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Elastic model for the partially coherent growth of metallic superlattices.
I. InterdifTusion, strain, and mis6t dislocations
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%'e have performed a calculation of the elastic energy density of an epitaxial superlattice of
known composition profile. %'e assume an interplay between coherency strains and misfit disloca-

tions as complementary matching mechanisms between consecutive layers of difkrent composition.
This model allows us to extract the strain profile and the average distance 5 between misfit disloca-

tions at the bilayer interfaces from high-angle x-ray data. An example of the structural characteri-
zation of an Mo/V superlattice using this model is given.

I. INTROXlUCTION

One of the principal aims in growing metallic super-
lattices is to create new materials with properties
di6'erent from those of their constituents or alloys. It is
then of crucial importance to characterize the structure
of these new materials. ' One of the best nondestructive
tools is x-rsy difFraction, I.ow-angle x rays can provide
information on the composition profile of the multilayer
while high-angle x rays can give information about
strain in the crystal lattice. The strain profile is less easy
to extract from x-ray data than the composition profile
because at high angles both are interrelated. Thus the
primary motivation of this work is to provide a model
connecting the known composition profile to the strain
in order to extract structural information by fitting the
experimental high-angle x-rsy di8'raction data.

In dealing with sinusoidal composition fIuctustions in
binary solid solutions, Cahn considered a perfectly
coherent deformation of the lattice. Since in a perfectly
coherent lattice there are no dislocations, the interplaner
spacing normal to the growth direction must take a con-
stant value d, and the total strain is computed using iso-
tropic continuum elasticity theory. This approach yields
an elastic energy density (EED) which depends only on
the deviation from the average composition, and is in-
dependent of the modulation wavelength A. This model
holds for weak amplitude composition modulation and
was successfully used by Philofsky and Billiard to study
the efFect of coherency strains on di6'usion in modulated
binary alloys.

For artificial metallic superlattices with steep composi-
tion variations at the bilayer interfaces, the perfectly
coherent image is no longer justified. In this work we
propose an alternative image of partial coherence in
which the chemical modulation produces both coherency
strains snd mis6t dislocations. This is because now there
is a large lattice mismatch between the layers, and so it
is energetically more favorable for the system to partially
relax the strains by forming mis6t dislocations in the re-
gion of the interfaces. If we consider the superlattice to

be an equilibrium state we can determine the strain
profile by minimizing the elastic energy density for a
given composition pro6le and density of dislocations. In
practice the composition profile is known from low-angle
x-ray data and the extremalizstion procedure provides
us with a relationship between strain and dislocations.
This relationship allows us to describe the strain-
dislocation structure with a unique parameter 5, to be
de6ned below, which can be determined by fitting the
high-angle x-ray difractograms.

The paper is organized as follows. In Sec. II we first
describe our model. In Sec. III we compute the local
elastic energy density (EED) associated with a planar de-
formation. In Sec. IV we derive the period average of
the BED for a single harmonic composition modulation
and determine the equilibrium values of relevant
structural parameters. %e also discuss two limiting
cases: the strongly coherent and the weakly coherent
limits. In Sec. V we give an example of the structural
characterization of an Mo/V superlattice, and in Sec. VI
we conclude this work.

II. THE MODKI

For the completely coherent growth situation con-
sidered by Cshn, the film is coherent throughout the
plane of the 61m, i.e., in the x and y directions. As a re-
sult the spacing of atoms in the xy plane (in-plane spac-
ing) is a constant in the z direction (growth direction).
%e assume now that for partially coherent growth the
film will be coherent only over a distance 5 in the x and

