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Stability of anisotropic superconducting phases in UPt3
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%e have calculated the relative stability of s-, p-, and d-eave superconducting states in UPt3.
This is done by 6tting the observed spin-6uctuation spectrum by a simple form and taking the ex-
change of these fluctuations as the pairing mechanism. One representative of each of the above
classes of states can occur, the stability depending on the Coulomb pseudopotential, the details of
the fluctuation spectrum, and the Fermi surface. The most favorable Sap function for the d-wave

representations has t~o lines of nodes.

Much of the excitement surrounding the discovery of
heavy-fermion systems has been due to the fact that they
exhibit anisotropic superconducting phases. This has led
to controversy surrounding the nature of the phases, and
the superconductivity mechanism. '

The exchange of spin fluctuations as a means of pairing
in heavy-fermion superconductors has been considered by
several authors. From calculations on He it is known
that ferromagnetic spin fluctuations suppress conventional
singlet pairing and lead to triplet pairing. '~'4 The spin
fluctuations observed by neutron scattering' in UPt3 are
antiferromagnetic, tending toward an ordering wave vec-
tor q (2tr/c)i. Previous work on antiferromagnetic spin
fluctuations has led to the conclusion that the~ suppress
both conventional singlet and triplet pairing, but they
promote anisotropic singlet pairing. ' '

Our purpose in this Rapid Communication is to exam-
ine this reasoning in a phenomenological spirit for UPt3.
Enough is now known about the spin-fluctuation spectrum
from neutron scattering'5 and about the Fermi surface
from calculations's 's and de Haas-van Alphen experi-
ments'9 that serious calculations of the relative stability of
different superconducting phases can be carried out. Our
treatment differs from an earlier paper» along these lines
by incorporating the group-theoretical analysis of the pos-
sible phases and by demanding that the electronic wave
function be completely antisymmetric. We follow this pa-
per in neglecting spin-orbit coupling, with consequences to
be noted below.

The model we consider is that of Anderson and Brink-
man" and Nakajima. '2 The effective interaction Hamil-

tonian is
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where X(q), the static susceptibility, is a phenomenologi-
cal function determined from the neutron scattering data
and I is the Hubbard interaction parameter.

The q dependence of X(q) is found from the neutron
scattering data of Aeppli et al. '5 Along the z axis the
data are fltted to within experimental error by
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where X„gb are positive constants and X,/Xk 3.44. Note
that the parabolic forms of X(q, ) chosen in Ref. 9 are not
consistent with the data at large q. The q„and q„depen-
dence has not been fully mapped out experimentally and
must be determined in a more indirect fashion. The
short-range antiferromagnetic spin fluctuations in UPt3
are consistent with the spins in a single basal plane tend-
ing to be parallel and spins in neighboring planes dis-
placed by c/2 tending to be antiparallel. '

These observations lead us to take the simple form
g(q)-Re+ac''i's, where 8 runs over nearest and next-
nearest neighbors. There must, in addition, be a short-
range Coulomb pseudopotential, giving an interaction of
unknown strength, but independent of q. The effective in-
teraction is therefore
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The pairing potential V» is given by

V

where the upper (lower) factor corresponds to spin singlet
(triplet) pairing and even (odd) parity. Since spin-orbit

I

coupling is not included, all components of the triplet gap
have the same gap equation. Only the spatial representa-
tion of these components is determined. (The formalism
of Ref. 9 is appropriate to a spin singlet pair wave func-
tion. It is then necessary to require that the spatial depen-
dence of the gap be even under inversion. This constraint
does not appear to have been consistently implemented. )
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TABLE I. Basis functions for the various representations of Dq. The interaction can be decomposed
into sums of products of these functions.
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The interaction can be written in a separable form
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go/g2, u gI/g2, and pk, yk, etc. are functions
listed in Table I that transform as single representations
of D6. The notation used to label the representations fol-
lows Volovik and Gor'kov, 2e but the basis functions are
different from their polynomial forms.

