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Surface dielectric response of a semimetal: Electron-energy-loss spectroscopy of graphite
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The surface-dielectric-response function is important in describing a wide range of many-body

properties of surfaces. Previous calculations of this quantity have assumed a free-electron metal
surface, treated in a jelliurn approximation. Here me present calculations of the dielectric-response
function of a graphite surface. These calculations show that the dielectric behavior of the graphite
surface is quite diferent from that of simple metals. Using the calculated surface dielectric func-
tion we obtain theoretical electron-energy-loss spectra of graphite in the 0-1.4 eV range, which
compare well with the experimental data. The spectra have a number of unusual features that are
shown to be consequences of the semimetallic band structure and the kinematics of the dipole-
scattering theory.

A number of important many-body phenomena in sur-
face science involve a long-ranged interaction between a
surface snd an external probe, which might be an elec-
tron, an ion, a neutral atom„or another surface. Such
interactions can always be formulated in terms of a
dielectric function, g (ql, co), which characterizes the
linear response of the surface to external fMlds. ' For
example, using a self-energy formalism one can express
the image potential of an ion, or the van der %sais po-
tential of an atom, near a surface as an integral over ql
and co where the integrand contains the imaginary part
of the surface dielectric function Im[g(q~~ ~)1 " Simi-
larly, in electron-energy-loss spectroscopy (EELS), the
probability that an electron rejected from the surface
loses an energy ~ and parallel momentum Rqtl is
proportional to the same dielectric function
Im[g (q~~, co ) ].' The calculation of the surface
dielectric function Im[g(q~~, co)] is thus an important task
in theoretical surface physics [note that it is suScient to
calculate the imaginary part of g(q~~, co), since the real
part can then be found from a Kramers-Kronig rela-
tion]. To date, calculations of this quantity have as-
sumed a free-electron metal substrate, treated in the jelli-
um approximation. In this paper we shall calculate the
surface dielectric function Im[g(q~~, co)] for a semimetal,
graphite, where the details of the band structure near the
Fermi level give rise to a dielectric response which is
very difFerent from a free-electron metal.

The motivation for this work is provided by the very
unusual electron-energy-loss spectra that have been ob-
served recently on s graphite surface. ' As described
in Ref. 9 the spectra show s broad background of
electron-hole pair excitation losses extending continuous-
ly from 0 to beyond 1.4 eV. One unusual feature of this
background is its speculsr intensity; it is 2 orders of
magnitude stronger than the corresponding spectrum for
s typical metallic substrate. This high intensity is par-
ticularly surprising given the low density of states for
graphite near the Fermi energy. The nonspecular spec-
tra also show anomalous dispersing loss structures which

are not associated with any single energy loss channel.
We have shown previously that both the specular high
intensity and the unusual features of the nonspecular
spectra can be explained in terms of the semimetallic
band structure of graphite near the Fermi level and the
kinematics of the long-ranged dipole scattering theory.
In Ref. 9 we summarized calculations of the EELS inten-
sities carried out using s theoretical surface dielectric
function derived for graphite, which gave s good overall
agreement with the experimental results. The purpose of
this paper is to present these calculations in more detail,
especially the method of obtaining the surface dielectric
function for graphite since previous calculations have
only applied to metallic substrates. This calculation also
explicitly demonstrates the relationship between the sur-
face dielectric response of graphite and the semimetallic
electronic structure.

The graphite surface is intrinsical1y interesting since it
shows a number of peculiar properties. Among these
anomalous features are the very large surface corruga-
tions of several angstroms observed in the scanning tun-
neling microscope (STM)," and the strong asymmetry of
the STM image which shows only one of the two surface
atoms in each unit cell. ' The unusual EELS spectrum
is another example of a surface property of graphite
where the semimetallic band structure leads to behavior
which is quite difFerent from either s metal or a semicon-
ductor.

