to calculate the
electronic structure of the impurity from 6rst principles.

—k, r
e * f(r) =Eg(r) .

2p Er
(26)

k, +(k+k')
Hkk' k ~kk'

k, (k —k')—

+l(1+1)min(k, k') . (27)

This matrix was diagonalized numerically yielding the
eigenvalues and the eigenfunctions of H in k space
which are needed to calculate the transition matrix ele-
ments of an excitonic Auger process (12). The screening
vector k, is given by

8w8 Pl ~ —1/2
2

fin (28)

where n is the carrier density and f t&2 and f i&2 are the
Fermi integrals of order ——,

' and —,', respectively. Using
the Fourier coe%cients of the pair wave functions calcu-
lated in this way, we are able to calculate the transition
probability for each eigenstate of the exciton. The total
transition probability is then given by the thermal aver-
age over all eigenstates

In general, this equation cannot be solved analytically,
and numerical methods have to be used. After separat-
ing the radial and azimuthal parts of the equation, we
transform the radial equation to an integral equation by
means of a Fourier transformation. In this way, we get
the integral operator H(k) which is then discretized
yielding the matrix Hkk, (in excitonic units, details are
discussed in subsection 3 of the Appendix)
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with

W...=—g gee "'
W„, +4rrb, k g gee "'

W„,
n I m n I m

n(0

»+I)e """"""f d'all(e) I'+4~~k g g(21+1)e """""f, d'el 4(S» I'.
n I 0 n I 0

nyO

(30)

In this way, the capture coeScient of a deep impurity
for an excitonic Auger process was calculated as a func-
tion of carrier density and temperature in a 6rst approxi-
mation

The inhuence of the energetic position of the trap lev-
el, or equivalently the energy of the hot Auger particle,
is relatively smaB. For deep centers, the transition prob-
ability varies approximately like

V. DISCUSSIGN OF THEORETICAL RESULTS
8'- hE (32)

In this section we will discuss the inhuence of various
parameters on the capture coef6cients of deep impurities
for an excitonic Auger process. These parameters are
the energetic position of the impurity level, the localiza-
tion of the impurity wave function, and the binding en-

ergy and the Bohr radius of the exciton. In addition, we
will discuss the difFerences between the excitonic Auger
process and the "classical" impurity Auger process of
free carriers.

The effects of differently localized impurity wave func-
tions on the electron capture coefficient of an ionized
deep donor in silicon are shown in Fig. 3. Using
efFective extensions of the wave function (defined as the
radius of the sphere which comprises 70% of the charge)
of 0.5, 1, 2, or 4 lattice constants we have calculated the
capture coefficients for (a) the 5 potential and (b) a ls hy-
drogenlike wave function. From qualitative considera-
tions one expects that a stronger localization causes a
larger extension of the wave functions in k space, which
in turn should lead to an increase in transition probabili-
ty since it is considered to facilitate k conservation. In
contrast, the quantitative calculation yields a decrease of
the capture coefficients with increasing localization. The
reason for this surprising result is that for the excitonic
Auger process, the localization of the electron and the
hole within the exciton also plays an important role.
The transition matrix element (12) contains a product of
the Fourier transforms Ax & and C,&

of the exciton and
impurity wave functions, whose shape is governed by the
less localized one of the wave functions (the exciton).
The impurity wave function, which is more localized and
has less variation in k space, merely enters with its am-
plitude at k =0 decreasing with increasing locah. zation.

For both impurity models considered here, the basic
trend of the transition probability versus localization re-
lation is the same. The transition probability decreases
approximately with the third power of the localization
parameter y

(31)

The absolute values of the capture coeScients vary be-
tween about 10 and 10 cm s ' for the variation of
the localization given above. This corresponds to cap-
ture cross sections between 10 ' and 10 " cm .

8'-a = 1

3ao
(33)

Therefore, large capture coeScients are expected in the
case of silicon having a relatively smaH free exciton Bohr
radius [ao =4.6 nm (Ref. 37)].

