
PHYSICAL REVIE% 8 VOLUME 37, NUMBER 5 15 FEBRUARY 1988-I
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%'e model nonequilibrium transport in a GaAs-Al„Ga~ „Asquantum-well structure using an

ensemble Monte Carlo simulation of the full multisubband system in which we include electron-
electron (e-e} scattering explicitly into the calculation. The e-e scattering cross section is calculat-
ed using the Born approximation and introduced into the transient Monte Carlo simulation via a
self-scattering technique. This interaction is found to be especially effective in transferring energy
between diFerent subbands, thus thermalizing the carriers within a picosecond. The model de-

scribed herein is applied to the study of laser-excited carriers in a quantum-well system and to the
response of such a system to high parallel electric fields. In the case of laser excitation, e-e in-

teraction may dominate the initial evolution, reducing the cascade of carriers via optical-phonon
emission.

I. INTRODUCTION

Recent time-resolved bleaching studies of the initial
relaxation of photoinjected carriers in bulk GaAs (Ref.
1) and GaAs-A1„Ga, „As(Ref. 2) quantum wells (QW)
have shown the apparent evolution of the electron distri-
bution as s function of time on the subpicosecond time
scale. On this time scale, the electron (and hole) distri-
bution functions evolve from a highly nonequilibrium
Gaussian pulse centered around the excitation energy in
the band to a heated Maxwellian (thermalized) distribu-
tion on the order of a few tenths of a picosecond. This
time scale is short enough that polar-optical-phonon
(POP) scattering has not relaxed a significant portion of
the energy, and thus the distribution is thermalized
through intercarrier interaction. Time-resolved photo-
luminescence measurements have also been reported
which show that the distribution function on the pi-
cosecond time scale is thermalized and Fermi-like.
However, under certain conditions, cw luminescence ex-
periments show a cascadelike distribution arising from
successive phonon emission of electrons as they cool.
In these experiments carrier-carrier scattering is less
dominant snd a nonthermal distribution is maintained.

In the present work we model the picosecond time-
scale dynamical behavior of electrons confined in s quan-
tum well using an ensemble Monte Carlo simulation
which includes e-e scattering, degeneracy, and the in-
clusion of nonequilibriuxn phonons. %'e previously used
this model to simulate the dynamics of photoexcited car-
riers in a QW system, the results of which showed that
carrier cooling in such systems is controlled by hot-
phonon buildup. * Here we present details of the model
used in the previous work snd apply it to the study of
the subpicosecond response in quantum-well systems to

both optical and electrical excitation. In the present pa-
per we wi11 concentrate on the model for e-e scattering
in a QW system and reserve discussion of hot phonons
for future work. In the next section (II), details of the
Monte Carlo transport simulation for a model QW sys-
tem are given. The following section (III) will show the
results of this simulation for the steady-state distribution
function of electrons subject to an applied electric field.
Results will then be presented for the carrier evolution
under laser excitation in the presence of e-e scattering
assuming temperature-independent screening. This evo-
lution, which depends substantially on the electron den-
sity, is found to evolve as a cascade of pkonon emission
only for very low injected densities (10'o cm ). For
higher densities, e escattering b-roadens the injected car-
rier energy suSciently fast to mash out peaks in the dis-
tribution arising from phonon emission. Due to the high
rate of intersubband energy exchange, a common energy
is achieved between the difFerent subbands shortly after
the end of the laser pulse.

II. MODEL

In the present section we describe the model used in
calculating the nonequilibrium response of s quantum-
well system using an ensemble Monte Carlo simulation.
Results of Monte Carlo simulation on transport in
quasi-two-dimensional systems have been reported previ-
ously by other authors. " In our model for the
quantum-well system, all scattering rates are calculated
from their two-dimensional forms including both intra-
and intersubband scattering processes. %e have includ-
ed the eS'ects of polar-optical-phonon scattering (bulk
modes), intervalley scattering with the satellite L valleys,
also assumed quantized, impurity scattering (from a
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sheet of impurities' ), and finally electron-electron
scattering. Degeneracy of the final state is also account-
ed for in our simulation so that low-temperature trans-
port may be modeled. Typically, in the ensemble Monte
Carlo we model the motion of 2000-5000 electrons
whose free Bight times and scattering events are generat-
ed stochastically from the various probabilities for
scattering and the random-number generator on the
computer. From this we tabulate the instantaneous dis-
tribution function of the electrons (and phonons when
nonequilibrium effects are included) from which various
macroscopic quantities may be calculated. In the follow-
ing, we detail the model employed in the description of
the quantum-well system and of the various scattering
mechanisms. We also discuss the algorithm used to in-

corporate multisubband e-e scattering and degeneracy
efTects into the Monte Carlo simulation.

