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The ground-state staggered magnetization of spin-S quantum Heisenberg antiferromagnets may
be estimated in spin-wave theory (eff'ectively a 1/S expansion) or by perturbation in J~ J J»
away from the Ising (J& 0, J,&0) limit. The latter series in J& is poorly convergent for the

square lattice and a naive summation of the available terms yields overestimates of the staggered
magnetization. A new way of analyzing the perturbation series that should remove the slow con-

vergence is proposed. The resulting ground-state staggered magnetization per spin for spin- —, is

0.313, awhile spin-wave theory yields 0.303, in units where the fuB, classical staggered magnetiza-

tion is 0.500.

The ground-state staggered magnetization per spin, m,
in spin-S quantum antiferromagnets is reduced from its
saturated or classical value, mc1 S, by zero-point quan-
tum spin fiuctuations. This "spin reduction, "5, defined

mt S-h, (1)
has been calculated in spin-wave theory, ' 3 in perturba-
tion theory, s s on small finite-size lattices, 7 and has been
measured experimentally. s s The experimental measure-
ments, s'9 made in the quasi-two-dimensional systems
K2NiF4, KzMnF4, and RbzMnFs, found results in good
agreement with spin-wave theory. Previous analysis of the
perturbation-theory results and finite-size lattices
significantly underestimated the spin reduction for the
square-lattice case appropriate for modeling these sys-
tems. In this paper I reanalyze the perturbation series,
taking into account the expected behavior of this two-
dimensional system, and obtain a spin reduction very close
to that found in spin-wave theory. For spin- T I obtain
6~0.187, while spin-wave theory, which is, in principle,
valid only in the limit of large S, yields d ~0.197. The
spin-wave theory appears to only slightly overestimate the
spin reduction in this most unfavorable (smallest-S) case;
production and analysis of a longer perturbation series
will presumably determine how accurate the present esti-
mate of 6~0.187 is. It is also argued below that the
available finite-lattice results cannot yield a useful esti-
mate of mt. This reexamination of this old problem is
motivated by the current interest in the quasi-two-
dimensional spin- & antiferromagnet LazCu04. '

Let us focus on the square-lattice antiferromagnet with
exchange anisotropy, J, J„J& J~ J,. Only
nearest-neighbor exchange is considered, so the Hamil-
tonian is
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ground-state and spin reduction can be calculated order

by order in perturbation theory s away from this Ising
limit for J~ 1. For all S~ 2 this hasbeen done toorder
Js by Parrinello and Arai. For S & the series for the

spin reduction is

d~-'J+ —J+ J +
(I have confirmed the first two terms of this series. ) This
series, truncated at order J, is shown in Fig. 1 as the
lower curve. For the isotropic Heisenberg antiferromag-
net, J 1, this series gives the estimate 6~0.138, well un-

der the 6~0.197 of spin-wave theory. One might think
this is because S is so small and spin-wave theory is valid

only for large S. However, the disagreement between the
estimates of 6 from perturbation theory to order Js and

H [S;Sjr+J(S,"SJ'+SfSJ)l.,
IJ

where the sum runs over nearest-neighbor pairs and S; are
quantum spina. (Note that J, has been set to unity, so
J 1 is the isotropic Heisenberg case.) For J 0 we have
an Ising system; its ground state is simply S' +Son one
sublattice and S* —S on the other sublattice. The

FIG. 1. The spin deviation h, 2
—m for the square-lattice

spin--,' antiferromagnet (2) with nearest-neighbor exchanges

J, 1 and J J„J.The lower curve is the perturbation series
in J to order J as given by Eq. (3). The upper curve is the
transformed series, Eq. (6), taking into account the expected
square-root cusp at J 1. The latter series appears we11 con-
verged and gives us the estimate h(J 1)~0.187. The spin-
wave-theory estimate is h(J 1)~0.197.
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spin-wave theory actually increases with increasing S.
The reason is that 5 as a function of J has a square-root
cusp for Jz 1, so the series is poorly convergent. Added
Ising exchange anisotropy is a singular perturbation on
the isotropic, J 1, Heisenberg antiferromagnet. The
spin-wave theory tells us that b, is actually an analytic
function of (1 —J ) ' for J near unity. This is because
5 is an integral over zero-point spin-wave amplitudes of
the form

ll —J'+k'+0(k' J'k')] ' '

1 —A(1 —J )'i +0(1 —J ),

where A is a number of order unity. 3 For finite S the pre-
cise zero-point amplitudes will differ a little from low-
order spin-wave theory, but there is every reason to expect
the functional form of h(J), namely the square-root cusp
for Jz 1 and analyticity in (1-Jz) 'iz, to apply for all
S. This should be correct as long as there is long-range
antiferromagnetic order at J 1, so the higher-order spin
fluctuations merely renormalize the moments, stiffness,
etc. by Pnire amounts and the phenomenology of spin-
wave theory remains correct.