The binding energy of the exciton does not enter
directly into the expression for the transition probability
of the exciton ground state. However, since the binding
energy determines the thermal stability of the exciton, it
strongly influences the temperature dependence of the
capture coeScients. Roughly speaking, the slope of the
decrease of the capture coe%cients at a high temperature

but for shallow levels (bE ~0. 1 eV) with a strongly lo-
calized wave function there may be even an increase of
8' with EE. For trap depths between 0.1 and 1 eV the
capture coefticients vary by about a factor of 30 which is
reasonable for silicon. The excess energy of the carrier
to be captured, therefore, has a much lower inhuence on
the transition probability than the localization of the
wave function. This is due to the fact that the decrease
of the matrix elements with increasing ~ is partially
compensated by the increasing density of states for the
highly excited Auger particle at high energies.

In earlier attempts to investigate impurity Auger pro-
cesses theoretically, " the localization of the impurity
wave function was always treated as being closely related
to the trap depth. This coupling originates from
effective-mass theory of shallow impurities ' and leads
to a strong dependence of the transition probability on
the trap depth. In contrast, deep impurities cannot be
described properly be efkctive-mass theory, and contri-
butions of many bands have to be taken into account.
The energetic position of the trap level is the result of a
delicate cancellation of many contributions and is not
directly related to the localization of the wave func-
tion. Therefore, we have treated the trap depth and its
localization as independent thus obtaining a weaker
dependence of the capture coeScients on trap depth.

As mentioned earlier, the extension of the exciton
wave function in k space is one key quantity for momen-
tum conservation in the Auger process. The transition
probability increases with the third power of a (ao is the
Bohr radius of the exciton).
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is given by the exciton binding energy.
The temperature dependence of the capture coef-

ficients calculated for a 5-potential trap by the procedure
given in Sec. IV is depicted in Fig. 4. To simplify the
understanding of the various effects involved in the tem-
perature dependence, we have done the calculation for
two difkrent values of the carrier density with and
without screening of the Coulomb interaction. At high
temperature, the results behave just as expected qualita-
tively. Due to the increasing occupation level of highly
excited states of the exciton, which are less localized, the
capture coeScients decrease towards higher tempera-
ture.

Without screening of the Coulomb interaction, the
capture coefKicient remains constant at low temperature
since all electron-hole pairs are bound forming free exci-
tons. If screening is taken into account, the capture
coefficient decreases towards zero temperature. This is
due to the fact that (at a given carrier density) the
screening vector k, is inversely proportional to tempera-
ture, thus leading to a weakening of the excitonic bind-
ing at low temperature.

The dependence of the capture coeScients on the car-
rier density, which is sho~n in Fig. 5, includes two
counteracting effects: On one hand, the statistical
weight of the continuum states becomes larger at low
carrier density. At high temperature, this should lead to
a linear decrease of the capture coefficients with decreas-
ing carrier density. On the other hand, the screening of
the Coulomb interaction at high carrier density causes a
decrease of the capture coefficients. In particular, this is
the case at low temperature (e.g. , 10 K) where the cap-
ture coeScients are up to 10 times smaller at intermedi-
ate densities (10' —10' cm ) than in the low-density
limit. At still higher carrier densities, the capture
coeScient increases again since the mean distance be-
tween free carriers then becofnes smaller than the exci-
ton Bohr radius.

41

~10 7

C3

LIL

Ld
C)
C3

4J

~ ]o-8
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C3

—with screening—- w/0 screening
y =2x 107crn '

hE = 0.5 eV

1 I l I i i i I

TEMPERATURE (K)

FIG. 4. Capture coeScients for the excitonic Auger process
as a function of temperature for two difterent carrier densities.
For clarity, the capture coeScients were calculated with and
without screening of the Coulomb interaction of electrons and
holes.

T= lOK

—- —w/0 scI eenlng
i If i i i I i I i II « & I i & & I) I I i I i I i if
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FIG. 5. Capture coefFicients for the excitonic Auger process
vs carrier density at three temperatures.