A. Quantum-well system

As a model quasi-two-dimensional system, we consider
a finite square-well potential defined by the conduction-
band onset between undoped GaAs and A1023Ga07~As
which we take as 0.28 eV. The subband energies and
eigenfunctions in the central valley are calculated from
the solution of the one-dimensional efective-mass equa-
tion for this potential. The envelope functions then
satisfy the separable form'

%(R ) =g;(z)e'"'//I,

where R is the position vector, r and k are the position
and wave vectors in the plane parallel to the well, z is
the normal direction, and A is the normalization area.
The scattering rates discussed below are calculated fully
numerically, and thus we are not limited to a simple
square we11 employed here for simplicity. Results using
a full self-consistent calculation including exchange and
correlation efFects have been discussed elsewhere. ' We
consider the L valley as quantized although the barrier
height in the upper valleys is not well known and is ex-
pected to be less than that of the central valley. Here we
assume the same barrier in the I valley as the central
valley (0.28 eV) and assume solutions in the form of
(2.1).

8. Polar optical scattering

Longitudinal polar-optical-phonon scattering is a
dominant energy-loss mechanism in GaAs, at least at
high carrier temperatures. In the quantum well we as-
sume that the two-dimensional (2D) electrons interact
with bulk phonon modes via the Frohlich interac-
tion. ' ' Quantization of the phonon modes (or slab
modes) has been considered to some extent by Riddoch
and Ridley, ' who found significant deviations in the
scattering rates for well widths less than about 100 A.
The efFect of screening of the longitudinal-optical (LO)
interaction is not clear, especially in 2D. Static screen-
ing leads to gross overestimation of this interaction, and
thus a full dynamical calculation is required. ' ' lf one
assumes only bulk screening of longitudinal modes, then
the matrix element for scattering is given by'

2~% eEo(q +q, )
~

&I+q,~ ~H [k, i) ~'=
vm*(q +q, +q, )

X(n + —,'+ —,')
~ G;, (q, ) ~',

(2.2)

where q and q, are the parallel and normal components
of the phonon wave vector, q, is the 3D inverse screen-
ing length, m' is the eft'ective mass, i and j denote the
initial and final subband indices, and the e6'ective Aeld

eEo is given by

m'e Acro
eF0 ——

$2
1 1

PCO

(2.3)

with ~0 and ~„the low- and high-energy dielectric con-
stants, and Acro is the phonon energy. The overlap in-
tegral

~
G,, (q, )

~

is given by

i G;, (q, )
i

= f dz f dz'pj(z)pj(z')e *

(2.4a)

p;, (z) =g;(z)(, (z), (2.4b)

between initial and final subbands. This function, which
is related to the momentum uncertainty due to the spa-
tial confinement of the electrons, is peaked for q, corre-
sponding to the parabolic momentum associated with
the initial- and final-state subband energies. By convert-
ing the sum over q, to an integral, the q, dependence
may be integrated analytically to yield a smooth function
which is better suited for numerical evaluation of the
scattering rate. Thus we define the function

2 2
(q +q, )

I(q, z, z')= dq, 2e ', (2.5)~ (q2+q2+ 2)2

which may be evaluated by contour integration to yield

exp[ (q'+q,—')'/'
~

z —z'
~ ]

I(q, z, z')=
(q +q, )'

I
z —z'

I q'
X

2(q 2+ q 2) 1 /2

2

2(q +q, )
(2.6)

which in the unscreened case (qo ——0) gives the same re-
sult as Price. ' The total scattering rate may thus be
written

HJ(q )
+(n +1)f d8

2 1, (27)
(

2 +q 2)1/2

where the function 0, is defined from the integration
over the envelope functions

H/(q) = f dz f dz'p, , (z)p,*(z')I(q, z,z').
(q 2+ 2)1/2

(2.8)
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with I (q, z,z') given in (2.6). The + and —signs on q in
(2.7) refer to absorption and emission, respectively, for
the scattered wave vector given by

26k)~ m
q =

i
k —k'

i

= 2k'+

1/2
2QP1 m—2k k'+

fico,
' =irido+�(E; EJ )—,

(2.9a)

(2.9b)
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where Ace,z serves as an effective phonon energy which
depends on the initial and 6nal subband energies E; and
E . The scattering rate (2.7) is shown for a 150-A well
in Fig. 1 where i =1 and we sum over j (total scattering
rate from the bottom subband). For comparison we plot
the 3D rate as well. %e take q, =0 for this calculation.
As seen in Fig. 1, the 2D rate is a piecewise approxima-
tion of the 3D rate due to the discontinuities in the 2D
density of states at the various subband energies.

