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Diamagnetic susceptibility of a dense electron gas
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%'e calculate the diamagnetic susceptibility of a uniform interacting electron gas in the
random-phase approximation. From this the exact high-density expansion of the diamagnetic sus-

ceptibility is obtained.

I. INTRODUCTION

The magnetic response of degenerate electronic sys-
tems has two contributions: one, known as Pauli
paramagnetism, is due to spin polarization; the other,
known as Landau dimagnetism, is due to the circulation
of orbital currents.

The two efFects have comparable magnitudes, and they
must both be considered when comparing experiments
with theory. For example, in a uniform noninteracting
electron gas in a magnetic field 8 one 6nds, for the spin
magnetization density,

Mp ——XpH,

where Xp ——e uF/4m' Rc, and uF is the Fermi velocity.
The orbital magnetization density for the same system is

(1.2)

where gL ————,gp.0 I 0 1

Equations (1.1) and (1.2) do not include the efFect of
electron-electron interactions. The spin susceptibility of
a uniform interacting electron gas has been calculated by
many authors in various approximations. The "homo-
geneous" results, combined with the local spin-density
functional theory, have served as a cornerstone for the
study of magnetism in inhomogeneous systems. In the
high-density limit (r, ~0) an exact expansion is known:

1

1 &"S=1——r+-
gp F 2 T!

Q!rs
0.306—ln +O ( r, )

(1.3)

[a=(4/9n)' —=0.521106; r, is the usual electron gas
parameter].

On the other hand, the theory of orbital current
response has been largely ignored. An early calculation
for the uniform electron gas, using an approximate bo-
son Hamiltonian, gave no correction at all to the nonin-

II. FORMALISM

The current induced in a homogeneous electron gas by
a weak static vector potential A(r) [Fourier transform
A(q)] is given, in linear response theory, by

j(q) = — P(q)+ — A(q)
C ffI

(2.1)

(n is the electron density).

teracting result, Eq. (1.2). It would clearly be useful to
provide a calculation of the diamagnetic susceptibility
comparable to those for the spin susceptibility.

In this paper we present the 6rst calculation of the di-
amagnetic susceptibility of a uniform electron gas in the
random-phase approximation (RPA). The formalism
employed parallels the one used by Ma and Brueckner
(MB) in their calculation of the exchange-correlation en-

ergy of a weakly inhomogeneous electron gas, but now it
is applied to the current-current correlation functions.
From this we are able to extract the exact high-density
expansion of the diamagnetic susceptibility:

+L Q=1+ r, lnr, +0.084 83ar, /n+O(r, ) .'(1.4)2

+I

It is interesting to note that the leading term of the ex-
pansion is O(r, lnr, ). This reflects the fact that the di-
amagnetic susceptibility diverges in the Hartree-Fock
approximation, and it is necessary to include correla-
tions to obtain a finite result.

Our calculations show that the many-body corrections
in gL are considerably smaller than the ones in Xp.
Furthermore, the diamagnetic susceptibility is decreased
by the interactions, while the spin susceptibility is
enhanced. We conclude that the uniform electron gas,
in agreement with one's intuition, has no tendency to
break the symmetry towards a state with spontaneous
orbital magnetization.
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The current-current correlation tensor P(q) is given

by

{,0
( j;(q) ~

II )(II ~j, ( —q)
~

0)
P; (q)= —2+

n n 0

~

n ) and E„are the exact eigenstates and eigenvalues of
the electron gas Hamiltonian;

j (q)=-,'g (p e +e p )
a=1

is the "paramagnetic" current, where p and r, are the
momentum and position operators of the ath electron.
P;J(q) has the following properties:7 s

where y(p, p;q) is the spin-symmetric irreducible
electron-hole interaction.