y directions. A mis6t dislocation will then relax the
strains. %e therefore have such mis6t dislocations at an
average distance 5 in the xy plane. The degree of coher-
ence is thus described in this model by 5. For 5= Oo we
have completely coherent growth and for 5=0 complete-
ly incoherent growth. For partially coherent growth
(i.e., 5 finite) the inplane lattice spacing will vary in the
growth direction and we must consider not only the
compressional strain, as in Cshn's model, but also shear.
Thus the total elastic energy of such s film is made up of
three terms: the compressional energy, the shear energy,
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and the core energy of the dislocations. The last term is
proportional to the number of dislocations in the film.
In this paper we shall consider only the balance between
the compressional and the shear energy and how this is
related to the composition pro61e of the multilayer 61m
for a given number of misfit dislocations. For this study
we therefore consider 5 as an external parameter and we
neglect the core energy of the dislocations. The subject
of the following paper will be the inclusion of the dislo-
cation core energy to study the equilibrium between the
elastic strains and the number of mis6t dislocations and
thus the transition from a coherent to a partially
coherent state.

Specifically, we consider here the total film to be the
sum of many films of finite size 5 in the x and y direc-
tions, each of which grow coherently. Our problem is
therefore reduced to calculating the elastic energy of a
completely coherent film with finite size 5 in the x and y
directions.

(b)

K«(x)

BI. THE LOCAL ELASTIC ENERGY DENSITY

In order to compute the total elastic energy of a
strained, chemically modulated structure we must in-
tegrate the local contribution over an entire superlattice
period. We begin by dividing our film (of finite width 5)
into thin slabs of thickness 2l in the growth direction,
which we take as the z direction. Consider one such
slab. When it is connected to the other slabs in the Slm
it will be distorted (see Fig. l). Let d,&(z) be the stress-
free lattice spacing in the undistorted slab and di(z) the
inplane lattice spacing in the distorted slab. The inplane
strain ei is then .

d i(z) —d,r(z)
el(z)=

d ( )

Here we assume that the z dependence within the
slabs can be neglected and di(z) and d,&(z) are the values
in the middle of the slab. We will explicitly introduce
the form of the z dependence for a multilayer Sm in Sec.
IV.

As discussed above the elastic energy wiB consist of
contributions from both normal stresses and shearing
stresses. We will compute these two contributions in-
dependently and then minimize their sum in order to
6nd the equilibrium value of the elastic energy density.
Let u, be the contribution of the normal stresses and uz
that of the distortion. We will compute u, 6rst. As in
Ref. 2 we assume no tensions in the growth direction z,
but isotropic inplane tensions which we write as

FIG. 1. (a) is an unstrained sheet of elastic material while
(b) gives the dimensions of a strained sheet of material of uni-
form composition used in the calculation of the local elastic en-

ergy density. (c) is a schematic representation of mis6t disloca-
tions appearing at the interface of two lattice-mismatched ma-
terials.

exx = (o'xx vo'yy —&o'm ) ~

1
eyy

———( —vcr „„+o
yy

—vo ),

0gg 0

oi=o'xx =oyy&0 .
Then from Eq. (3) we get

Using standard elasticity theory, the strains can be ex-
pressed in terms of the normal stresses with ihe aid of
the superposition principle as

(4)
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where ej =e„,=e „, eI~
——e, E is Young's modulus, and

v the Poisson ratio.
The contribution of the normal stresses to the elastic

energy density is then

dU, (z)
u i(z) = = i ((T„e„+0'yy6yy +0' e' )

1 5' 1 5i

Here we take d,&
in the denominator to be a constant

d since it is only a small modulation about an average
lattice spacing. Note that the important z dependencies
are those of ei(z) and V,di(z). The other z dependencies
in this expression can be neglected.

Since we neglected the z dependence within the plane
this contribution is independent of /. A more exact cal-
culation would give a term proportional l . In the limit
I~0, the limit we are considering here, this term disap-
pears.