If nonequilibrium phonons are considered, the phonon
occupation factors are no longer independent of q and q,
and thus cannot be taken as constant. In the Monte
Carlo simulation we can account for this dependence
through the use of self-scattering. Here, n„ is replaced

0

by its maximum value during the simulation (which
must be set a priori}, and after every scattering event a
rejection technique is used to compare the maximum
scattering rate to its actual value determined by the in-
stantaneous value of the phonon distribution.

,
"

z ',"fz (2.11)

where v; and vf refer to the initial and 6nal valley en-
velope functions. The total scattering rate is thus given
by

E;„(n +-,' T —,
' )I;,

l;, (k) = g iiif"
2PCOlyf1"f

(2.12)

with mf' being the effective mass in the anal-state valley
and the sum is over all the 6nal-state valleys. %e con-
sider a GaAs(100) layer and thus the subbands of the
four satellite L valleys are degenerate.

FIG, 1. Total scattering rate due to POP scattering for a
150-A well for electrons in the first subband (solid line). The
dashed line is the 3D scattering rate.

C. Intervalley scattering

I &ili, I
';, = (2.10)

where E;„is the intervalley deformation potential, p is
the mass density, and m;„ is the intervalley phonon fre-
quency. I;„is an overlap integral given by

lntervalley scattering for two-dimensional systems has
been treated previously in connection with Si inversion
layers. In the GaAs-A1, 6a, ,As system, ii is not
clear to what degree quantization plays a role in the
upper L and X valleys of the GaAs as the band offset is
expected to be smaller there. For simplicity, we consid-
er only quantized upper L valley states in the GaAs with
the same barrier as the central valley. For zeroth-order
interaction, the matrix element for scattering is given by

D. Electron-electron scattering

The e-e scattering rate in bulk materials has been pre-
viously calculated us1ng the Born approximation 21-24

This method has been criticized as overestimating the
scattering rate by as much as 5 times in sodium com-
pared to computation based on the more-accurate
phase-shift method, although the degree of this error in
semiconductors is not known. As a 6rst approach to
this problem in a quantum-well system, we will adopt
the Born approximation in our calculation.

%e start by considering the scattering rate between an
electron in the well with wave vector k in subband i and
a second electron with wave vector ko in subband j. The
Anal states of these two electrons are k' and m for the
f1rst electron and ko and n for the second electron. The
unscreened matrix element between these two initial and
6nal states may be written

—i(k-r+ko r') i(k r+k. ro)2

H„"„,„„,= f dz f dz' f dr f dr'
z &&i

g;(z)(J(z')g" (z)g„'(z') .
0' 0 K —oo —oo +( i)2]i/2 ' J (2.13)

Introducing the two-dimensional Fourier transform of
the Coulomb potential in (2.13), the matrix element be-
comes

2ire 5(k'+ko —k —ko)
Hk kg k kl

0 0 AKq
+ijmn(q) (2.14)
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with q =
I
k —k'

I
and the form factor given by

I'i „(q)=f dz f dz'g, (z)g (z').

Xg* (z)g„'(z')e

(2.15)

2~",
,„,f„,I F;... I s —s'

I
»

I

'
A

„

( Is —s'
I
/2+qo)'

(2.19)

This form factor appears in the 2D random-phase-
approximation (RPA) dielectric function' and is some-
what similar to that appearing in phonon scattering' as
well. As will be discussed later, this form factor is im-
portant in determining the relative magnitude of the e-e
scattering and favors intrasubband over intersubbarid
transitions. Screening in the multisubband 2D system is
quantitatively diScult, requiring an inversion of the
dielectric matrix in the RPA. For single-subband stat-
ic screening, the RPA dielectric function in the long-
wavelength limit is characterized by a single wave-
vector-independent constant (the inverse screening
length) which is independent of carrier density at low
temperature and proportional to density under nonde-
generate conditions. The square of the matrix element
is thus given by

and the argument of the 6 function between initial- and
final-state energies is

$2g 2

5(E; E/)=—5
4m*

g2 /2

4m*
(2.20)

where q is related to 8, the angle between g and g', by

q= Is—s'I /2

[2g2+gz 2g( 2+g2 )1/z cosejl/2» (2.22)

with E, =E;+E —E —E„.This 5 function may be
used then to reduce the integral over g' to