To determine the symmetry properties of the gap func-
tion we need the eigenvalues c0 of the linearized gap equa-
tion
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T, is an increasing function of aI; therefore, the represen-
tation with highest eigenvalue is the stable one. The sum
s is over the diff'erent pieces of the Fermi surface which
have different quasiIIarticle masses III, (Ref. 19) and
different shapes, Is ' '

requiring different eff'ective Fermi
momenta k, and Jacobian factors J,. The @(I",y, k) run
over the basis functions, labeled by y, of the different rep-
resentations I. The number of primes on +(I,y, k)
matches the number of primes on the functions in Table I.
UPt3 has a center of inversion so that we can consider
even- and odd-parity gaps separately.

To model the Fermi surface we have used the band cal-
culations of Wang et IIl. '" and Oguchi et al. Is along with
the deHaas-van Alphen measurements of Taillefer
et al. ' The six different pieces of the Fermi surface are
well approximated by ellipsoids. We include all of these
and find that the most important contributions come from
the prolate ellipsoids centered at I and the oblate ellipsoid
centered at A.

For the even parity interaction we can write d,k as a
linear combination of the even-parity functions listed in
Table I. Substituting this into Eq. (7) gives a set of linear
equations with coelcients determined by numerical
wave-vector integration. These are then solved for the ei-
genvalues re belonging to different representations. We
find that the eigenvalues for the completely symmetric
A Is and the E Is representations are much larger than the
eigenvalues belonging to the other even representations.
The 3 Ig and EIs functions are labeled s and d, respective-
ly, in Fig. l.

A similar computation is carried out for the odd-parity
interaction and we find that the eigenvalue for the EI„
representation is by far the largest among the odd-parity
representations. This is the p state in Fig. 1.

From the results of our calculation we can draw a phase
diagram for the adjustable parameters u and b Physical-.
ly, c represents the strength of the ferromagnetic correla-
tions relative to the antiferromagnetic part. b represents
the relative strength of the Coulomb pseudopotential. The
phases are determined by which representation has the
largest eigenvalue. From Fig. 1 it can be seen that anti-
ferromagnetic spin fiuctuations of the kind observed in
UPt3 do not necessarily give d-wave pairing. The isotro-
pic repulsion represented by b is important for allowing
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FIG. 1. Phase diagram for superconducting UPt3, as a func-
tion of two undetermined interaction parameters a and 8'. a
represents the strength of in-plane ferromagnetic correlations. b
is the strength of a short-range isotropic repulsion. a and 8 are
dimensionless, being measured in units of the strength of the an-
tiferromagnetic pairing potential.

I

d-wave pairing as a possibility. With b 0, only s-wave or
p-wave pairing is possible. 8 does not contribute to rII for
p- and d-wave states and the phase boundary is therefore
vertical between these two.

We have done calculations of the eigenvalues varying
the shapes and sizes of the Fermi-surface pieces. We find
a rather strong dependence, indicating that this model
may be able to account for the observed sensitivity of r,
to pressure, ~I impurity concentration, 2 etc. These results
will be reported in a future publication.

Our calculations do confirm the theoretical expectation
that antiferromagnetic correlations lead to d-wave pair-
ing. They also show that care is needed in applying this
reasoning to real systems where the interaction has several
components and the Fermi surface is complicated. s- and
p-wave states are not generally ruled out and indeed the
s-wave state would be stable in the absence of short-range
repulsions. The d-wave state most favorable by far for
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UPt3 is the E&s state, which is twofold degenerate and has
a line of nodes in the gap in the k,~O plane and a line of
nodes in the plane k, 0 or k„O. The most favorable @-
wave state belongs to the E i„r epre sent ati on. The p-wave
functions in Table I have one line of nodes. This is due to
our neglecting possible spin-orbit coupling which leads to
such types of gap functions. z' When this coupling is in-
cluded, these lines of nodes become points, but we expect
that the E~„r epr esent ati onis still stable. We believe at
the present time that realistic calculations of T, are not
possible owing to uncertainty in many parameters, most

notably the cutoff frequency, the renormalization of the
Coulomb pseudopotential, and g factors arising from
spin-orbit coupling which enter the interaction. On the
other hand, one expects that whatever those parameters
are, they enter in the same way for all of the different
phases considered, and the conclusions concerning relative
stability will be unaffected.

We would like to thank T. M. Rice and D. L. Huber for
useful discussions.
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