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The determination of the magnetic penetration depth A, in type-II superconductors from the
6e1d distribution n(8} measured by muon spin rotation (ttSR) is discussed. Particular stress is
put on high-T, oxide superconductors (coherence length g&(A, ; upper critica1 6eld much greater
than the applied 6eld; anisotropy and pinning). Fitting of the highly asymmetric n(B) by a
Gaussian or Lorentzian, as done in existing p.SR experiments, yields for a perfect vortex lattice k
values which are too large, and for a strongly distorted (due to pinning) lattice A, values which are
too small. An improved evaluation of p,SR data is suggested.

Since the discovery of high-T, superconductors' several
papers on transverse muon spin rotation (@SR) in these
promising materials have appeared. The main aim of
these experiments was the determination of the magnetic
penetration depth A, from the relaxation of the (complex)
polarization P+ P„+iP» of the muon spin. The positive
muons, created by pion decay, are implanted into the
specimen one at a time and rotate their spin in the local
magnetic field 8(r) with precession frequency to y„8
where y„8.513 rad/s T is the gyromagnetic ratio of the
muons. In transverse @SR the orientation of the spin
component perpendicular to the applied field 8,»t is sen-
sored by detection of the positron emitted predominantly
along the spin direction when the muon decays (lifetime

2.2 ps). When the muons see dN'erent values of 8
the amplitude of the ensemble-averaged rotating P+(t)
relaxes due to destructive interference. Here t is the time
which elapses between the implantation and the decay of
the muon. In this way the distribution of the magnetic
field inside the specimen may be determined.

In the present paper it will be shown how P+(t) looks
in a perfect type-II superconductor, how anisotropy and
inhomogeneity of the material (vortex pinning) may
influence the it SR signal, and how the evaluation of exper-
iments can be improved.

In type-II superconductors 8(r) varies spatially since in
the range 8, ~ &8,»t&8,z magnetic flux penetrates in
form of a (more or less regular) lattice of flux lines (tiny
current vortices) each carrying one quantum of flux

2.07x10 '5 Tmz. These vortices have a core of ra-
dius = g (coherence length) within which the supercon-
ducting order parameter goes to zero, and they carry a
flux tube of radius X (penetration depth for weak magnet-
ic 6elds).

The new high-T, oxide superconductors are of extreme
type II: From their very large (extrapolated) upper criti-
cal 6elds 8,2 pe/2trg2 (& 50 T at low temperatures )
and very small lower critical 6elds 8, t =~ntc
+const. )/4trA, 2 [&0.02 T (Refs. 6-8)] follows a large
Ginsburg-Landau parameter x.=—X/g &) l. One useful
consequence of this fact is that there exists a large range
of applied fields 8,p~~ &8,2/4 where the simple London

picture applies. This means (i) the vortex cores are well
separated (they do not overlap and do not interact since
their separation is d & 5.4$ in a triangular lattice) and
therefore (ii) the vortex fields superimpose linearly such
that (iii) the energy and elasticity of the vortex lattice can
immediately be written down as the magnetic interaction
of all vortex pairs. The theory of the vortex lattice is thus
much simpler and more transparent than in the Gins-
burg-Landau case (8 & 8,/4, T=T, ).

Another consequence of A, ))g is that for 8,~@&28, t

(the condition 28, ~ & 8,»~ & 8,2/4 is satisfied in most ex-
periments) one has (2trA, )2))dz (1 vortex spacing) and
therefore the vortex fields overlap strongly. This has three
consequences which all are important for the interpreta-
tion of ltSR experiments. (i) The field variation (dCh 2) 'l2

in a perfect vortex lattice is much smaller than the aver-
age internal field 8=8,»~ and is (ii) independent of 8,»~
(this is nicely confirmed by the experiments of Gygax et
al. 5). A further, less obvious consequence is that (iii) the
elastic response of the vortex lattice to pinning forces is
highly nonlocaL This means that the elastic energy re-
quired to compress or tilt the vortex lattice inhomogene-
ously is reduced (with respect to homogeneous strain) by
a factor 1/(1+k ~A, 2) when a Fourier component of wave-
length 2tr/k is considereds'c (see below).

The validity of the simple London picture (for impure
superconductors with A, &)g at 8,»~ &8,z/4) is indepen-
dent of the detailed mechanism which causes supercon-
ductivity but follows from the mere presence of a Meiss-
ner e6'ect.