Rather than calculating Eqs. (2.5)—(2.7) and then ex-
panding to order q, it is more ef6cient to derive an ex-
pression for P2 directly. This can be done by expanding

A„, R, and y as follows:

A„(p;q) =A„,(p)+A„,(p)q',

R (p;q) ~RO(p)+RI(p)q

7'(P P 'q)=ro(P P )+'YI(P p )Ii

Putting these expressions in Eqs. (2.5)—(2.7) and using
the Ward identity'

(i) P;, (q=O) = ——5;, ,
7l A.o(p}RO(p) = aG(p)

(2.g)

(ii) P,~. (q)+ —5,.J = Q,.j —
z P(q) .

(2.2)

p(q)~piq (q —+0) . (2.3)

The second property means that the linear response
function in Eq. (2.1) is a transverse tensor. (i) and (ii) to-
gether imply that P (q) must vanish as q ~0:

one finally finds (after some algebra)

(q) —P„„(0)
P2 ——lim

q -+O

de=2 A„oP Rz P2$' I

aG(p), aG(p')

The current j(q} can be written as the curl of a
divergence-free magnetization M(q), i.e., j(q) =icq
&(M(q). Putting this in Eq. (2.1), using the expression
H(q}=iqX A(q) for the magnetic field, and taking the
q~O limit, we Snd III. RANDOM-PHASE APPROXIMATION

(2.9)

2

M(q~O}= — PIH(q~O) .
C

Thus the diamagnetic susceptibility is

e
~2

C2
(2.4)

To calculate I'2, we orient the z axis along the direc-
tion of q, so that P(q)=(n/In)+P„„(q). P„„(q) can be
expressed in terms of Green's functions (G) as follows

[q =—qz, p =—(po, p) is a four-vector]:
d4k

X(p) = — lim f V (k}GO(k +p)e''I" .
v-o+ (2Ir) i

(3.1)

To calculate I'z in a dense electron gas, we closely fol-
low Ma and Brueckner's calculation of the coefficient q
in the density-density correlation function. This calcula-
tion corresponds to the random-phase approximation for
the ground-state energy, and is exact in the high-density
limit.

We start from the RPA expression for the self-energy
[k =(k, cg)]

4

P„„(q)=2f &
R (p;q)A„(p;q),

(2Ir)~i III

R (p;q)=G(p+q/2)G(p q/2) .

The vertex correction A„(p,q) is defined as

d' '
A„(p;q) =— + f I'(p, p', q)R (p', q)

(2Ir) i

(2.5)

p =pF /2lII

(2.6) The RPA screened interaction is

The noninteracting Green's function is given by

Go(p) = [po —ep +p+ I sgil(sp —p )]

Kp
—p /2&i (3 2)

The spin-symmetric interaction I (p,p';q) satisfies the
Bethe-Salpeter equation

1 (p p'q)=r(p p"q}

V(k, co) =
k e(k, co)

e(k, co)=1—
2 Fo(k, co),

(3.3)

y p,p";q R p'*;q I p",p';q
(2m) i

(2.7)

where Fo(k, co) is the usual Lindhard function.
The knowledge of X(p) determines, in a conserving

approximation, the q~O limit of the vertex function
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(b)

FIG. 2. RPA diagrams for the current-current correlation
function, giving the exact many-body corrections in the high-
density limit.

Px aX(p)
A.op = +

X

and the irreducible electron-hole interaction

(3.4)

FIG. 1. (a) Self-energy diagram in RPA. The undulating
line is the dynamically screened interaction in the RPA. (b)
Diagrams for the irreducible electron-hole interaction generat-
ed from the RPA self-energy in a conserving approximation.

conveniently calculated with the help of Eq. (2.9), setting

G(p) =-G,(p)+ G,'(p)X(p) (3.6}

[the precise meaning of Go(p) is —aGO(p)/apo] and col-
lecting the terms which are linear in X. Three terms are
found.

(i) From the first term of Eq. (2.9), putting
A p~p„ /m, and expanding 8 to first order in X, we ob-
tain

5X
5G

(3.5) g4 aGO(p)—4J 4 Go(p+q) X(p) .
(2m )4i ap

Diagrams for y are obtained by opening any Go line in
the diagrams for X. This is shown in Fig. 1(b}. Now,
expanding the current-current correlation function up to
linear terms in X, we get, for the interaction contribu-
tion, the five diagrams of Fig. 2. These are precisely the
MB diagrams, apart from the fact that we have a
current vertex p„/m.

