VOLUME 37, NUMBER 4

Ground-state staggered magnetization of two-dimensional quantum Heisenberg antiferromagnets

David A. Huse

AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (Received 2 November 1987)

The ground-state staggered magnetization of spin-S quantum Heisenberg antiferromagnets may be estimated in spin-wave theory (effectively a 1/S expansion) or by perturbation in $J_{\perp} = J_x = J_y$ away from the Ising $(J_{\perp}=0, J_z>0)$ limit. The latter series in J_{\perp}^2 is poorly convergent for the square lattice and a naive summation of the available terms yields overestimates of the staggered magnetization. A new way of analyzing the perturbation series that should remove the slow convergence is proposed. The resulting ground-state staggered magnetization per spin for spin- $\frac{1}{2}$ is 0.313, while spin-wave theory yields 0.303, in units where the full, classical staggered magnetization is 0.500.

The ground-state staggered magnetization per spin, m^{\dagger} , in spin-S quantum antiferromagnets is reduced from its saturated or classical value, $m_{\rm cl}^{\dagger} = S$, by zero-point quantum spin fluctuations. This "spin reduction," Δ , defined by

$$m^{\dagger} = S - \Delta, \qquad (1)$$

has been calculated in spin-wave theory, $^{1-3}$ in perturba-tion theory, $^{4-6}$ on small finite-size lattices, 7 and has been measured experimentally.^{8,9} The experimental measurements,^{8,9} made in the quasi-two-dimensional systems K₂NiF₄, K₂MnF₄, and Rb₂MnF₄, found results in good agreement with spin-wave theory. Previous analysis of the perturbation-theory results and finite-size lattices significantly underestimated the spin reduction for the square-lattice case appropriate for modeling these systems. In this paper I reanalyze the perturbation series, taking into account the expected behavior of this twodimensional system, and obtain a spin reduction very close to that found in spin-wave theory. For spin- $\frac{1}{2}$ I obtain $\Delta \approx 0.187$, while spin-wave theory, which is, in principle, valid only in the limit of large S, yields $\Delta \cong 0.197$. The spin-wave theory appears to only slightly overestimate the spin reduction in this most unfavorable (smallest-S) case; production and analysis of a longer perturbation series will presumably determine how accurate the present estimate of $\Delta \cong 0.187$ is. It is also argued below that the available finite-lattice results⁷ cannot yield a useful estimate of m^{\dagger} . This reexamination of this old problem is motivated by the current interest in the quasi-two-dimensional spin- $\frac{1}{2}$ antiferromagnet La₂CuO₄.¹⁰

Let us focus on the square-lattice antiferromagnet with exchange anisotropy, $J_x = J_y = J_\perp = J \le J_z$. Only nearest-neighbor exchange is considered, so the Hamiltonian is

$$H = \sum_{\langle ij \rangle} \left[S_i^z S_j^z + J (S_i^x S_j^x + S_i^y S_j^y) \right], \qquad (2)$$

where the sum runs over nearest-neighbor pairs and S_i are quantum spins. (Note that J_z has been set to unity, so J=1 is the isotropic Heisenberg case.) For J=0 we have an Ising system; its ground state is simply $S^z = +S$ on one sublattice and $S^z = -S$ on the other sublattice. The

ground-state and spin reduction can be calculated order by order in perturbation theory⁴⁻⁶ away from this Ising limit for $J \le 1$. For all $S \le \frac{5}{2}$ this has been done to order J^6 by Parrinello and Arai.⁶ For $S = \frac{1}{2}$ the series for the spin reduction⁶ is

$$\Delta = \frac{1}{9}J^2 + \frac{4}{225}J^4 + \frac{17}{1800}J^6 + \cdots$$
 (3)

(I have confirmed the first two terms of this series.) This series, truncated at order J^6 , is shown in Fig. 1 as the *lower* curve. For the isotropic Heisenberg antiferromagnet, J=1, this series gives the estimate $\Delta \cong 0.138$, well under the $\Delta \cong 0.197$ of spin-wave theory. One might think this is because S is so small and spin-wave theory is valid only for large S. However, the disagreement between the estimates of Δ from perturbation theory to order J^6 and

FIG. 1. The spin deviation $\Delta = \frac{1}{2} - m^{\dagger}$ for the square-lattice spin- $\frac{1}{2}$ antiferromagnet (2) with nearest-neighbor exchanges $J_z = 1$ and $J_x = J_y = J$. The lower curve is the perturbation series in J^2 to order J^6 as given by Eq. (3). The upper curve is the transformed series, Eq. (6), taking into account the expected square-root cusp at J=1. The latter series appears well converged and gives us the estimate $\Delta(J=1) \cong 0.187$. The spinwave-theory estimate is $\Delta(J=1) \cong 0.197$.