4~e m*I; (k)= g' f/(ko) f d8
A3AK2 k, J,

„J' 0 (q+q, o)2

(2.21)

4m e 5(k'+ko —k —ko)

A s (q+qo)
(2.16) and go is 4m 'E, /fi . In the case of intrasubband

scattering, go =0 and q is simply

with qo the inverse screening length in two dimensions.
For simplicity, we assume qo is given by the low-
temperature limit in the present results. When
temperature-dependent and multisubband efkcts are in-
cluded in qo, the e-e scattering rate is enhanced due to a
decrease in the screening constant. Results in which we
consider temperature-dependent and multisubband
screening are reported elsewhere. In the Born approxi-
mation, the total scattering rate out of the first electron
in an initial state k, i to a final state in subband m is then
calculated from the sum over the final states

q =g sin&» . (2.23)

IO

i/mn=/II/

The total scattering rate (2.21) depends on the square
of the form factor (2.15) which plotted in Fig. 2 for the

4

r,.(k)= g' f, (ko) f dko

y5(E, —E, ),

where use has been made of the 5 function in (2 16) to
eliminate the sum over k'= k+ ko —ko. The 5 function
in (2.17) represents conservation of energy between the
initial and Snal state and fj.(ko) is the carrier distribu-
tion function. The prime on the summation indicates
that the sum is only over electrons with antiparallel spin.
Thus we neglect scattering with carriers at parallel spin
which is lower in magnitude than the scattering due to
antiparallel electrons due to exchange considerations.

As in the three-dimensional case, it is useful to intro-
duce the relative wave vectors

-I
lO

U
2

lO

U

IO

- IZIZ, /3/3,
/4/4

//ZZ, /ZZI

I4Z3', /3Z4,
/3ZZ, I'ZZ3
I /33, /33/
IZ/4, /4/Z-
//3/, I I I3
//44, !44/

TRON

OR

I I I I t

I.O 2.0 5.0 4.0 5.0 6.0

g=ko —k, g'=ko —k'

so that (2.17) may be rewritten

(2.18) FIG. 2. Electron-electron form factor as a function of wave
D

vector for a 150-A square @veil. The indices ijmn label initial
and final subband states.
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dominant terms involving the first electron in the lowest
subband. The dominant term occurs for pure intrasub-
band scattering (ijmn =1111) in which the initial and
final subband for both electrons is the lowest subband.
Of similar value is the form factor for intrasubband
scattering in which the initial subbands of the two elec-
trons are difrerent, although they stay within their
respective subbands after scattering (i =m and j=n ).
This inelastic scattering between subbands allows energy
to be transferred from hot subbands to cold subbands so
that a uniform energy is quickly reached between
di8'erent subbands. Since go=0 for intrasubband transi-
tions, the scattering rates are peaked for q =0 and
small-angle scattering is favored.

The intersubband scattering form factor is much lower
in magnitude and vanishes for q =0 due to the
orthagonality of the eigenfunctions in (2.15). Strong in-

terference efFects occur in (2.15) so that certain combina-
tions of initial and 6nal subband states result in negligi-
bly small form factors. For the 150-A well shown in
Fig. 2, the dominant intersubband form factors are
shown. The transitions 1221, 1331, and 1441 are ex-
change transitions in which the first and second elec-
trons exchange subbands. Such transitions are similar in
e6'ect to intrasubband scattering as the net particle Aux

from one subband to another is zero. The other transi-
tions do, however, allow a net intersubband particle
diffusion. However, as shown in Fig. 2, the form factor
is almost 2 orders of magnitude less than the intrasub-
band value, and thus the mass transfer rate between sub-
bands may be considerably reduced leading to transient
bottleneck effects in the subband populations when the
2D system is driven far from equilibrium. The reduction
in intersubband scattering is further enhanced due to the
nonzero value of go in the denominator, which decreases
the scattering rate. However, a similar form factor to
(2.15) multiplies the screening constant as well, ' so that
reduced screening could enhance the intersubband rate.
More work is needed on the full multisubband screening
in order to determine which efFect dominates.