This suggests that the singularity in d, (J) at J 1 can
simply be removed by the variable change

1 —b (1 —J )'i

J 2b —b.
Making this change, we obtain the series

W- -8——b'+ —8'+ .2 ] 2 [
9 25 225

for S & . This series, truncated at order b3, is shown in

Fig. 1 as the upper curve. This series appears more con-
vergent than that in J [Eq. (3)], and yields the estimate
6~0.1867 for the isotropic case J b 1. The Padh ap-
proximants to this series of the form b ~ (ab
+b82)/(I+cb) and h~db/(1+eh+ fb2) yield the esti-
mates d, ~0.1862 and 0.1864, respectively, and show no
poles in the vicinity of the interval of interest, 0» b» l.
That all three estimates based on (6) give essentially the
same answer [unlike Padh estimates based on (3)] sug-
gests that the difference between this result and spin-wave
theory, d ~0.197, is real. Generation and analysis of a
longer series would check this. This difference from spin-
wave theory, as expected, decreases for larger S; the series
for S~ 1 agree ~ith spin-w ave theory swithin the accuracy
suggested by their Padh approximants.

The spin-wave theory has been carried to the first non-
linear order and no eff'ect on the spin reduction at J 1 is
found. Naively, one expects the next-order (uncalculat-
ed) terms to be of order 1/(S z ), where z is the coordi-
nation number of the lattice. 3 For the case we are consid-
ering, S —,', z 4, this is not small, 1/(S z3) 0.0625,
while the deviation found above suggests the terms missed

~(s, s,&( -(mt)'-

for large spin separation, r;J. This would imply that the
mean-square staggered magnetization per spin of finite-
size lattices should converge as

(mt)'-(mt)'-N-'i'

for large N. Thus we should expect

(mt)z (mt) +aN 'i +PN '+

(8)

(9)

The present series estimate is (mt) ~0.10, while the
lar est lattice looked at by Oitmaa and Betts has
(m 6) ~0.28. This indicates that the sum of the correc-
tion term in (9) of order N 'i and higher are still larger
than (m t) itself for N 16. A reliable extrapolation for
N oo can only be done if there is reason to believe that
the higher-order corrections are small, namely if
pN ' « aN 'i2. In the absence of knowing the
coefficients c and p, the sensible criterion for making a
useful extrapolation is (mg ) z —(m t)z(( (m t) '. This has
clearly not been attained, and would probably require lat-

are actually of order 0.01. Thus the 1/(S z ) term in the
1/S expansion of 6 may have a rather small (or vanishing)
coefficient at J 1.

Another, comparable estimate of the error in spin-wave

theory is obtained by considering the wave function at
lowest order in 1/S. It has 0.197 zero-point spin-wave
quanta present per spin. These spin waves are bosons, so
more than one can sit on each spin; the number of excita-
tions on each spin is Poisson distributed. For large S this
is fine because S' can be reduced by many quanta. How-
ever, for S —,', only one spin excitation is possible per
spin and the configurations with more than one are nonex-
istent. Of the total spin reduction, 0.197, in spin-wave
theory, 18% of it, or 0.035, arises from such configurations
that are forbidden for S 2 . If we simply replace each
such forbidden configuration by the allowed configuration
with all the excess spin excitations removed, the spin devi-
ation obtained is h~ 0.179, somewhat under the series
estimates. For large S, the number of sjrins in forbidden
configurations vanishes as (0.197)~+ /[(2$+I)!], so
this effect is entirely missed by a 1/S expansion.

Oitmaa and Betts found the exact ground states of the
isotropic (J 1) spin- 2 model on finite square lattices
with periodic boundary conditions and up to N 16 spins.
They measured the mean-square staggered magnetization
along the z direction and extrapolated it linearly versus
1/N to obtain the estimate7 m,t 0.243+'0.006. Their
ground states are all rotationally invariant singlets, so
their estimate of the full root-mean-square staggered
magnetization per spin is thus v 3 times this, or
mt 0.42+ 0.01. This estimate is far in excess of the
m t ~0.313 obtained above. The reason is that extrapola-
tion versus 1/N is inappropriate here.

The spin-wave theory indicates that the spin-spin corre-
lations decay as
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tices of size N+100. Thus the results of Oitmaa and
Betts for N ~ 16 cannot be used to give a useful estimate
of the N eo staggered magnetization.

Note added in proof. Extrapolation of the series expan-
sion in Ref. 6 for the ground-state energy per bond of (2)
yields Eo -0.334+'0.001 for the isotropic case J l.

This is somewhat below Oitmaa and Betts* estimate of
—0.328+0.003;7 their overestimate occurred because
they assumed the finite-size correction is of order N
while spin-wave theory tells us it is only of order N
We" have a variational wave function that gives a strict
bound of Eo ~ —0.331.
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