In Refs. 2, 4, and 5 the penetration depth A, is extracted
from the @SR data as follows; for improved evaluation
methods see Ref. 3 and below. First, the field variation
~2 for a perfect vortex lattice is given. For the triangu-
lar lattice [reciprocal lattice vectors E K „
-(16tt2/3d') (ttt '+rttn+n 2); ttt, n integer, d' 2gc/
438) the London model yields

x(1+3 '+4 '+2X7 '+ . ) .
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n(8') -&@[8'-8(r)j), (4)

where &. . . ) denotes spatial averaging and b the one-
dimensional delta function. n(8) is the probability of
finding a field 8 at an arbitrarily chosen point r inside the
specimen. The integral from 8 —o to 8 oo over n(8)
thus yields unity, and the integral over 8 n(8) yields

When the implanted muons are immobile n(8) is
the (real) Fourier transform of the (complex) muon spin
polarization, "

P+(t) P+(0) n(B)exp(iy„Br)dB . (5)

From Eq. (5) follows that if n(8) were a Gaussian its
relaxation would also be Gaussian, I

P+ (r ) I

-exp(- r 2/Tj), where

7 ~ (2/y2~ 2) i/2

In order to estimate A, the measured relaxation was there-
fore fitted by a Gaussian2 4 or, somewhat inconsistently,
by the exponential exp(-t/T2). [This gave a better fit
but means a Lorentzian n(8) which has a diverging BB2.j
Combination of Eqs. (1) and (6) then yielded

(0.043y„yoT2) '/2.

How good are the X values obtained in this way? First
we note that for a perfect vortex lattice the field distribu-
tion n(8) is far from being a Gaussian or a Lorentzian as
fitted in these first @SRexperiments. 2 s The correct n(B)
is highly asymmetric (in particular at b «1) and exhibits
van Hove singularities, namely, jumps at the maximum
(8 „) and minimum (8 ) values of the two-
dimensionally periodic 8(r), and a logarithmic pole at the
saddle-point value 8 s. t This can be seen in Fig. 1

where n(8) is depicted for b 1, 0.2, and 0.05 with 8(r)
taken from the Ginsburg-Landau solution. '2 For b & 0.05
n(8) looks similar to b 0.05 but has a longer tail since8,„is larger (see the field profiles inserted in Fig. 1).

The corresponding spin polarization P+(r) (Ref. 5) is
shown in Fig. 2 for b 0.2 and b 0.05 [units P+(0) 1,
ELB I). For b &0 2(b &0.0.5) the curves look similar
as those for b 0.2 (b 0.05). Note that neither
IP+(r) I n«P (r) —=Re[P+(r)exp(
(Re[. . .) real part) are well 6tted by the curves

This txirrect result 682 0.00371&(k 4 is 2.13 times
larger than the crude approximation (sum replaced by in-
tegral)" used in Refs. 2, 4, and 5. In Eq. (1) Bx

8/(1+EC2A, 2) are the Fourier coefficient of 8(r). Note
that K2X2 & 72 for 8,»i & 28, i and that
(582)'/2=0. 768, t/lnr=B, t/6. If desired, a cutoff' at
E=l.4'/g is provided by the numerical solution of the
(isotropic) Ginsburg-Landau theory for x)&1.' This
gives at reduced fields b =8/—8,2 & 0.25, Bg =8(1
+E A, 2) 'exp(-E2$2/2), and at b & 0.7,

7.52x 10 (1 b-) 2' 4

A useful approximate expression valid at arbitrary field
0&b& 1 is

F2=7.5~10-'(I-t)2[1+3.9(I-S)2ly@, '. (3)

Now consider the field distribution

/ ~~b=0.02
0.05

~B-e)g g, B')'/2

FIG. 1. The field distribution n(8), Eq. (4), for the triangu-
lar vortex lattice at various reduced fields b =8/8, i. Shown are
histograms normalized to M2~1 and slightly smoothened by
convolution with a Gaussian of width 0.03. The inset shows
profiles of the field 8(x,y) along two difFerent directions,
8(0,0) 8 (vortex centers), 8(0,%3d/6) 8~~, and
8(u/2, 0)-8,.

exp(-t /T)) or exp( —t/T2) when T2 from Eq. (6) is
used (dashed curves). Both fits yield too-large values for
T2 and X.