K. Monte Carlo simulation

%e have included the various scattering mechanisms
discussed above into the framework of an ensemble k-
space Monte Carlo simulation. Monte Carlo techniques
as applied to semiconductor transport have been re-
viewed by Jacoboni and Reggiani. For the quasi-two-
dimensional QW systems, we include both intra- and in-
tersubband scattering in the simulation, both within the
same valley and between difFerent valleys. Only two-
dimensional transport has been considered in the plane
parallel to the well, and thus vertical transport efFects
over the well (such as real-space transfer) are not includ-
ed in the simulation. For the results presented here, we
neglect any screening of the phonon modes and thus

q, =0 in (2.7). Typically, we follow an ensemble of 5000
electrons from which we calculate the electron distribu-
tion function, the mean velocity, and mean energy in
each subband.

The exclusion principle modifies the scattering rates

4m e m*X,rmSX, EE 37lKqo
(2.24)

where N, is the total sheet density of the QW and the to-
tal rate has been multiplied by —,

' due to neglect of paral-
lel spin scattering. This scattering rate is used to gen-
erate the free Aight time during the simulation. Similar-
ly, for intersubband scattering, the maximum scattering
rate from an initial subband i to a final subband m may
be written

F~ M'
maX, Em ~ maX, iirmaX" SUb (2.25)

where X,„bis the total number of subbands, and I'. ,„

is
the maximum value of the form factor, (2.15), for inter-
subband scattering (which is much less than unity as
seen in Fig. 2). When e-e scattering is chosen, another
electron is chosen at random from the ensemble, and the
scattering angle is chosen at random according to the
Aat distribution associated with the maximizing function.
Using another random number between zero and the
maximum value of the integrand (1/qo), the actual
value of the integrand is compared to that of the random
number, and the scattering is rejected if the integrand is
less than this number. In this case, the electron and its
counterpart are then allowed to continue on their origi-

discussed previously, and this e8ect must be included in
the nonequihbrium behavior at low temperatures and
high carrier densities. The inclusion of this efFect in a
Monte Carlo simulation has been reported by Bosi and
co-workers In the multisubband QW system, we ac-
count for degeneracy by tabulating the electron distribu-
tion function within each subband during the simulation
using a self-scattering rejection technique to accept or
reject scattering events based on the final-state occupan-
cy. ' Using this technique (and including e-e scattering
discussed below), the equilibrium distribution function in
the Monte Carlo simulation attains the proper Fermi-
Dirac function of the multisubband system.

The inclusion of hot phonons in the simulation is ac-
complished through a detailed balance of LO-phonon
emission and absorption from which the phonon distri-
bution function is determined. From this distribution
function, the electron-phonon scattering rate is subse-
quently updated through (2.7).7 s A variable self-
scattering is used to account for the change of this rate
during the simulation.

We include e-e scattering into the QW simulation us-
ing a modification of the self-scattering technique pro-
posed by Brunetti et a/. for the bulk. Here we take
the full multisubband scattering rate given by (2.21) and
maximize the quantity inside of the integral, i.e., choose
a maximizing function that is integrable, calculate the
total scattering rate based on the new function, and ac-
count for the actual value of the function when the final
state is chosen through a rejection method. For the in-
trasubband scattering rate in (2.21), we note that the in-
tegrand is sharply peaked at q =0 corresponding to 8=0
and 2m. Since the form factor is always unity or less, the
maximum value of the integrand is always less than
1/qo. Thus, the maximum scattering rate is given by
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FIG. 3. Histogram of the various scattering rates in the
Monte Carlo simulation.

nal fhghts unchanged. If the random number is less
than the integrand value, then the scattering is accepted,
the momentum and energy changed accordingly, and a
new Aight generated. In this technique, considerable
computation time is lost via self-scattering events. De-
pending on the exact electron dynamics, the number of
self-scattering events may be 10-100 times the number
of real events. However, considerable savings in time is
achieved because the scattering rate does not have to be
continually recalculated as the electron distribution
function changes. Also, the algorithm is quite simple to
implement in the context of the usual Monte Carlo pro-
gram. Degeneracy effects are also included by checking
the occupancy of the 6nal states of both electrons and
using a rejection technique as discussed earlier.