The coeScient of q arising from the MB diagrams is

aGO(p)

apo

aGO(p)
+2@i5(po)5(p —ez ),

P
(3.7)

This expression is then expanded to order q, and
transformed with the help of the following identities (see
Ref. 6):

m —1

Go(p +5) ll
11m
s 0 (m —1)! RIM

The result for the coefficient of q is

Go(p) = l

(m +n —1}!

m+n —1

Go(p) . (3.&)

1 a'G, (p) a'G, (p) x(k, ,I.)

m (2n )4i m ' .9 ap' " ~ ap'
(3.9)

(ii) From the first term of Eq. (2.9), using the interaction part of A„o and noninteracting R, the contribution to the
coeScient of q is

aX(p} p. 1 a'Go(p} a'Go(p}
b2 ——

(2n)4i ap„m' 2 a}u' " ' ap'
(3.10)

(iii) from the last term of Eq. (2.9) using G =Go and y given by the diagrams of Fig. 1(b). Since the first diagram is

independent of q it does not contribute to y2. The remaining two diagrams can be written as

y'(pp', q) =2I —

I V(k +q/2) V(k —q/2)GO(p +k)[G0(p'+k)+Go(p' —k)] ) .
d'k

(2m) i
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Inserting this in Eq. (2.9), and using the de5nition of the
Lindhard function

4 e
V(k, a) ) =

k e(k, co)

Fo(k}=2f 4 Go(p)Go(p+k),
(2n) i

(3.11) 4me & 1 1
+4me (4.1)

k +A, k e(kco) k +A,

d'kf V(k+q/2) V(k —q/2)
(2m) i

BFo(k)

3k,

ar, (k)
'

Bk„

for all q. Thus the last term of Eq. (2.9) does not con-
tribute to the diamagnetic susceptibility.

Equations (3.9) and (3.10) are conveniently combined
in a single expression for P'2"'=b, +bz. %'e next in-

tegrate by parts in Eq. (3.10), and change some deriva-
tives with respect to p into derivatives with respect to p,
according the identity

A, =4me v(0) is the square of the Thomas-Fermi wave
vector. v(0)= mkF/n A is the density of states at the
Fermi energy.

The contribution of the statically screened interaction
can be exactly calculated from Eq. (3.12). The reason is
that the corresponding self-energy X~F(p) is frequency
independent. Therefore, the frequency integral in Eq.
(3.12) can be done with the help of the identity

dp0 jap
lim . Go(p, po)e '=n~ =e(p —e ),

g~0+ 2&E

and the momentum integral involves derivatives of
5(p —e~). The result is (reintroducing h factors)

aGo(p) aGo(p)

BP Bfp

(I'z ' }rF=, , [XrF(kF }+2kFXPF(kF }) .
36m I

The Thomas-Fermi self-energy is given by

(4.2)

X(k~,p)
+ 2

e

12m kF
(3.12)

The final result is

d 4p 1 a'G, (P) a'G, (P)
pint

~ X(p)
m (2m) i 2 Bp,

'
Bp

e
XgF(k) = — kF +

k,'+k' —X' (k+k, )'+&'
4k (k —kF) +A,

k +kF
tan

Using Eq. (3.1) for X, and interchanging the order of in-
tegration, this can also be written as

4
Pz"' — lim V(k)

m g o+ (2n) i

X(kF,p)
&& [-,'I)(k) —29I3(k))e'""—+

F

(3.13a)

—tan
—1

ln

and its derivatives with respect to k are

2k'+ k' 4k'+ A,
'

XrF(kF ) = —2+
2m' 2kF A,

(4.3a)

(4.3b)

I,(k)= f ~ Go(p+k)
8 Go(p)

(2') i Bp

d4p ~'Go(S')
I,(k)= f ~ Go(p+k), s~ .