THK SURFACE-DIKI. KCTRIC-RESPONSE FUNCTIQN

In this section we shall first review the de6nition of
the surface dielectric function, and then outline the basic
approximations that can be used to calculate it. In the
following section we show how the surface dielectric
function can be calculated for s material such as graph-
ite with s nonmetallic band structure. Finally, we dis-
cuss some implications of this calculation snd compar-
ison with experimental data, especially for the EELS
spectrum. In the Appendix we describe how the rela-
tionship between the EELS intensities snd the imaginary
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SURFACE DIELECTRIC RESPONSE OF A SEMIMETAL:

part of the surface dielectric function arises as a conse-
quence of long-range dipole scattering.

The surface dielectric function g (qi, to) can be defined
ln thc following way. Assuming thc solid occupies thc
half space z (0, then any external charges in z ~0 will
give rise to a field P,„, which can be Fourier decomposed
into 6elds of the form

g(qt, co)= J Jd'r d'r'exp( iqi r) —tq{ ri
q~I A

+quiz +quiz )X(r,r', to),

(3)

where the integrals are over the half space z (0 and A is
the surface area of the solid. %c usc Hartrce atomic
units throughout. The density response function can in
turn bc written in terms of the many-body ground state

I
0 ) and the excited states

I
n ) of the solid

1m[X(r, r', to )]

„g(r,t):—3 (qi, N )exp(iqi ri+qiz —tMt)

in the region z (0, where q)) ls a two-dimensional wave

vector in the plane parallel to the surface, r=(r(, z), and

qi
—

I qt I. The exponential z dependence is required in

order to satisfy the relation V $,„„=0in z &0. Since all

the induced charges will lie in the half space z (0 the in-

duced field must be of the form

=g &OI p(r}
I

n )& nIp(r') IO)n5(e„eo—to—), (4)

with to & 0 and where p(r) is the density operator of the
solid (the real part of X can be found by a Kramers-
Kronig relation).

Obviously, if we are to calculate the surface dielectric
function it is impractical to use Eq. (4) directly since it
requires knowledge of the exact many-body eigenstates,
and so we must make some approximation for the densi-

ty response function X. A suitable ap roximation is pro-
vided by the time-dependent Hartree' [or random-phase
approximation (RPA)], to linear response theory, which
relates X to the single particle response function 7,
de6ned by

P;„o(r,t)= —g (q~~, to) 3 (qi, co)exp(t qi rl —qiz i tot—)

(lb)

in the region z & 0, again to satisfy V P;„d=0 in z & 0.
We are neglecting local fields effects here (i.e., induced
fields varying like exp[i (qi+Gi) r((l with ri whe«G{ is

a two-dimensional reciprocal lattice vector of the sur-
face). The local fields will be unimportant if we are only
interested in the response in the small

q~~
region. These

relations, Eq. (1), define the surface-dielectric-response
fuiictioii g (qt to ). The surface dielectric function thus

completely characterizes the Selds induced outside the
surface by polarization caused by external charges. As a
simple example, which will also be of use below, note
that in the

q~~
0 limit we can treat the solid as a classi-

cal dielectric terminated at z =0. Solving the classical
electrostatics problem of an ideal dielectric with a sur-
face at z =0 gives

na —na~
X (r, r', to)= g 1{ (r)f"(r)1{ (r')1{;(r') t5-a aa, a'

where P (r) is a single particle eigenstate with energy e
and occupation number n . %C can use the RPA to ex-
press the dielectric function g(q, to) in terms of Xo. We
have, making use of the matrix notation used above,

g(qi, ~)=(2~/qt &)y,'„, X y,„,
=(2n. /qi A )Q,„,.X

(2m/qiA)({) (1—X'tV) X (6)

g (O, to) = e(to) 1—
e(to) + 1

Here the potential P is the total field, P=P,„,+P;„~, in-
duced when the solid is subjected to an external poten-
tial P,„,=exp(iqt r+qiz) .The firs. t line in Eq. (6) is just
a rewriting of Eq. (3) and we are making use of the stan-
dard RPA results'3 that p;„d=X P,„,=X *P and that
P=(1—VX ) '{{},„, in subsequent lines. Finally, taking
the imaginary part of the last line in Eq. {6), the second
term in the parentheses does not contribute and we ob-
tain the following result, erst derived by Persson and
Zaremba