2381

spin-wave theory actually *increases* with increasing S. The reason is that Δ as a function of J^2 has a square-root cusp for $J^2 \rightarrow 1$, so the series is poorly convergent. Added Ising exchange anisotropy is a *singular* perturbation on the isotropic, J=1, Heisenberg antiferromagnet. The spin-wave theory tells us that Δ is actually an analytic function of $(1-J^2)^{1/2}$ for J^2 near unity.³ This is because Δ is an integral over zero-point spin-wave amplitudes of the form

$$\Delta \propto \int \frac{d^2k}{[1-J^2+k^2+O(k^4,J^2k^2)]^{1/2}} \\ \propto 1-A(1-J^2)^{1/2}+O(1-J^2), \qquad (4)$$

where A is a number of order unity.³ For finite S the precise zero-point amplitudes will differ a little from loworder spin-wave theory, but there is every reason to expect the functional form of $\Delta(J)$, namely the square-root cusp for $J^2 \rightarrow 1$ and analyticity in $(1-J^2)^{1/2}$, to apply for all S. This should be correct as long as there is long-range antiferromagnetic order at J=1, so the higher-order spin fluctuations merely renormalize the moments, stiffness, etc. by *finite* amounts and the *phenomenology* of spinwave theory remains correct.

This suggests that the singularity in $\Delta(J)$ at J=1 can simply be removed by the variable change

$$1 - \delta = (1 - J^2)^{1/2},$$

$$J^2 = 2\delta - \delta^2.$$
(5)

Making this change, we obtain the series

$$\Delta = \frac{2}{9} \delta - \frac{1}{25} \delta^2 + \frac{1}{225} \delta^3 + \cdots$$
 (6)

for $S = \frac{1}{2}$. This series, truncated at order δ^3 , is shown in Fig. 1 as the upper curve. This series appears more convergent than that in J^2 [Eq. (3)], and yields the estimate $\Delta \approx 0.1867$ for the isotropic case $J = \delta = 1$. The Padé approximants to this series of the form $\Delta \cong (a\delta)$ $(+b\delta^2)/(1+c\delta)$ and $\Delta \cong d\delta/(1+e\delta+f\delta^2)$ yield the estimates $\Delta \cong 0.1862$ and 0.1864, respectively, and show no poles in the vicinity of the interval of interest, $0 \le \delta \le 1$. That all three estimates based on (6) give essentially the same answer [unlike Padé estimates based on (3)] suggests that the difference between this result and spin-wave theory, $\Delta \cong 0.197$, is real. Generation and analysis of a longer series would check this. This difference from spinwave theory, as expected, decreases for larger S; the series for $S \ge 1$ agree with spin-wave theory within the accuracy suggested by their Padé approximants.

The spin-wave theory has been carried to the first nonlinear order and no effect on the spin reduction at J=1 is found.³ Naively, one expects the next-order (uncalculated) terms to be of order $1/(S^2z^3)$, where z is the coordination number of the lattice.³ For the case we are considering, $S = \frac{1}{2}$, z = 4, this is not small, $1/(S^2z^3) = 0.0625$, while the deviation found above suggests the terms missed are actually of order 0.01. Thus the $1/(S^2z^3)$ term in the 1/S expansion of Δ may have a rather small (or vanishing) coefficient at J=1.

Another, comparable estimate of the error in spin-wave

theory is obtained by considering the wave function at lowest order in 1/S. It has 0.197 zero-point spin-wave quanta present per spin. These spin waves are bosons, so more than one can sit on each spin; the number of excitations on each spin is Poisson distributed. For large S this is fine because S^{z} can be reduced by many quanta. However, for $S = \frac{1}{2}$, only one spin excitation is possible per spin and the configurations with more than one are nonexistent. Of the total spin reduction, 0.197, in spin-wave theory, 18% of it, or 0.035, arises from such configurations that are forbidden for $S = \frac{1}{2}$. If we simply replace each such forbidden configuration by the allowed configuration with all the excess spin excitations removed, the spin deviation obtained is $\Delta \approx -0.179$, somewhat under the series estimates. For large S, the number of spins in forbidden configurations vanishes as $(0.197)^{2S+1}/[(2S+1)!]$, so this effect is entirely missed by a 1/S expansion.