Compared to classical impurity Auger capture pro-
cesses of free carriers, " the excitonic Auger process
exhibits some remarkable differences. Whereas for the
classical process no signi6cant infIuence of temperature
is expected, " the excitonic process is rather sensitive
to temperature. The classical Auger process is always
subject to a strong dependence on carrier density, con-
trary to the excitonic one, which gives a density indepen-
dent capture coefBcient at least at low temperature. At
a given carrier density the transition probability for the
excitonic process is usually much larger than that for the
classical one due to the strongly enhanced local carrier
density within the excitons.

VI. COMPARISON %ITH KXPERIMKNTAI. RKSUI.TS

The basic idea of excitonic Auger recombination via
deep impurity levels in semiconductors treated theoreti-
cally in this paper was developed from our experimental
results on recombination via deep levels in silicon. ' We
will now compare the results of our theory with the ex-
perimental data.

A. Capture coefBcients

Let us start with a comparison of the absolute values
of the capture coeScients. For the excitonic ground
state (i.e., at low temperature and moderate carrier den-
sity), the theory yields a capture coefficient of the order
10 —10 cm s ' within reasonable limits of the local-
ization of the impurity wave function. On the other
hand, the capture coefBcients determined experimental-
ly' are of the order 10 —10 cm s ' at low tempera-
ture. This comparison sho~s that even the simple mod-
els used in our calculations lead to results within the
correct grder of magnitude.

Another interesting point is the ratio of electron cap-
ture to hole capture which can be derived qualitatively
from theory in some special cases. Let us consider the
case of gold in silicon here. As shown by Fazzio et aI.
in a recent paper, the I;2 state of the substitutional gold
in the forbidden gap is mostly p-like. Since the band



NGNRADIATIVE RECOMBINATION VIA DEEP IMPURITY. . .

states near the top of the valence band are p-like too (in
contrast to the s-like conduction band), we may assume
that the impurity wave function is mostly composed of
valence band states in this case. Using the general re-
sults for the transition matrix element given in Sec. II,
we conclude that the capture of holes into this level
should be more efficient than electron ca'pture. This is in
excellent agreement with the experimental results which
indeed show that hole capture into the ~old donor level
is more efficient than electron capture. '"'

riment
ory

B. Tenyerature dependence

The temperature dependence of the carrier lifetime in
silicon doped with deep recombination centers was one
of the key experimental results for the development of
our model. It was discussed in detail in Sec. IVA of
Ref. 14. For a comparison with theory, the results ob-
tained from high resistivity samples are suited best, since
no modification of the real temperature dependence by
bound exciton for~ation is expected. '" Since the experi-
mental lifetime values have always been evaluated in the
low excitation limit, it is well justified to calculate the
theoretical curve in this limit as well, i.e., to neglect the
screening of the Coulomb interaction by free carriers at
high carrier density.

In Fig. 6 the experimentally obtained temperature
dependence of the carrier lifetime in the case of Si:Fe is
compared to the results of our theory. The absolute
value of the carrier lifetime st low temperature has been
fitted to the experimental data since theory contains too
many unknown parameters to give a priori values of the
lifetime. However, as easily seen, we obtain excellent
agreement between experiment and theory.

C. Majority carrier density

Experimentally, we have found that the capture
coefficients of deep impurities for electrons and holes are
independent of majority carrier density for temperatures
between 70 and 300 K.' At least at low temperature
the results of our theory are in good agreement with this
finding: At 70 K there is in fact only a weak variation

j r r r 1 r I rli r r r I I l lrt r r I rr llew

10'~ 1 O16 1 O17 18

MAJORITY CARRIER DENSITY (cm s)

FIG. 7. Comparison between measured (Ref. 14} and calcu-
lated carrier density dependence of the carrier lifetime. (Sam-
ple prepared from silicon doped with boron as shallow dopant. )

of the capture coef6cients with carrier density as calcu-
lated for an excitonic Auger process (Fig. 7). At higher
temperatures (e.g., room temperature), however, the cal-
culated carrier lifetime increases towards lower density
below 10' cm which is clearly not observed experi-
mentally. This increase is to be attributed to the exciton
formation process which is a bimolecular reaction lead-
ing to s higher probability of exciton formation at larger
carrier densities.