I [g(q»l= X I &O. IWI@. & I'
qII A

X(n n )5(c. —e—.—c~o },
giving Im[g{q,co}] in terms of the single-particle wave
functions

I 1{ ) of the solid. It is this equation which
connects the surface dielectric function to the band
structure of the solid.

where e(to) is the bulk dielectric constant. It is also pos-
sible to solve the classical problem for an anisotropic
dielectric such as graphite; in this case, Eq. (2) still holds

but with e(co)=Q(e,ei), where e, (io) and e'i{to) are the
dielectric functions for Selds polarized, respectively, per-
pendicular to or parallel to the graphite c axis (assumed
normal to the surface).

In standard linear response theory the induced
charges, and hence the induced 6elds, can be related to
the density response function X(r, r', to) of the solid.
X(r, r', to) is defined so that the induced charge is given

by p;„d ——X.g,„„where, for brevity, we adopt a notation
used in Ref. 13 in which functions such as P,„,(r') are
treated as Hilbert space vectors and X(r, r', to) becomes a
matrix 7; the vector dot product then corresponds to in-
tegration over r. Thus in this notation p;,o

——X.P,„, is

equivalent to p;„d(r)= fX(r, r', to)P,„,(r')d r' The field.
due to this induced charge is given by P,„d

——VXP,„„
where V(r, r') = 1/

I
r —r'

I
is the Coulomb potential. In

terms of this density response function it follows that the
surface dielectric function is given by'
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Equation (7) still does not provide a complete solution
to the problem, since the potential P is not known in

general, and indeed can only be calculated a pnon by in-
verting the full dielectric matrix to solve P =e
=(1—VX ) 'P,„,. However it is possible to approxi-
mate P using, for example, its known small q limit, and
thus to obtain an approximation for the surface response
function Im[g(q, co)] in the small q region. For small q
we can take P from the classical dielectric model, where
the surface is treated as a uniform dielectric terminated
at z =O. This model gives

where x is the two-dimensional wave vector measured
from the E point. The Fermi energy lies precisely at the
K point, and thus the Fermi surface consists of a single
point and there is zero density of states at the Fermi lev-
el. Having zero density of states at the Fermi energy but
also no energy gap de6nes a semimetal. For three-
dimensional graphite when the interaction between the
graphite layers is taken into account, there is a slight
dispersion with wave vector k, parallel to the c axis. In
a tight-binding approximation with nearest-neighbor in-
teractions the m band energies become modified to'

p = [1—g (O, co)]exp(i ql*rl+q ~~z)

for z &0, where qI~
—q~~Q(e, /e3) and the zero wave-

vector response function g (O, co) can be found from the
bulk dielectric constants (determined experimentally or
theoretically) using Eq. (2). This approximation for P is
equivalent to Persson and Zaremba's "bulk" approxima-
tion' since it gives (() correctly far inside the surface.
Equation (8) does not give a good description of the po-
tential (() very close to the surface. For small z there is
in addition a "surface" potential which gives the
difference between the true potential P and Eq. (8).
However the surface term gives a contribution to the in-
tegral in Eq. (7) which is of order

q~~
smaller than the

bulk term, since for small
q~~

the matrix element in-
tegrals (f,

~
((

~ g, ) in Eq. (7) are dominated by the be-
havior of P in the bulk. We shall thus neglect the sur-
face terms, and simply use the bulk term, Eq. (8), in our
calculations. For a metallic surface this would not be a
good approximation, since at frequencies below the sur-
face plasmon frequency re~ the bulk contributions are
also small because g (O, co) is very close to unity, and so it
is necessary to include both the surface and bulk contri-
butions. However for graphite, as we shall see below,
the bulk contributions are large and it is valid to neglect
the surface term.