We now consider the angular distortion of the sheet.
The shear contribution U2 can be evaluated by

IV. THK PERIOD AVERAGE OF THE KED

Any periodic composition modulation can be Fourier
analyzed. The orthogonality of Fourier components al-
lows us to find the total elastic energy density by adding
the contribution of each independent mode. Thus in this
section we will consider a single harmonic composition
modulation of period A de6ned by

dUz ——(e„e„~+o~,e~, +e e )d V,

with

C (z) =C[1+g sin(Pz )]

with

(10)

cr;~ =2Ge,
~

when i &j,
where 6 is the shear modulus of the material and the
o;~'s and the e;J's are, respectively, the shearing stresses
and the shearing components of the strain. For thin slab
deformations as in Fig. 1(b}, the distortion in the xz
plane around a point placed at a distance x from the z
axis can be expressed by

1 x
e (x)=——.xz 2 g

Analogously, in the yz plane

2R
1

and E„~=0 since no distortion appears in the xy plane.
Noting that R (z) =ds&(z)/V, di(z), we can write

e„,(x,z) =— V,d, (z),1 x
2 d,„z)

e„(y,z) =-,' V,d, (z) .
sf z

Thus we can ~rite the shear contribution as

(V,di)
dU2 ———,'6 (x +y )dV;

and integrating over the entire volume of the slab,

6 S'
V 12 d„(z}z

=uz —— (V,di)

Thus we can write the total local elastic energy densi-
ty as follows:

u (z)=u)(z)+uz(z)= ei{z)+G[Vsdi(z)]z,
1 —v '

where

Cmax Cmin

di(z) =d [1+vi3 sin(Pz )] (12)

where z~ is called the in-plane deformation parameter.
In fact, within this linear elasticity model the elastic de-
formation affects the modulation amplitude but not the
sinusoidal shape of the spacing pro61e. It can easily be
shown that further sinusoidal components in d~ would
enhance the average elastic energy. Analogously for the
growth direction we can write the interplanar spacing
profile as

di(z) =a[ 1 +Tt~ 3 sin(Pz )]

where r~~ is related to ~j according to Eqs. (1}, (4), (12),
and (13) by

Zv
~t(

——1 — (~j 1) . —
1 —v

(14)

The quantity ej(z) appearing in Eq. (8) can be approxi-
mately evaluated from Eqs. {11)and (12) as follows:

d i(z) —dsr(z)
ei(z) = = (v~ —1)A sin(Pz ) .

where C(z) is the concentration of one of the constitu-
ents and C is its average.

The stress-free interplanar spacing is, assuming
Vegard's law,

d„(z)=d[1+A sin(Pz)]

where d is the average interplanar spacing, A =2Crleo,
and @0=(1,—d „)/(d, +d „). eo is the differential strain
between constituents I and II.

The stressed in-plane profile corresponding to Eq. (10)
will be
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Here again we took d,&-d in the denominator since it
provides only a small modulation about this average
interplanar spacing. Then taking E, v, and 6 as con-
stant, the EED period average defined by

u =— u (z)dz
A 0

takes the valve

1 —v
(,— )'+ 'p

24 1+v

At this point it is useful to analyze how the two terms
in Eq. (16) will infiuence the strain in the superlattice.
The compressional part is proportional to (~i —1} and
will be minimal when vj =1, i.e., it will want the Nm to
have di =d,r(z). This is possible in a film of finite size in
the x and y directions and means that the width of the
film will be modulated. This then means that shear is in-
troduced and indeed the second term is large for ~~=1.
To see how shear comes into the problem it may be use-
ful to consider the coherent growth of one slab of one
material on top of a similar slab of another material. If
these slabs have finite sizes in the x and y directions, like
the ones in Fig. 1, coherent growth must lead to shear.
The slab with the larger lattice parameter will be
compressed at the interface and the other slab extended
at the interface. This is characteristic of a slab of finite
size. If the size in the x and y directions is extended to
infinity, coherency is only possible if di becomes con-
stant in the z direction and there will be no shear. The
equilibrium state in our problem will therefore be a
compromise between the compressional energy and the
shear energy.

The equilibrium inplane deformation ~,q is the value
of v~ that minimizes u, i.e.,

24 1+v (17)

~,q depends, as expected, on 5 and goes to zero as
5~ 00. In a completely coherent film there is no shear.