(2n. ) i Bp

(3.13b)

(3.13c)

4kF2+2k,
Xr'F(kF ) = 2+

kF+A,
ln

kF

4k'+k'
A,

z
(4.3c}

The integrals I, (k) and I3(k) can be calculated analyti-
cally (see Ref. 9, Appendix C). Thus, Eq. (3.13a) reduces
the problem of the diamagnetic susceptibility to the eval-
uation of a two-dimensional integral. (The angular in-
tegration is trivial. ) This is the main result of this sec-
tion.

IV. HIGH-DENSITY LIMIT

In this section we calculate P'2"' in the high-density, or
weak-coupling, limit. The result is exact to order O(e ).

%e begin by splitting the RPA screened interaction
into a statically screened Thomas-Fermi part and a
dynamical part

+O(e inc ) . (4.4)

Notice that in the Hartree-Fock limit (A, ~O) the
coefficient of e becomes logarithmically in6nite. This
means, as pointed out in the Introduction, that the

The term X(kF)/12nkF in Eq. .(3.12) cancels out in the
manipulations leading to Eq. (4.2).

Putting Eqs. (4.3b) and (4.3c) in Eq. (4.2), and expand-
ing to order 0 (e ), we obtain (A, /4k+ ar, /m)——

e2 2

(Pz"' )~F
—— lnr, + 1+—,

' ln-
72m. fi 18m A
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Hartree-Fock susceptibility is not de6ned, and one must
include correlations to obtain sensible results.

%'e now consider the contribution of the dynamical
part of the interaction. For computational purposes, it
is convenient to perform the frequency integral along the
imaginary axis. However, care must be exerted because
the "dynamical" interaction tends to a 6nite limit for
large frequency:

4me A,
lim Vd„„(k,cu)=

2 z 2
——Vd„„(k, oo) .

k(k+A, )

1 dk eA,
Vdy„(k, ao )=

24tr kF (2m) " 24m A kF
(4.5)

Now, with the change of variables co=ikUFy the integral
of Eq. (3.12) takes the form

Therefore in rotating to the imaginary axis, an addition-
al contribution is generated, which comes from the cir-
cles "at infinity. " This contribution is calculated analyt-
ically. Its value is

2

(pi~t ) I"dk k' f +"
dy —— [—,'I, (k, iku~y) ——,'I, (k, ikuFy)]

o — k'+A2R (k,y) k'+&

X(k~, tM) —XTF(kF )
p oo

12m fi k
(4.6)

where R (k,y)—:F(k,iku—Fy)/v(0). The last two terms
in this equation combine to give a contribution which is
0 (e lne ) and can be neglected in the high-density limit.
The integral is formally of order e~, because the large
parentheses vanish as A, -e ~0. However, the
coefFicient of e would be a divergent integral —the
divergence coming from the small-k region. Thus the
integral is actually 0 (e ). ' To extract the coefficient of
e it is permissible to replace R, I„and I3 by their
small-k expressions

R (k,ikuFy) ~R (O,y) =1—y tan 'y

Ptl j7I, (k, k„y)=—'
m vrk (1+y )

I3(k,ikuFy) = rtt y (5+9y )

4m uFk (1+y )

I 2 2ptl
2 2

,I, (k, ikuFy) ,—I3(k,ikuFy) =-———
9rr vrk (1+y')

This leads to Eq. (1.4). It is easy to check that this re-
sult does not depend on the arbitrary decomposition of
the interaction into a static and a dynamic part. Making
the transformation A, ~Ac in the static part of the in-
teraction (c is an arbitrary positive constant} does not
change the result.

The separation of the interaction into a static and a
dynamic part [Eq. (4.1)] at sma/1 k is a delicate matter,
which has been given considerable attention recently. "
Here we have also carefully studied this question, by re-
peating the calculation iuithout separating the static and
the dynamic parts. Such a calculation involves contribu-
tions beyond the MB ones (in particular, all momentum
transfers are involved, and not only small ones), but the
final upshot is that the result does not change.