SURFACE DIKI KCTRIC RESPONSE OF GRAPHITE:
THEORY

Since it is necessary to know the electron eigenstates
and band energies s of graphite in order to evaluate

the surface dielectric function, we shall give a brief sum-
rnary of the electronic structure here. Graphite consists
of layers of carbon atoms arranged in a hexagonal
honeycomb structure; the hexagon side is a/~3 and the
interlayer separation is c/2, where a =2.46 A and
c =6.74 A. The carbon atoms form sp hybrids giving
strong bonds within each layer and giving rise to the
graphite o. bands. The remaining p, orbitals point nor-
mal to the layers and give rise to the m bands of graph-
ite. It is the n. bands which lie close to the Fermi level
that give graphite its distinctive semimetallic behavior.
For a single graphite layer the symmetry group leads to
a degeneracy of the m. bands at the corner of the hexago-
nal Brillouin zone' ' (the E point), and near the E
point the bands have the following linear dispersion rela-
tion:

E(k) =+~a
I
»

I

e(+(k) =+y )I /2+[(y )I /4+yo
~

S
(
2}]'~2,

e~~(k)= —ril /2~[(r', I'/4+} 4 S ~')]'",
(10}

~ector

FIG. 1. Band structure of graphite near the E point, and
the 3D Brillouin zone.

giving four distinct bands. Here S =exp( ik„a—/&3)
+2cos(k~a/2)exp(2ik„a/~3) and I =2cos(k, c/2). In
the vicinity of the E point y02

~

S
~

2~pa» where» is the
parallel wave vector measured relative to the K point
and go= —,'&3ayo, and the bands are hyperbolic ap-
proaching the asymptotic slope pc but with energies 0 or
ky&I at the j' point. yo and y, are tight-binding pa-
rameters which can be estimated from self-consistent
band-structure calculations' giving the values y0=2. 0
eV and y&

——0.4 eV. The band structure in the vicinity
of the E point is shown in Fig. 1 together with the
three-dimensional (3D) Brillouin zone, which is a hexag-
onal prism. From the bands in Eq. (10) we see that the
Fermi surface consists of lines along the vertical prism
edges HEH of the zone. This line Fermi surface gives
the typical semimetallic zero density of states at the Fer-
mi energy with no energy gap. More accurate band cal-
culations show that this line Fermi surface widens slight-
ly to form a thin Fermi surface with a small but nonzero
density of states however, this correction is not irnpor-
tant here since it is only relevant at very small energies,
g(0. 1 eV.

To calculate the surface dielectric function using Eq.
(7) we need to obtain the wave functions g, of semi-
in6nite graphite. These can be obtained from the bulk
Bloch functions, which are of the form

4 z(r)=(X) '~2+A. (k)1( (r —r, )exp(ik r;), (11)
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where g (r —r;) is the atomic p, orbital at site i; there
are N sites in the solid. y is a band index. Now, since
graphite consists of layers which only interact via
nearest-neighbor interactions, the efFect of the surface is
to act as a simple rejecting barrier at z =0 for the bulk
Bloch states. The wave functions of semi-infinite graph-
ite are thus given by

fyi, (r)=(2/N)' g Ay(k)l(~(r r, )e—xP(ik. r,. )sin(k, z, ) .