%'e are now able to compute the equilibrium elastic
energy density just by replacing ri by r, in Eq. (16):

[(1—v)/(1+ v) ]5'P'
1 —v 24+ [(1—v) /(1+ v) ]5 P

%e note that in this model strain is defined by an op-
timization procedure. Also, in contrast to Ref. 1, the
elastic energy is wavelength dependent. This is due to
the gradient term in the local energy of Eq. (8). In the
limit where the shearlike modulus G is infinite (that is, 5
is infinite), we recover, as discussed above, Cahn's result,

In deriving Eq. (16), we have made two major approxi-
mations. The first was to ignore the spatial dependence
of the elastic moduli. In principle, chemical modulation
must be accompanied by a variation of the elastic prop-
erties. By assuming that the elastic rnoduli which ap-
pear in the local energy expression [Eq. (8)] have a
sinusoidal variation about a certain average, one can
show by parity arguments that the sole nonzero contri-
bution to the integral leading to Eq. (16) comes from this
average part. For a nonsinusoidal composition we ex-
pect corrections to appear.

The second approximation has to do with the spatial
dependence of 5. We expect a high density of disloca-
tions where the composition gradient is large, i.e., at the
interfaces. Misfit dislocations at the interfaces ease the
strain towards the center of the layers where it then be-
comes less necessary to introduce them. Nevertheless,
there is no contradiction that in our model the basic cell
for the elastic energy density calculation is limited trans-
versely by interface dislocations. This is because the 5
term in Eq. (8) is modified by the square of the gradient
and this becomes important only close to the interfaces.
Thus we can define 5 in Eq. (16) as the weighted aver-
age of a quantity 5 (z), given by

z z V,
$2

Jdz[V, d, (z)]

ri= 1 — 5 p +O(5 p'} (in plane},
24 1+v (19)

5 is then an average value of the distance between dislo-
cation lines close to the bilayer interfaces.

We consider two limiting cases: one for 5~~A (a
highly coherent structure) and another for 5 & A (a
weakly coherent structure). In the high-coherence limit,
the value of the in-plane deformation parameter vj tends
to zero or equivalently the distance between the misfit
dislocations goes to infinity. Consequently, along the
growth direction [see Eq. (14)] we have
ri = ( 1 +v ) /( 1 —v ). This result is the starting point of
Cahn's evaluation of the elastic energy associated with a
sinusoidal composition fluctuation which we discussed in
the Introduction.

At the other extreme, when the distance between
dislocations goes to zero, 7i goes to 1 and dj(z) just
takes on the stress-free interplanar spacing profile of Eq.
(11). In the weakly coherent limit, when 5 takes on a
finite value, the value of di(z) can assume values be-
tween the constant d of perfect coherence and the
stress-free value of no coherence. To try to get a better
intuitive feel for what is going on we can write for the
deformation parameters, by expanding Eq. (17},

w =1+ 1 v
12 v+1 5 p +O(5 p') (growth axis) . (20)

which is consistent with a strained but undistorted lat-
tice [vi=0, and thus di(z) in Eq. (12) takes the constant
value d].

We can use Eq. (20) for the value of ri which appears
in Eq. (13). Thus the spacing modulation between planes
perpendicular to the growth axis is now described by
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Qadi(z)

=d,f(z) —ad,'f (z), (21)

a=v/(1+v)5 /12 .

Thus, in the weakly coherent limit, the actual spacing
profile is obtained from the stress-free one by a correc-
tion proportional to its local curvature. Equation (21)
was derived for a single harmonic modulation, but it ob-
viously holds for any periodic modulation in the weakly
coherent limit. The signs in Eqs. (19) and (20) show that
the elastic response of the structure to the composition
wave leads to a reduction of the local curvature in the
profile of interplanar spacings perpendicular to the

di(z)=d, f(z)+d 5 P sin(Pz) .
12 1+v

Recognizing the second derivative of d,f(z) from Eq.
(11),we get

growth direction. Its corresponding enhancement along
the growth axis z costs no energy since z is the stress-free
axis of the structure. This fact is highly satisfactory be-
cause it 6ts well with the following intuitive image of ep-
itaxial strain. Consider a region where the composition
gradient is uniform. In this region, bonds on a given
transversal plane will be equally requested by the two
adjacent atomic planes since the mismatch between con-
secutive stress-free atomic planes follows the composi-
tion. A uniform composition gradient does not therefore
ead to strain. If the gradient varies locally, the spacing

in such a plane will move from its stress-free value in or-
der to reach mechanical equilibrium. In other words,
strain comes from curvature in the composition pro5le.