The behavior of XL /XL from the high-density expan-
sion is plotted in Fig. 3. The diamagnetic susceptibility

Using these formulas in Eq. (4.5), we find, below any ar-
bitrarily small momentum cutofF, ).2—

(pint) 2 e ~
d y

(1+y i)3'

The integral is evaluated numerically: its value is
—0.33269. The combination e /A can be expressed in
terms of r, and the Fermi velocity as follows:
e /fi=ur, UF. Finally, we combine the Thomas-Fermi,
the dynamical, and the noninteracting (p2 ——uF/12m A')

contributions to Pz, to obtain
0.8—

's

+0(r, lnr, ) .

FIG. 3. Diamagnetic susceptibility ratio XL/XL as a func-
tion of r„ in the RPA. The dashed line shows, for reference,
an extrapolation of the exact high-density formula, Eq. (4.7).
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TABLE I. Comparison of many-body effects in the diamag-
netic susceptibility +L and in the paramagnetic spin suscepti-
bility gp. The noninteracting susceptibilities are 7& ——2.59
&10 r, ' (in cgs units) and gL ———3+j.. The values of the

spin-susceptibility enhancement are taken from Table II of Ref.
2.

TABLE II. Numerically calculated values of the coeScient
of r, in the high-density expansion for the susceptibility:
A(r, ):—[Xt IX& —1 (—ctl6tr)r, lnr, ]r, ' .The analytical value
for r, ~0 is A (0)=0.01407.

1

2
3
4
5

6

8

9
10

0.981
0.970
0.957
0.942
0.926
0.909
0.892
0.875
0.859
0.842

1.15
1.31
1.46
1.62
1.79
1.98

0.1

0.01
0.001
0.0001

0.0076
0.0130
0.0139
0.0140

In the limit r, —+0, A (r, ) should approach the analytical
value =0.01407. The calculated values of A (r, ) are
shown in Table II. One sees that only for r, g0.01 they
are in good agreement with the analytical value. Thus
the range of validity of the high-density expansion ap-
pears to be very limited.

is decreased by the interactions in the very high-density
limit. At larger r„XL appears to be enhanced. Howev-

er, this latter is a spurious feature of ihe high-density ex-

pansion, as we demonstrate in the next section.

V. FULL RPA CALCULATION

We have calculated numerically the diamagnetic sus-
ceptibility in the RPA at finite r„using Eqs. (4.2)-(4.4)
and (4.6). Our results are plotted in Fig. 3 and tabulated
in Table I. As in the high-density limit, they are in-

dependent of the arbitrary decomposition of the interac-
tion into a static and a dynamic part.

Comparing the full RPA result at 6nite r, with the
high-density formula, Eq. (4.7), we see that the latter is

only adequate for r, &0.25. At larger r, it begins to de-

viate, and for r, &0.5 becomes even qualitatively wrong.
This is different from the case of the spin susceptibility
where a significant deviation occurs for r, ~ 1.5.

We have numerically checked the accuracy of the
high-density expansion [Eq. (1.4)] by calculating the
coe%cient of r„

A (r, )—:[Xt, /Xt —1 (al6tr—)r, lnr, ]r,

VI. SUMMARY

In this paper we have calculated the diamagnetic sus-
ceptibility of a uniform electron gas in the random-phase
approximation. The calculation is exact to order 0(r, ).
We have thus obtained the exact high-density expansion„
Eq. (1.4), for the diamagnetic susceptibility. This expan-
sion is found to be accurate for very small r, .

Our result for the diamagnetic susceptibility has two
interesting features: (1) The susceptibility is reduced by
the many-body effects. In contrast to this, the spin sus-
ceptibility is enhanced by the many-body effects. (2) The
many-body corrections in XL are considerably smaller
than the corresponding corrections in the spin suscepti-
bility. This suggests that the electron fiuid has little or
no tendency to spontaneously break the symmetry in
favor of a magnetized state with orbital currents.
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