With these wave functions and the potential given in Eq.
(8) it is possible to evaluate the response function
g(qi, co) from Eq. (7). First, however, it is helpful to
make one further simplification: we are interested in
values of

q~~
small compared to the size of the Brillouin

zone and so we can make a dipole approximation, i.e.,
treat the potential P as varying slowly on the scale of the
unit cell. The interband transitions will then be near to
vertical and can be written in terms of optical oscillator
strengths. This results in

I [g(q, )]=
~

1 —g(0, )
~ g fd k [q f (k)+q', f (k)]5( (k+ —,'Q) — (k —

—,'Q) — ),
2m'q))g~( y y

(13)

with Q=(qi, 0). Since the bands are close to being cylin-
drically symmetric near the E point, the response func-
tion depends only on the modulus of ql, not on its direc-
tion, and we shall subsequently treat Im[g(ql, co)] as a
function of a scalar argument q1. fy" (k) and fiyy (k)
are the dipole oscillator strengths parallel and perpendic-
ular to the graphite layers, respectively, de6ned by

fyy (k) 2
I 0yk I P I 4yk I

(14)
e„.(k') —ey(k)

where e is the polarization vector. These dipole oscilla-
tor strengths can be calculated within the tight-binding
approximation, giving for polarizations parallel to the
layers' '

pol'o I
S

the plus sign holding for transitions between the bands
1 —to 1 + and 2 —to 2 +, and the minus sign holding
for transitions 1 —to 2+ and 2 —to 1+ [using the
band labeling of Eq. (10) and Fig. 1]. Here S =E
+yP S

~
. For transitions polarized perpendicular to

the layers we 6nd

Sp2 g2 g2
f iyy (k) = sin'(k, c l2)

y y y
—

y

for interband transitions 1 —to 1+ and 2 —to 2+,
and zero otherwise. The quantity p, is a matrix element
of the dipole operator between carbon p, orbitals on ad-
jacent layers. Calculating this interatomic matrix ele-
ment numerically using Hartree-Fock atomic wave func-
lons for calbon we estimate p] as 0 049 ln atomic units

The band slope parameter po can also be calculated from
interatomic dipole matrix elements, since the band struc-
ture near the E point can be derived from k-p perturba-
tion theory. This calculation gives po ——0.325, in atomic
units, which is consistent with the estimate of 0.29 found
from the self-consistent band structure. In practice the
parallel oscillator strengths f sty (k) were much larger
than the perpendicular ones and dominated the surface
response function.

We have evaluated the surface dielectric function

Im[g(q~~, co)] for graphite using Eq. (13). This was ac-
complished by performing a numerical integration over
the surface in k space defined by e .(k+ —,'Q) —e„(k
—

—,'Q)=co. The calculation could be simplified same-

what by exploiting the near cylindrical symmetry and
hyperbolic behavior of the bands near the E point,
which makes the surface ey (k+-,'Q) —ey(k+ —,'Q)
=co an ellipsoid in k, I coordinates [I" defined after Eq.
(10)]. The quantity

~

1 —g (O, co)
~

was estimated using
the classical electrostatic result of Eq. (2) and values of
the bulk dielectric constants e, (co) and e3(co) available in

the literature. ' lt was found that
~

1 —g(O, co)
~

was
fitted to a good approximation by the function

q i ~q)) +(~1~+3)
-2. 1 —0.27co at the energies of interest. The results af
this calculation of the surface dielectric function
Im[g (qi, co)] are described below.

SURFACE DIELECTRIC RESPONSE GF GRAPHITE:
RESULTS

The calculated surface dielectric function Im[g(qi, co)]
at

q~~
——0 is shown in Fig. 2. %'e have compared the cal-

culated function with the values of Im[g(O, co)] obtained
using the experimental bulk dielectric constants e, (co)
and e'3(co) and the classical electrostatic result of Eq. (2).
We can see from the figure that the calculated dielectric
function remains roughly constant over the energy range
1.5 —3 eV, in good qualitative agreement with the experi-
mental values. The overall magnitude of the calculated
response function in this range is typically 0.15, while
the experimental values are around 0.19. The origin of
this difFerence is that in the self-consistent band struc-
ture of graphite' ' the 1 + band (Fig. 1) has a much
smaller slope than given by the tight-binding bands in
Eq. (10) (and in fact the 1 + band crosses the 2+ band
becoming lower in energy at the M point). Such a lower
slope would imply a larger joint density of states for
transitions into the 1 + band, thus enhancing the
overall value of Im[g (qt~, co)]. The slight discrepancy be-
tween the tight-binding calculation and experiment in
the overall magnitude of Im[g(q~~, co)] would not aFect
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the EELS spectra signi6cantly since only relative intensi-
ties can be measured accurately. In Fig. 2 we can also
see that the response function shows a sharp feature at
0.8 eV. This corresponds to transitions between the fIIat

