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Flux siuantixation in periodic networks containing tiles with irrational ratio of areas
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We report measurements of the superconductiug-normal transition boundary T, (H) of two-
dimensional periodic networks with two different space-group symmetries in a magnetic 6eld.
Each network is a mixture of squares and equilateral triangles. In both cases, we observe maxima
in T, (H) with one major period, which does not correspond to the area of either the square or
the triangle. %e interpret the results in terms of flux configurations whose energies are sensitive
to the geometry of a given network.

The study of phase transitions in two-dimensional (2D)
systems' is an exciting branch of condensed-matter phys-
ics. Substantial work has been done to understand the
superconducting-to-normal transition in periodic arrays of
Josephson junctionsz and proximity-effect-coupled super-
conducting islands. 3 These systems display a wide variety
of phenomena that include Kosterlitz-Thouless vortex-
antivortex unbinding transition' in zero magnetic field
and periodic oscillations in the resistance as a function of
an external magnetic field.

Superconducting wire networks" near the transition
are simpler to understand compared to the junction ar-
rays. The transition temperature T,(H) of a periodic lat-
tice (square, triangular, or honeycomb) exhibits oscilla-
tions as a function of a magnetic field, with a fundamental
period corresponding to a flux quantum, eo ( Ite/
2e 20.7 pmzG), in the unit cell. In addition, there are
other fine structures at rational fractions p/q of this basic
period, representing the commensurability of the flux lat-
tice with the underlying geometrical lattice. Arbitrary
values of the magnetic field result in frustration of the flux
lattices. Mean-field calculations based on linearized
Ginzburg-Landau (GL) theory have been enormously
successful in explaining the details of the experimentally
observed behavior. Notably, the GL equation for the or-
der parameter at the nodes of a network has been
mapped7 onto the Bloch equation for electrons in the 2D
tight-binding model for the same lattice geometry. Thus,
the superconducting-normal phase boundary is related to
the band edge of the corresponding Bloch spectrum. The
results of Pannetier er ul. on periodic lattices, along with
the conclusions of the recent experiments in fractal' and
quasicrystallines networks, clearly demonstrate that the
behavior of T, (H) reflects the properties of the lattice un-
der consideration.

The periodic networks studied until now have mostly
corresponded to simple two-dimensional Bravais lattices.
The primary objective of this study is to see the effect of
two difFerent tiles with an irrational ratio of areas in a
periodic lattice. Secondly, we like to study the influence
of the exact geometry on T, (H) and other transport prop-
erties of different periodic lattices with the same numbers
and the same kinds of tiles.

The samples were prepared using submicrometer

electron-beam lithography. 'o Each network is a periodic
mixture of equilateral triangles and squares. The wire
defining the network is nominally 300-A-thick aluminum
of width 0.5 pm. The distance ao between any two adja-
cent nodes is 2.4 pm and the size of the network is
720&720 pmz. Two opposite edges of an array are short-
ed by a 25-pm-wide strip for making current and voltage
contacts. The first network [shown in Fig. 1(a)] has the
symmetry" corresponding to the two-dimensional space
group P4grrt. The second network [shown in Fig. 1(b)]
corresponds to the two-dimensional space group" C2mm
with a centered rectangular Bravais lattice.

For periodic lattices with tiles of two different areas,
one would expect the locations of the maxima in T, (H) to
correspond to either of the areas and/or the sum of the
areas. However, as the analysis and the experimental
data below indicate, there is only one major period that
does not correspond to the area of either the square or the
triangle.

The measurement of T, (H) is done similar to the other
experiments with a bias current of 10 pA. The typical
sample resistance was 2 0 at 4.2 K, and T, for various
samples ranged from 1.35 to 1.55 K. We show in Fig. 2
the T, (H) behavior of the two networks, for both positive
and negative fields up to =20 G. We have already sub-
tracted the background proportional to H2 due to the fiux
penetration in the wires of finite width. The magnetic
field corresponding to a superconducting flux quantum in

(0) (b)

FIG. l. Electron micrographs of samples. (a) P4gm symme-
try. (b) C2mm symmetry.
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the square is 3.59 6 and that in the triangle is 8.30 6.
Now we discuss some major features of Fig. 2. In both
networks, the maxima in T, occur with a characteristic
period of Hz =1.96 G. We can write the locations of the
peaks as corresponding to n times the basic field H~„
where n is an integer or certain rational fractions. The
large peaks in T, (H) corresponding to n 4, 5, and 9 are
observed in both networks. The relative magmtudes of the
various other peaks are different for the two geometries.
In the C2ntnt case [Fig. 2(b)l, the structures at n 1, 2,
6, 7, and 8 are less prominent compared to the P4gm
geometry, but they can be clearly seen in the second
derivatives. There are additional maxima in Fig. 2(b),
corresponding to n & and n —", . The peak at n -', is

larger than for the P4gm case. Our analysis below ad-
dresses these features.