%'hereas at low temperature the experimental results
on the carrier density dependence of the recombination
are reasonably described by our theory, there is some
discrepancy at room temperature. This discrepancy msy
be attributed to the approximations involved in our
theory. A better treatment of the many-particle effects
occurring at high carrier density ' within our theory
should lead to a better agreement between theory and
experiment.
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FIG. 6. Comparison between experimental temperature
dependence of the carrier lifetime (Ref. 14) and that calculated
for excitonic Auger recombination. The right-hand scale gives
the lifetime normalized to its low-temperature limit.

FIG. 8. Carrier lifetime vs carrier density near the Mott
transition in a high excitation experiment (Ref. 14). The
theoretical curves for excitonic Auger recombination are calcu-
lated for two values of the impurity localization y.
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D. Excitation dependence at lo~ temperature

The behavior of the recombination via deep levels un-

der strong optical excitation has been investigated at low
temperature (T &60 K).' The main experimental result
was that at high excitation the recombination becomes
considerably slower than at low excitation.

The result of a typical rneasurernent on iron-doped sil-

icon at 30 K is shown in Fig. 8. For this figure, the
original intensity versus time data' have been converted
to a lifetime versus carrier density plot in order to sim-

plify the comparison with theoretical results. The life-

time values were obtained by 6tting an exponential to
the neighborhood of every data point, whereas the abso-
lute value of the initial carrier density was estimated
from the experimental excitation conditions.

The solid lines in Fig. 8 were calculated from our
theory for two values of the impurity localization param-
eter y. We obtain a good qualitative agreement of the
calculated curves with the experimental result. In
theory as well as in the experiment there is a consider-
able increase of the lifetime for carrier densities above
10' cm

It is interesting to compare these results with the so-
called "Mott criterion" ' which should give the upper
density limit for the existence of free excitons. At 30 K,
as realized in this case, the "Mott density" is about
5g10' cm . From Fig. 8 we readily see that even at
densities below this limit an increase in carrier lifetime
takes place. This is because even below the Mott density
the binding energy and the localization of the excitons
decrease smoothly. Above the Mott density the
Coulomb enhancement of the Auger transition rate is
further reduced accompanied by an increase in lifetime.

At lower temperature, in the region of electron-hole
droplet (EHD) condensation, the experiments revealed'
that the recombination of the EHD, which is normally
determined by band-to-band Auger recombination,
shows no significant influence of the impurities whereas
the free exciton lifetime is strongly shortened, This is
also reproduced by our theory which predicts that the
capture coeScients of the recombination centers are
lower by more than a factor of 10 for the high-density
EHD (n =3.5X10' cm ) (Ref. 44) than for a low-

density excitonic phase.

VII. CGNCI. USIGN

In this paper we have presented a theoretical study of
the properties of excitonic Auger capture processes into
deep impurity levels in semiconductors. This investiga-
tion was strongly motivated by our experimental results
indicating that such excitonic Auger processes are the

dominating recombination mechanism in silicon contain-
ing deep recombination centers. ' We have derived the
general formulas for the matrix elements of excitonic
Auger capture. Using two simple impurity models,
namely Lucovsky's 5-potential model and a scaled
efkctive-mass model, ' we have quantitative estimates
for the capture coeScients. In order to study the
inhuence of temperature and carrier density on excitonic
Auger processes we have also included some many-body
effects (screening of the Coulomb interaction) in a simple
approximation.

Generally the results of our calculations are in excel-
lent agreement with our experimental results reported
earlier. ' This confirms our argument that excitonic
Auger capture is one of the most important mechanisms
for nonradiative recombination via deep impurity levels
in semiconductors.
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APPENDIX

1. General results

The derivation of the matrix elements for excitonic
Auger capture into deep impurity levels is now demon-
strated for the case of the capture of an electron into a
donorlike center. The analogous cases of hole capture
and of acceptorlike centers may be treated in a similar
way.