regions of the bands at the K point which are split by
2y, =0.8 eV. There appears to be no experimental
determinations of the bulk dielectric functions e, (co) and
e&(ro) at this energy which could confirm the existence of
this feature, but infrared optical reflectance spectra do
show some structure at around 0.8 eV (Refs. 25 and 26)
which is attributed to these interband transitions at the
K point.

For comparison we have also plotted the
q~~

——0 sur-
face response function of aluminum in Fig. 2. This was
obtained from the bulk dielectric function e(co} deter-
mined optically. The points plotted for aluminum. I
have been multiplied by a factor of 5, to make the values
visible on the same graph as for graphite. It is thus
clear from the figure that for aluminum the surface
response function is substantially weaker than it is for
graphite; this is also true for other metals. It is because
the response function Im[g (ql, r0)] is so much larger for
graphite than for metals that the EELS spectrum is so
much more intense. The interpretation is clear, namely,
for graphite it is possible to have vertical transitions be-
tween the m bands at these infrared energies, awhile for
most metals there are no vertical transitions at such low
energies. In other words, for a graphite surface a large
part of the osciBator strength in Im[g(q~~, co)] occurs at
much lower energies than for metals, because of the
semimetallic band structure. This is the opposite of
what one might at 6rst expect, namely, that the low den-
sity of states for the semimetal would imply only a small
oscillator strength at low energies, and that the response
would thus be weak as for a semiconductor.

The wave-vector dependence of the calculated dielec-
tric function Im[g(qi, ro)] is shown in Fig. 3. The most
important feature here is the existence of a sharp cutoff
efFect where the imaginary part of the dielectric function
becomes zero at small frequencies when qi&0. The ori-

RESULTS: KKLS SPECTRA OF GRAPHITE

Using the surface response function from Eq. (13) we
have calculated the EELS spectra of graphite. The com-
parison between theory and experiment is shown in Fig.
4. The theoretical intensities were obtained using the
standard dipole scattering formula: ' '

P(k, k')=
z Im[g(qi, co)],k cos 8; (ql +qt)

(17)

where P(k, k')dQi, de is the probability of scattering
from state k to within a solid angle element dQi, . around
the direction of k' and with energy losses between co and
Qp+dco. Here 8; ls the atlgle of incidence, qi ——kl —kt(,
and qt =k, —k,'. The Snal EELS spectrum was obtained
by integrating P (k, k') over the detector aperture (as-
sumed to be 1.2S' half-angle). A simple derivation of

gin of this efFect can be seen most simply in terms of the
two-dimensional single layer graphite band structure of
Eq. (9) in which the band energies are e(~)=Epos near
the K point. It is easy to see from this band structure
that transitions of frequency m and wave vector qll ca
only occur if rolqi &pc. If co/qi &po there are no possi-
ble transitions which connect occupied and unoccupied
bands. This is apparent if we consider the surface in 2D
k space of the allowed transitions; this satisfies
r0=

~

~+ —,'qi
~
+

~

a ——,'ql
~

and is thus an ellipse with
foci at +—,'q~~ and eccentricity poq~~/cu. %'e thus require
poql~/co&1. This condition implies that the dielectric
function would be zero if ~&poq~~, roughly as seen in
Fig. 3. In fact when we include the more complicated
band structure of Eq. (2), which allows for interlayer in-
teractions, the cutofF condition becomes modi6ed to
co &poqi —2yt, which is what is seen in Fig. 3 (2y, =0.8
eV). The sharp peaked structure that develops in
Ilii[g (q i r0 }] near the cutofF that can be seen in Fig. 3
can also be explained in terms of the simple 2D band
structure e(~)=kpoa, since in this model the joint densi-
ty of states for transitions with frequency ~ and wave
vector

q~~
has an inverse square root singularity at the

cutolf when p«i/~=1 ~

g O.3"

0.2.