In general, the total number of particles is not con-
stant (e.g., during optical injection). Also, the screening
constant depends strongly on the electron distribution
which changes as well, and thus the e-e scattering rate
changes during the simulation. Therefore, at the begin-
ning of the simulation, the maximum e-e scattering rate
which will occur during the simulation must be known.
During the simulation, the e-e rate will vary within this
maximum rate. The tabulation of all the scattering rates
used to generate the termination of the electron free
Nights is shown schematically in Fig. 3. When the free
fhght of the electron is ended, a random number between
0 and I is chosen, selecting one of the mechanisms
shown in Fig. 3. As shown, self-scattering is divided be-
tween e-e scattering and the other scattering mecha-
nisms. If e-e scattering is chosen to terminate a Right,
we 6rst check to see if this is a real event or self-

scattering. Then as discussed above, a second possibility
for self-scattering arises from the choice of 6nal state
and degeneracy. The accuracy of this method is im-
proved as the number of simulated particles is increased
and if time steps that are shorter than the collision time
are used (the time over which the distribution can
change appreciably). We use a time step of 10 fs in the
present work which satis6es this requirement. Satisfac-
tory results were obtained with 5000 electrons, and the
results were not found to vary with the inclusion of
more particles (only the statistical uncertainty is im-
proved}. We include e-e scattering only for the central
valley electrons and neglect this interaction in the L val-
ley.

III. RESULTS AND DISCUSSION

A. Hot-carrier behavior in a uniform electric Seld

Electron-electron scattering exchanges energy between
carriers thus redistributing the energy gained by an elec-
tric field and driving the electron distribution function
towards a Maxwellian-type distribution. In polar semi-
conductors, the threshold in energy for optical-phonon
emission results in a sharp increase in the scattering rate
which tends to deplete the population of electrons above
the threshold energy. Thus, in the presence of strong
polar-optical-phonon scattering, the electron distribution
function cuts off at the emission threshold, while e-e
scattering has the efkct of repopulating the high-energy
tail. Figure 4 shows the steady-state electron distribu-
tion function in the lowest subband with and without e-e
scattering in a uniform field of 0.5 kV/cm at 20 K. A
carrier density of 4&(10" cm was assumed which is a
typical value for GaAs-Al Ga& „As quantum wells.
Hot phonons were not considered in the results in which
electric 6elds were present. Without e-e scattering, the
distribution function is well represented by a two-
temperature model in which electrons above the thresh-
old are depleted to lower energies via phonon emission.
The kink in the distribution function is removed with e-e
scattering present due to inelastic scattering above the
phonon threshold. Such a result has been observed in
bulk Monte Carlo simulation of e-e interaction as well.

In Fig. 5 we show the electron occupation versus ener-

gy for a 2584 well with four subbands in the well. The
energies of the subband levels are shown by the arrows
in Fig. 5. The normalized electron density (which is the
distribution times the density of states) is shown for
three di8'erent applied electric 6elds corresponding to the
fields used by Shah et a/. in studying the carrier heat-
ing in similar width quantum wells using photolumines-
cence (PL}. At the first excited subband energy, a kink
in the density is observed in Fig. S due to the presence of
carriers in the second subband, similar to the results of
PL studies. We see very little structure in the occupa-
tion at the next subband however. In fact, we see a de-
pletion of the higher subbands due to the fact that elec-
tron may transfer from a higher subband to a lower one
by phonon emission for any energy (unless the subband
spacing is less than the phonon energy). However, to
make an intersubband scattering to a higher subband via



S. M. GOODNICK AND P. LUGLI 37

E=0.5kV/cm

L
U

P

C
«

V

20 40 60 S0 IOO
E(me V)

FIG. 4. Steady-state electron distribution function for an
applied field of 0.5 kV/cm in a single subband system.

phonon emission requires that the electron be one pho-
non energy above the subband energy itself. Since at
low temperature absorption is negligible, there is a ten-
dency towards depleting the bottoms of the higher sub-
bands. This is still found to be true with e-e scattering
present in the constant screening approximation as the
intersubband e-e scattering rate is less than that of POP
scattering.

The carrier "temperatures" are found from the high-
energy slope as shown in Fig. 5. We And values of 68,
105, and 152 K for electric fields of 100, 500, and 750
V/cm, respectively. Note that these temperatures do
not correspond to the average carrier energies due to the
erat'ect of degeneracy, the latter values being larger. The
electron temperatures measured in PL studies are 100,
145, and 165 K for the same fields which are con-
sistently higher than those calculated here. The reason
for this difkrence is not understood at this time, al-
though screening of the LO interaction or hot phonons
could play a role.

In Fig. 6 we show the transient electron drift velocity
as a function of time for an electric field of 5 kV/cm ap-
plied at time t =0 to an electron gas originally at 77 K
in equilibrium. The results are shown both with and
without e escatte-ring and the difference is very marginal
due to the fact that the total wave vector of both elec-
trons is conserved for e-e scattering, and therefore no
change in the momentum in the direction of the field is
expected. As shown by the dashed line of Fig. 6, elec-
trons are accelerated quasiballistically during the first
0.2 ps even though numerous e-e collisions have oc-
curred during this time interval.