Oitmaa and Betts⁷ found the exact ground states of the isotropic (J=1) spin- $\frac{1}{2}$ model on finite square lattices with periodic boundary conditions and up to N=16 spins. They measured the mean-square staggered magnetization along the z direction and extrapolated it linearly versus 1/N to obtain the estimate⁷ $m_z^{\dagger}=0.243\pm0.006$. Their ground states are all rotationally invariant singlets, so their estimate of the full root-mean-square staggered magnetization per spin is thus $\sqrt{3}$ times this, or $m^{\dagger}=0.42\pm0.01$. This estimate is far in excess of the $m^{\dagger}\cong 0.313$ obtained above. The reason is that extrapolation versus 1/N is inappropriate here.

The spin-wave theory indicates that the spin-spin correlations decay as

$$\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle | - (m^{\dagger})^2 \sim \frac{1}{r_{ij}}$$
 (7)

for large spin separation, r_{ij} . This would imply that the mean-square staggered magnetization per spin of finite-size lattices should converge as

$$(m_N^{\dagger})^2 - (m^{\dagger})^2 \sim N^{-1/2}$$
 (8)

for large N. Thus we should expect

I

$$(m_N^{\dagger})^2 = (m^{\dagger})^2 + aN^{-1/2} + \beta N^{-1} + \cdots$$
 (9)

The present series estimate is $(m^{\dagger})^2 \cong 0.10$, while the largest lattice looked at by Oitmaa and Betts⁷ has $(m_{16}^{\dagger})^2 \cong 0.28$. This indicates that the sum of the correction term in (9) of order $N^{-1/2}$ and higher are still larger than $(m^{\dagger})^2$ itself for N=16. A reliable extrapolation for $N \to \infty$ can only be done if there is reason to believe that the higher-order corrections are small, namely if $\beta N^{-1} \ll \alpha N^{-1/2}$. In the absence of knowing the coefficients α and β , the sensible criterion for making a useful extrapolation is $(m_N^{\dagger})^2 - (m^{\dagger})^2 \ll (m^{\dagger})^2$. This has clearly not been attained, and would probably require lat-

tices of size $N \gtrsim 100$. Thus the results of Oitmaa and Betts⁷ for $N \le 16$ cannot be used to give a useful estimate of the $N \rightarrow \infty$ staggered magnetization.

Note added in proof. Extrapolation of the series expansion in Ref. 6 for the ground-state energy per bond of (2) yields $E_0 = -0.334 \pm 0.001$ for the isotropic case J=1.

- ¹P. W. Anderson, Phys. Rev. 86, 694 (1952).
- ²R. Kubo, Phys. Rev. 87, 568 (1952).
- ³R. B. Stinchcombe, J. Phys. C 4, L79 (1971).
- ⁴H. L. Davis, Phys. Rev. **120**, 789 (1960).
- ⁵L. R. Walker, in *Proceedings of the International Conference* on *Magnetism*, *Nottingham*, 1964 (Institute of Physics and the Physical Society, London, 1965), p. 21.
- ⁶M. Parrinello and T. Arai, Phys. Rev. B 10, 265 (1974).

This is somewhat below Oitmaa and Betts' estimate of -0.328 ± 0.003 ;⁷ their overestimate occurred because they assumed the finite-size correction is of order N^{-1} , while spin-wave theory tells us it is only of order $N^{-3/2}$. We¹¹ have a variational wave function that gives a strict bound of $E_0 \le -0.331$.

- ⁷J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978).
- ⁸H. W. de Wijn, R. E. Walstedt, L. R. Walker, and H. J. Guggenheim, Phys. Rev. Lett. 24, 832 (1970).
- ⁹R. E. Walstedt, H. W. de Wijn, and H. J. Guggenheim, Phys. Rev. Lett. 25, 1119 (1970).
- ¹⁰See, e.g., G. Shirane *et al.*, Phys. Rev. Lett. **59**, 1613 (1987), and references therein.
- ¹¹V. Elser and D. A. Huse (unpublished).