Q

Q og

~ ~ 0

4 k

2.0

theory

eXperiment:. ref 2~
+ fef 22
r ref 23

aluminum g5:+ref 27

3.0 4.0

FIG. 2. Calculated surface dielectric function for graphite
at zero parallel wave vector, Im[g(O, co}],and comparison with
values obtained from experimental bulk dielectric functions
e&(m) and e3(co) (Refs. 21-23). The surface response function
for aluminum (Ref. 27) is also shown, where each point has
been multiplied by a factor of 5.

I

3.Q 4.0
energy I' eg)

FIG. 3. Parallel wave-vector dependence of the surface
dielectric function of graphite Im[g(qt, co}]. Note the existence
of a cutoff region below ~=poqtt, which is due to the finite
slope of the bands, po, at the E point.
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Eq. (17) is given ln the Appendix in order to demon-
strate why it is that the EELS intensity is directly relat-
ed to the imaginary part of the surface dielectric func-
tion.

The experimental EELS intensities and the results of
the calculation have been described elsewhere; however,
for completeness we summarize the main points here.
Figure 4(a) shows the theoretical and experimental loss
intensities on the specular direction, calculated assuming
a 9 eV electron beam incident at 65' to the normal. The
broad continuum of electron-hole pair excitations seen in
the experiment is well reproduced by the theory. As
mentioned above, the unusually high intensity of the
spectrum is explained in the calculation by the large size
of Im[g(q~~, co)] for graphite compared typical metals.
Because of the unknown detector ef6ciency and crystal
reAectivity, the absolute experimental magnitude could
not be obtained accurately and so each theory curve has
been normalized to give the best rms fit to the data.

The spectrum taken at 5' and 10' towards the surface
normal are shown in Figs. 4(b} and 4(c). Here the con-
tinuum of losses rises in intensity at small energies be-
fore falling again giving a single broad maximum. This
maximum in intensity is reproduced by the theory. The
reason the intensity is small at low energies is the band
structure cutoff effect described above in which the
response function Im[g(q~~, co)] is zero if co&poq~t. For
nonspecular scattering the parallel wave vector

q~~
is

finite at m=0, and so at low energies the cutoff condition
is satisfied and there should be no inelastic scattering.
[Note that the spectra shown in Figs. 4(b) and 4(c) have

had a background subtracted arising from disuse elastic
scattering combined with energy loss, as discussed in

Ref. 9.]
The spectra taken at 5' and 10' to the surface normal

are shown in Figs. 4(d) and 4(e). The shape is now more
complicated and instead of a single maximum in intensi-

ty there is now a two-peaked structure. As explained in
Ref. 9, this double maximum is a combination of two
factors: firstly, the band structure cutofF effect gives a
single broad maximum in intensity, just as in Figs. 4(b)
and 4(c). However, in addition there is a further
minimum in intensity because the dipole scattering in-
tensity of Eq. (17) becomes zero whenever

q~~
——0 provid-

ed qj&0. This kinematical condition only occurs for
nonspecular scattering, when the scattering angle is to-
wards the surface normal, hence explaining why the non-
specular spectra in Figs. 4(d) and 4(e) show this addition-
al minimum while the spectra in Figs. 4(b) and 4(c) do
not. The dispersion of this minimum with angle from
specular can be calculated easily and agrees well with
the experimental dispersion. The theoretical spectra in

Figs. 4(d) and 4(e) reproduce all the features of the ex-
perimental results, at least qualitatively. The lack of a
more precise agreement could be due to a number of fac-
tors, including experimental uncertainties in the scatter-
ing angles, a slight tilt of the crystal which would lead to
out of plane scattering, and uncertainty in the beam en-

ergy due to small work-function difFerences between the
sample and the beam source. The existence of this extra
minimum in intensity for nonspecular scattering is not
peculiar to graphite but should be observable in princi-
ple on any substrate. However the e8ect is only strong
enough to be observed on graphite because of the high
intensity of the spectrum.