In the following discussion, we shall identify the flux
configurations that lead to the experimentally observed
structures using an intuitive approach. If N~ (N&, ) is
the total number of squares (triangles) in the array and

n~ (nt, ) is the average flux in each square (triangle) in
units of 40, the average magnetic field over the array is
given by

H„@0 (1)
&~~~+ &tr~ tr

where Ali (At, ) is the area of the square (triangle).
A&, (K3/4)Asq and 1V&, 21Vsq and therefore Eq. (1)
reduces to

r

(2)
, 1+ 3/2,

where H~ ( 40/A~) is the field corresponding to a flux
quantum in the square, n nsq+2nt, and HI, H~/

(1+W3/2). For our samples, H~ is 1.93 6 and thus corre-
sponds to the basic period discussed above. One expects
(in general) the maxima in T, to correspond to integral
values of n~ and n&,. In fact, similar to the simple Bravais
lattices, there may be local maxima in T, for n~ p/q (a
rational fraction), corresponding to p flux quanta in q
squares and similarly for n„.

It is obvious that for a given n, one can find various sets
of (n~, n&, ) and we identify the one with the minimum en-

ergy as the correct configuration. To help us in this
identification, we have done a calculation of the detailed
current configurations using the concepts outlined in Ref.
7(b). In particular, we use the London loop condition

g l(Jugs
~ (nl @I/@c),

2Ã

Qo

where a;, is the phase gradient along the strand (ij), I;J is

the length of the strand (ij ) in units of length ao, 4i is the
flux through the loop, and nI is an integer. An additional
condition gj a;~ 0 at any node i conserves the current.
In some cases we had to explicitly impose that the total
current across the sample from one end to the other end
be zero. The energy required for a given configuration of
the currents is then given by

BU — I"a"1 2
IJ EJ

The calculated values of bU (normalized to a basic unit of
one square and two triangles) are shown in Table I, by
choosing 2x/ao to be unity. The depression d T, (H) from

TABLE I. Identi6cation of the various peaks in Fig. 2. In the
cases where we 6nd two sets of (n~,n„)that are close in bU, for
a given lattice and a specific value of n, we give both the
configurations. Also, for the same n, the two lattices can have
diff'erent minimum-energy configurations (n~, ni, ), as in the case
of n 10.
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FIG. 2. T, as a function of external 6eld for the two
geometries. The arrows indicate the locations of the maxima
corresponding to various n values. (a) P4grn (h) C2mm.
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0.268
0.536
0.890
1.072
1.608

2.144
2.412
2.680
3.215
3.751

3.930
4.287
4.823
5.359

0.116
0.232
0.385
0.464
0.696

0.928
1.044
1.160
1.392
1.624

1.702
1.856
2.088
2.320

(-,',0)
(1,O)

(1, 3 )
(1, —,')
(l, l)
(2, 2)
(2,1)
(2-,', I)
(3,1)
(3, 1-,' )
(3,2)
(4, 1-,' )
(4, —', )
(4,Z)

(5,2)
(5,2-,' )
(6,2)

0.038
0.027

0.063
0.046
0.083
0.003
0.033
0.013
0.069
0.072
0.070

0.010
0.004
0.079
0.052

0.036
0.054

b
0.052
0.093
0.089
0.005
0.024
0.026
0.062
0.141
0.065

b
0.020
0.008
0.082
0.103

'Not seen in this geometry.
The lowest-energy solution may involve more than three primi-

tive cells and we have not identi6ed the detailed current
con6gurations to calculate the energy.
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the T,(0) value is proportional to bU.
The limitations of this approach are discussed in Ref.

7(b). In particular, for arbitrary external fields, the
current patterns do not have to be commensurate with the
underlying lattice and the above approach is not useful.
However, for values of n corresponding to an integer or a
simple fraction, the minimum periodic unit for the current
patterns consists of a small number of the geometrical
primitive cell of the lattice under consideration. In these
cases, exact solutions can be found and they are likely to
be the real ground-state configurations.