8. Photoexcitation into the quantum well
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Numerous investigations have been made of the relax-
ation of hot carriers injected into multiple quantum
wells. The initial relaxation dynamics are strongly
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FIG. 5. Steady-state distribution function for a 258-A well
for various applied electric fields. The arrows denote the ener-
gies of the first and second excited subbands.
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FIG. 6. Velocity vs time after an applied electric field of 5
kV/cm to a 100-A mell (two subbands). The arrows denote the
onset of intersubband transfer (first arrow} and intervalley
transfer. The dashed curve is the velocity free acceleration of
the carriers without collisions.
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influenced by e-e interaction. If e-e scattering is weak,
the injected electrons relax in a cascade of subsequent
polar-optical-phonon emission. The nonequilibrium dis-
tribution would appear as a series of peaks starting at
the injection energy and separated by %coo to the bottom
of the band. If e-e scattering is strong, then the elec-
trons are scattered several times before optical-phonon
emission and thus memory of the initial injection energy
is eliminated. In this case„electrons cool by phonon
emission from a thermalized distribution rather than a
cascade.

To study the initial dynamics, we simulate the injec-
tion of carriers monoenergetically into the conduction
band of the quantum well. To model the time depen-
dence of the carrier injection through femtosecond laser
excitation, we add carriers monoenergetically into the
Monte' Carlo simulation according to the following equa-
tion:

Here e-e scattering exceeds the phonon emission rate
after only 0.5 ps. Phonon absorption due to nonequili-
brium phonons becomes important at shorter times due
to the higher injected carrier density which generates a
greater number of hot phonons.

In the simplified model for screening used here, the
screening constant does not depend directly on density
which is characteristic of low-temperature screening in a
purely two-dimensional system. Thus, the scattering

2/crn

G(t)=Ia cosh '(2 634t/. t ), (3.1)

where Io is the incident intensity which we choose to
match the total number of injected carriers, and tz is the
half-width of the pulse. Extra particles are added to the
simulation during each time step according to (3.1}. To
account for spectral broadening of the pulse, the carriers
are introduced according to a Gaussian distribution 20
meV wide around the injection energy, Hot phonons are
also included here due to their dominant efFect in the en-
ergy relaxation.

In Fig. 7(a) we show the result for a 500-fs pulse and a
relatively small injection density of 5&10' cm 2 at
different times starting at the end of the laser pulse (the
peak of the pulse occurs at 0.7 ps}. Here we assume a
well width of 150 A and a small background density of
1&10 cm at 5 K. Carriers are injected 150 meV
above the bottom of the band. We plot the total occu-
pancy as a function of energy for all the subbands, which
is the distribution function times the density of states.
As shown, a cascade in the distribution is quite evident
and persists up to 1.6 ps due to the relative ineSciency
of the e-e scattering at this low free-carrier density. The
kink in the curve at about 40 meV is the second subband
energy.

In Fig. 7(b) we show the relative rates of e-e and
electron-phonon scattering, calculated from the number
of scattering events divided by the total number of parti-
cles over each time step. Phonon emission is the dom-
inant scattering mechanism until the distribution has
cooled sufficiently (1.6 ps) that e-e scattering is more im-
portant. Phonon absorption becomes increasingly im-
portant due to buildup of nonequilibrium phonons. As
shown in Fig. 7(b), the rates of emission and absorption
approach one another, resulting in a reduction of the net
energy-loss rate.

At an injection density of 5&10" cm shown in Fig.
8(a), 8-8 scat tcl'lllg ls IIloI'c effectiv tllall tllc pllollo11
emission, and the features of the cascade are washed out
almost resulting in a thermalized (Maxwellian) type of
distribution immediately after the pulse is over. The
rate of e-e scattering is now greater due to the increased
density of the injected carriers as shown in Fig. 8(b).
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FIG. 7. (a) Electron occupancy as a function of energy for
various times after laser excitation and an injection density of
5&10' cm at an energy 0.15-eV above the conduction-band
edge. (b) Average total scattering rate per electron as a func-
tion of time for POP emission (0), absorption (A ), and
electron-electron (0 ) scattering.
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rate (2.21) is directly proportional to the electron density
resulting in the transition from cascadelike to thermal-
ized behavior in the 1&10" cm range of carrier densi-
ties. If a more complete model for the screening is used,
this simple picture wiB no longer hold as the screening
constant depends on density, particularly at high tern-
peratures. At high temperatures, qo is directly propor-
tional to density for a 20 system, and therefore e-e
scattering may be important at lower densities as well.