To conclude, we have shown it is possible to calculate
a surface dielectric function for a material which is not a
simple free-electron metal. This shows how the unusual
surface dielectric properties of graphite can be under-
stood in terms of the semimetallic band structure.
Theoretical EELS spectra, based on dipolar scattering
and the calculated surface dielectric function for graph-
ite, reproduce all the principal features of the spectra in-

cluding the high intensity on specular compared to a
metal and also the unusual dispersing features seen in
the nonspecular spectra.

(c) ~e--10'
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FIG. 4. Theoretical and experimental EELS intensities for
the graphite surface. (a) shows the specular spectrum, (b) and

(c) the spectra at S' and 10 towards the surface normal, respec-
tively, and (d) and (e) show the spectra at S' and 10 away from
the surface normal. A background due to diffuse elastic
scattering has been subtracted from the data, as described in

Ref. 9. Each theoretical curve is normalized to give the best
rms agreement with the experiment.

APPENDIX

It is useful to see how the relationship between the
EELS intensities and the surface dielectric function
given in Eq. (17}comes about, since this shows why the
surface dielectric function is the important quantity
describing the surface in EELS. Consider the EELS
electron moving freely in the half-space z & 0 and
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rejected by an infinite barrier at z =0; its wave function
is then

~

k) =2'/ sin(k z)exp(ik r) with k &0. The in-
elastic scattering arises because the Coulomb potential of
the electron provides a perturbation of the solid which
can excite it out of the ground state. If the solid is ini-
tially in its ground state

~
0), then the rate at which the

Coulomb interaction, V, excites the substrate to state
~

n ) scattering the electron to state
~

k') is given by
Fermi's golden rule:

1.„„.=2~ y ~
&o,k

~

f' ~.,k &
~
'S(.„,+.„-.„-.,), (Ai}

g (0
~
p(r) [ n )(n

~

p(r')
~

0)m5(e„—eo —co), (A3}

which is just the density response function Im[g(r, r', co)]
defined in Eq. (4). It is because the EELS intensity is

proportional to this density response function that we
And the relation between EELS intensities and the
dielectric properties of the solid. In fact, if we define the
surface response function by Eq. (3), and make use of the
2D Fourier transform of the Coulomb potential,

llexp iqll rll qll ~

z z'
~

), we find that the scatter-
ing rate above leads to

where
~

n ) is an excited eigenstate of the solid with en-

ergy e„, cA.
———,'k, etc. The inelastic scattering probabili-

ty of an electron re6ected from the surface is found by
dividing I i,& by the incident (lux k, /v 2. Now, since V
is a Coulomb operator,

P(k, k')= 2 k' 1

k cos(e;) ql ql +q& q~ +q&

X Im[g (ql, co)] (A4)

c=J'~.~"p, (r}p,(r')
(A2)

where p, (r) and p, (r') are the density operators for the
incoming probe electron and for the solid, respectively,
the Fermi golden rule expression of Eq. (Al) contains
factors of the form

(with qi ——k, —k,' and qi ——k, +k,'), and we recover the
usual result given in Eq. (17) (the second term in the
square brackets can be dropped since it is small). The
dipole scattering expression, (A4}, is entirely analogous
to the usual result in bulk EELS (Ref. 21) relating the
spectrum to the bulk loss function Im[ —I /e(ra)].
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