First, we discuss the T, (H) of samples of the space
group P4gm [Fig. 1(a)]. We have studied three samples
of this geometry and found the locations of the structures
in T, to be independent of the details of the lithographic
defects in the samples. Relative magnitudes of the various
peaks are slightly sensitive to the sample details. In addi-
tion, we see evidence to indicate samples of lower resistivi-
ty show larger range of coherence as suggested by the ob-
served subharmonic structures. With the help of the cal-
culated values of bU from the detailed current distribu-
tions, we confirm the identification of the specific flux
configurations. As seen in Table I, the large structures at
n 4, 5, and 9 result from the fact that for these cases the
average values of applied flux (in units of 40) through the
square and the triangle (C& and e~„respectively) are
both close to integers. In addition to the integer values of
n, we find smaller structures at n 2 and & .

The numerical solution of the GL equations by Nori
and Niu for the P4gm lattice with 400 nodes also shows
an excellent agreement with the locations of the experi-
mentally observed maxima. A comparison of the magni-
tudes of the peaks from Ref. 9 to our b'U's requires a scale
factor. If the SU for the n 2 peak is scaled to match its
numerical value from Ref. 9, the 8U's for the rest of the
peaks agree with their corresponding numerical results to= +'20%. This apparent difference between the two cal-
culations may be related to the finite size of the lattice in
the numerical calculation. A comparison of the experi-
mental data to either the BU's in Table I or the numerical
results of Nori and Niu indicates some discrepancies. For
example, the experimental peak at n 8 is too small com-
pared to the theoretical predictions. Also, theoretically
one expects the peak at n 4 to be larger than that at
n 5, whereas the experimental result is exactly the oppo-
site.

Next, we discuss a sample with the C2mm symmetry.
We have studied two samples of this geometry. The de-
tailed current distribution for the C2mnt geometry indi-
cates that for many of the flux configurations currents
need to flow from one end of the sample to the other, caus-
ing the observed structures to be much more sensitive to
lithographic defects compared to the P4gm case, where
the currents are mostly local. Experimentally, the sam-
ples of the P4gm symmetry do yield a cleaner spectrum
compared to the C2mm case.

The agreement between the numerical solution for the
C2mm lattice with 400 nodes and the bU values in Table I
is comparable to the situation for the P4gm case de-
scribed above. Both calculations predict smaller peaks at

n 1 and 8, and a larger structure at n 2 for the C2mm
geometry compared to the P4gm case, in agreement with
the experiment. Of the two new structures seen in the ex-
periment at n —', and —', , the one at n —', is predicted
by the numerical calculations. Our solution of the de-
tailed current distributions for n —', and —", involving
three geometrical primitive cells gives a relatively high
value for bU. This implies that the real ground state for
these field values may involve more than three primitive
cells.

We should emphasize that the theoretical calculations
(our London loop equation approach as well as the GL
calculations of Ref. 9) assume that the lines defining the
network are arbitrarily narrow and the measuring current
is zero. Some of the discrepancies between theory and ex-
periment may be ascribed to these assumptions.

Now we discuss the role of irrational ratio of the tile
areas in a periodic lattice. This issue has also been ad-
dressed by Behrooz er al. [see Fig. 9 of Ref. 6(b)]. In
contrast with the case of periodic lattice with a single tile,
T, (H) for our networks (after the quadratic subtraction
due to the finite width of the wires) is not expected to
reach the zero-field value for any nonzero value of the ap-
plied field. This is a consequence of the inherent frustra-
tion in these lattices due to the fact that the flux quantiza-
tion cannot be satisfied simultaneously for both the square
and the triangle. However, as n~/n&, approaches a ration-
al approximation to 4/W3, one sees large structure close to
the T, (H 0) value. It is to be noted from Eq. (1) that
the ratio of the numbers of tiles plays a different role in
determining the rational or irrational nature of the ob-
served structures compared to the tile-area ratios. In the
identification of the peaks in our experiments the tile areas
play a role only in determining the basic period and the in-
dex n is always rational. This is not the case for the quasi-
periodic lattices discussed by Behrooz er al.

We have also performed magnetoresistance (MR) mea-
surements just above T, for both networks. The struc-
tures in MR are not as prominent as in T, (H). The
difference between the two lattices is not easy to observe
since the major peaks in T, (H) occur at the same posi-
tions. The measurement of the current-voltage charac-
teristics of the networks below T, also shows a modulation
of the critical current in agreement with T,(H).

In conclusion, we have measured the superconducting-
normal phase boundary of periodic networks of two
different space-group symmetries that are mixtures of
squares and triangles. The networks show maxima in
T,(H) with one major period that averages the areas of
the squares and triangles. The magnitudes of the maxima
in T, depend on the exact geometry under consideration.
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