By inserting the wave functions (8), (9), and (10) as
well as the interaction potential V2 (11) into the general
expression (7) for the matrix element we get for the lead-

ing term

1 3 3
—iP'r

I

Mi — d r, d r2 g C„pe u, p(ri)
Vo n, P'

Now we exchange the integrations over r and P, getting

—k, r&

EP'2

iPr l
i (K —p)r2g Ax pe p(u)eriuU x p(r2)

P

(Al)

—k, r~
1 —IPP

I
—P& l

i (K —P)r2'" 2= p- X X Cnp'~x', p d "id rze unp'(r& )e u, g(r2) e u,p(ri )e u, x p(r2) .
O~,P'P GT2

The integral over. r) can be executed immediately, yielding

—k=1 —i~r2 ~ p p ' i(K —p)r~
M2 —— g g C„*&Ax+„,5pp. d rze ' '(urz) — e 'u„x p(r2) .

o nP'P Ef2
(A3)
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In order to calculate the remaining integral over r2, the
Bloch factors u, k are expressed by a Fourier series

u, l, (r)= QB„L(k)e' ",
L

F,', = I d r u,'„(r)u, x )t(r) .
0

2. Special impurity models

(A7)

now allowing for the calculation of the integral I over r2

I= g B„q(lr)B„r (K —P)
4me

L,L'

1

k, +(K P t—r L——L')2— (A5}

Applying a usual approximation, we assume that the
main contribution to this integral comes from the 6rst
Brillouin zone, i.e., I. =L, '=0, getting

' 1/2
Q sea

[az+ (K P)2]2

whereas those of the impurity wave function (5-potential
model) are given by

' I/2

The calculation of the transition matrix element for an
exciton in the 1s ground state and a 5-potential impurity
proceeds from expression (12). Since the overlap integral
F,„contains only functions of the same band it is set to
unity. The Fourier coeScients of the 1s exciton wave
function reads as

4me r' c'KP uu cP2— 2 2
p k, +(K —tr —P)

(A6)
4m'

y'+p' (A9)

with the overlap integral
If we neglect the center-of-mass motion of the exciton
(K =0) we get for the matrix element

' 1/2
16e cx

V.

' 1/2
2 2

k2+(~+P)2 (a2+P2)2 yz+P2 y2+~2

p 1 k +(a+P) „p
o (a2+p2)2 y2+p2 I 2+(~ p)2 y2+~2

After performing the angular integration this yields
1/2 .

16m e o, y
"V. - 2- (Al 1)

The remaining integral over p requires a lengthy calculation, finally yielding

Srre &2ya 1 1 2a K K—arctan
~2 y2 ~2 y2 y+k, CX+ ks

K 0! +/C

(a+k, ) +tr y +a.
(A12)

3. Effects of carrier density and temperature

In order to include the inhuence of carrier density snd
temperature into our calculation we need to know the
exciton binding energy and wave function at finite car-
rier density. In a first approximation these are calculat-
ed by solving the Schrodinger equation for a particle in s
screened Coulomb potential (in excitonic units)

d e * I (I +1)
Qp2 p p2

u (r) =Eu (r) . (A15)

By means of a Fourier transformation this equation is
converted into sn integral equation which is discretized
and solved numerically. Therefore we have to calculate
the eigenvalues and eigenvectors of the matrix

—k r—b, ——e ' lt(r)=EQ(r) . (A13)
k, +(k+k'}

H„„=k 5„„=1n +1(l +1)min(k, k') .
k, +(k —k')

This equation may be separated into radial snd azimu-
thal parts. For the radial part we set

yielding

The computed eigenvalues give the energies of the exci-
ton states snd the corresponding eigenvectors may be in-
serted directly into the transition matrix element yield-
ing the transition probability as a function of the quan-
tum numbers.
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