However, the effect of reducing qo is to increase small-
angle scattering which is ineffective in exchanging ener-

gy between particles, and thus the density dependence
may be qualitatively the same as we have presented here.
The effect of temperature-dependent screening on carrier
relaxation in 20 systems is discussed elsewhere.

Due to the intersubband energy exchange arising from
e-e scattering, redistribution of the carrier kinetic energy
occurs and the subband energies tend to equilibrate.
This effect is evidenced in Fig. 9 where we plot the car-
rier. temperature (the average kinetic energy) in the
lowest and first excited subband as a function of time
during laser excitation. In this simulation, we start with
a background density of 2.5~10 cm carriers at 5 K in
the lowest subband and then inject carriers at an energy
of 0.25 eV above the lowest subband energy as discussed
above. %e inject a total of 5X10" cm carriers into
the band using a 0.6-ps pulse which is centered at t =1
ps in Fig. 9. The injected carriers interact with the cold
electrons through e-e scattering, transferring energy to
them and losing energy in the process. As seen in Fig. 9,
the electrons in both subbands rapidly reach the same
average energy primarily through e-e scattering. As
shown by the dotted curve of Fig. 9, when e-e scattering
is absent, the electron temperatures remain quite
different after the pulse is over. In Fig. 10, we plot the
fractional occupancy of the lowest subband as a function
of time with and without e-e scattering which shows lit-
tle difference due to the relative weakness of intersub-
band e-e scattering in the present formalism.

The fraction of carriers which transfer to the I. valley
does depend on e-e scattering, especially at injection en-
ergies close to the L-valley energy. This is also shown in
Fig. 10 on the left-hand side. More carriers reside in the
upper valley at times after the pulse due to spreading of
the injected distribution to higher energies before relax-
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FIG. 8. Electron occupancy as a function of energy for vari-
ous times after laser excitation and an injection density of
5~10" cm ~ at an energy of 0.15 eV above the conduction-
band edge. (b) Average total scattering rate per electron as a
function of time for POP emission (G), absorption (6), and
electron-electron ( 0 ) scattering.
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FIG. 9. Average kinetic energy with (solid line) and without
(dashed line) e-e interaction in the ground (i =0) and first-
excited (i =I) subbands during a 0.6-ps laser pulse which
peaks at 1 ps. A background density of 2.5&10" cm is as-
sumed with 5& 10" cm carriers injected at an energy of 0.25
eV.
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FIG. 10. Occupancy of the ground subband (top curves)
with (6 ) and without (O ) e-e scattering as a function of time
for the same parameters as Fig. 9. Also shown is the occupan-
cy of the L valley (bottom curves) with (6) and without (c )

e-e scattering.

ing, allowing more carriers to transfer than in the case
where this mechanism is absent. This fact accounts for
the overall lower energy in Fig. 9 of electrons cooling
subject to e escatterin-g. The energy is eventually fed
back into the electron system at longer times due to re-
transfer back from the I. valley.

and e-e scattering, which allows the equilibrium distribu-
tion at low temperature to achieve a Fermi-Dirac distri-
bution in the simulation. %'ith an applied electric field,
e es-cattering is found to be efFective in the 2D QW sys-
tern in removing the kink in the distribution associated
with phonon emission. Comparison of the calculated
steady-state distribution function for various applied
electric fields with photoluminescence results show
agreement in the gross features, but give consistently
smaller electron temperatures as derived from the high-
energy tail of the distribution.

We show that the shape of the distribution function is
controlled by e-e scattering during and after laser excita-
tion. For low carrier densities„e-e scattering is weak
and electrons relax their energy via a cascade of succes-
sive optical-phonon emissions. For higher carrier densi-
ties, e-e scattering is more effective in setting up a heated
Maxwellian distribution which absorbs the energy of the
injected electrons before they can emit an optical pho-
non, thus suppressing the cascade. Our results show
that thermalization of the carrier energy between sub-
bands occurs quite rapidly through e-e scattering shortly
after the end of the laser pulse. The exact scattering
rate due to e-e scattering depends strongly on screening
which is formally difBcult in the multisubband system.
%e have used a low-temperature screening constant for
the present work which overestimates the screening, and
thus e-e scattering may be important at low electron
densities as well. In future investigations, we will in-
clude heating effects on the 20 screening which our pre-
liminary results show enhances the rate of e-e scattering
during laser excitation.
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