V. CHARACTERIZATION OF A Mo/V SUPERI.ATTICK

The diffraction of x rays is influenced by the interpla-
nar spacing modulation di(z) between planes perpendic-
ular to the growth axis. The corresponding deformation
parameter in the general case is, from (14) and (17),

$2p2

1 (i2pz
1+~ 24

(22)

0.6—

c„.(z)
0.4

0.2

With (22), we can get the actual amplitude of the spac-
ing modulation for each mode of the stress-free spacing
profile of inverse wavelength P. As an exainple, let us
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FIG. 2. (a) is hthe composition profile, reconstructed from
low-angle x-ray data, of a 65-A-wavelength Mo/V superlattice.
(b) is the interplanar spacing profile in the region of the inter-
face for the 65-A Mo/V superlattice. The solid line is the ac-
tual spacing proNe determined self-consistently from the high-
angle x rays while the curved dashed line is the stress-free
proNe discussed in the text. The bulk interplanar spacing
values for Mo (2.227 A) and V (2.135 A) are also indicated.
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FIG. 3. T. 3. The high-angle x-ray dN'ractogram (b) for the 65-
A-wavelength Mo/V superlattiee. The best fit to (b), using the
information in Fig. 2, is shown in (a). (c) is the fit that results
from a stress-free proNe.
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use this model to characterize a 65-A period Mo/V su-
perlattice grown on an A120&(1120) substrate.

The composition pro61e determined from low angle x
rays is shown in Fig. 2(a). The Fourier amplitudes of
the composition profile were obtained from low-angle x-
ray peak intensities corrected by the Lorentz-
polarization and geometric factors. The relative phases
were assigned by comparison with a rectangular wave,
and the resulting composition wave was obtained from a
cosine Fourier series. CocScicnts were normalized to
give 100% Mo at the origin. The stress-free spacing
profile d,r(z) [dotted line in Fig. 2(b)] was obtained from
the composition profile using Eq. (11) for each mode.
The actual spacing profile was determined self-
consistently by reproducing the experimentally deter-
mined high-angle x-ray diffractograms (Fig. 3) using the
composition profile and the interplaner spacing profile
d

I~

which, as we have seen from the minimization of the
elastic energy density, depends on 5. Thus the best fit

[»g. 3(a)] to the x rays„obtained by adjusting the densi-
ty of dislocations 5, gives us di, which in turn enables us
to determine the strain profile of the superlattice. The
resulting spacing profile is given by the solid line in Fig.
2(b). For this example, the fitting parameter 5 was
found to be 80 A and the resulting average stress in the
xy plane was (ei) =7.98X10, while in the center of

the V layer it was @i=14.5X10 . In Fig. 2(c) we also
give the x-ray diffractogram calculated using the stress-
free spacing profile d,&

in order to illustrate the necessity
of introducing strain to explain the high-angle x-ray re-
sults.

VI. CONCI. US83NS

In this work we have calculated the elastic energy
density for a partially coherent superlattice and have ob-
tained a relation between the strain and the density of
misfit dislocations. Using this relation and the composi-
tion profile obtained from low-angle x-ray difraction, we
have determined the strain in a partially coherent Mo/V
superlattice from high-angle x-ray diffraction.

Our model thus allows us to quantify the coherence in
the growth of superlattices. The necessity to obtain such
information arose from a previous study of Mo/V super-
lattices, where we found striking anomalies in the trans-
port and superconducting properties as a function of the
modulation period. In separate papers ' we report on a
detailed study of the Mo/V system where we successful-
ly used the results of this paper to show that the
anomalies are related to a transition from incoherent
growth to partially coherent growth as the modulation
faQs below 70 A.
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