The reason for this poor fit is the long tail in I
P+(r)

I

caused by the sharp peak of n(8) at 8 8 q. This situa-
tion changes little when anisotropy is allowed for in a
monocrystal. Anisotropy will stretch the triangular lattice
and split the peak in n(8) since there are now =3 types
of saddle points. However, these peaks and the jump at
8~;„nearly coincide since B(r) is quite flat between the
vortices when b« l. Another effect of anisotropy seems
more important. In a granular superconductor anisotropy
of the randomly oriented grains pins the vortices since
their energy varies from grain to grain. In high-T, super-
conductors further pinning may be caused by grain boun-
daries, twin boundaries inside the grains, or even by the
large atomic lattice cell (intrinsic pinning due to the small
radius of the vortex core which may lead to a Peierls po-
tential of the vortices). One therefore has to consider the
effect of pinning on n(8).

Weak random pinning slightly distorts the vortex lat-
tice. As a consequence the extrema B(r) fluctuate spa-
tially, very likely with Gaussian distribution. Calculation
of these fluctuations is in preparation. The van Hove
singularities in n(8) will thus be smeared, even as the
Bragg reflections in neutron scattering from the perturbed
vortex lattice. ' For intermediate pinning this smearing
becomes so strong that n (8) resembles a Gaussian or, due
to the long tail in Fig. 1, an asymmetric Lorentzian-Itke
curve. Smearing of n(8) results in the multiplication of
P+ (r ) by a Gaussian which cuts off the tails in Fig. 2 even

before hB is increased markedly above its perfect-lattice
value [Eq. (I)). This might explain why the experi-
ments (in which the vortex lattice was admittedly far
from perfect) allow a fit by a Gaussian or exponential re
laxation and why the resulting values for A, (1050 to 2500
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mined even with the strong pinning by appropriate
Fourier transform of the ItSR signal (see below).

How large are the pinningwaused fluctuations of 8(r)
in superconductors with large x'? From the theory of elas-
ticity one might argue that pinning only shears the vortex
lattice but does not much compress it since it is caused
mainly by local forces on the vortex cores and since the
compressional modulus of the vortex lattice, c&i 8 /tto.
is much lar, er than its shear modulus, css=c~~(1
-b) z/8bxz. " But only compression will alter 8 and thus
Mz markedly. A randomly sheared, or even amorphous,
vortex arrangement exhibits an tt(8) which is some
(smeared) average between that of the triangular (Fig. 1)
and that of the square (Fig. 6 of Ref. 13) vortex lattice;
the latter is more symmetric and less sharply peaked as
can be understood from the smaller number of minima
and saddle points per maximum in the 8(r) of the square
lattice. Shearing thus does not change M z considerably.

There are two nontrivial effects which cause random
compression and thus enhance ddt . First, the collective
action of many pins may create a gradient in 8. Calcula-
tion of the maximum gradient (the critical current density

j,) is the task of complicated statistical theories which
sum random pinning forces acting on a deformable vortex
lattice" "

Second, the pronounced nonlocality of the elastic
response mentioned above facilitates compression with
wavelength &2trL We show this for a pinning-caused
periodic compression a(r) with wavelength 2tr/k. This
strain leads to an elastic energy density'o

FIG. 2. The complex muon spin polarization P+(t) [Eq.
(5)]. Depicted are the modulus (

P+
) and the real part in a

frame rotating with the average frequency y„S, P„ for (a)
b 0 2, and (b.) b 0.05, cf. Fig. 1. Time unit is (yj~tdt')
and P+(0) 1 was put. The dashed curves show exp( —t/Ty, )
and exp(-t~/T)) which in psR experiments were hoped to fit
the relaxation of P+ with T2 from Eq. (6). Larger Tq values
give better fit but yield too-large values for k- TP The long tail
in )

P+
[ comes from the peak in n (8) at 8~, and the rapid os-

cillations from the jump at 8~~.

A) are in reasonable agreement with A, values obtained
from (difftcult to measure) 8, ~ values. But note also that
a misinterpretation of ~z by a factor of 16 would change
the resulting A, only by a factor of 2, cf. Eqs. (1) to (3).

For strong pinning the global average ~ exceeds the
perfect lattice value [Eq. (I)] by far. This results in an
enhanced relaxation rate which indeed was observed in in-
creasing field in Ref. 5. Thus, if pinning is strong
throughout the specimen then the above fitting method
yields too small values for A, . If, however, strong fluctua-
tion of B(r) occurs only in restricted regions, e.g., near
grain boundaries or near the surface, but a sufIicient part
of the specimen volume exhibits almost perfect vortex lat-
tice, then the contribution of this perfect lattice can be
separated in the @SR signal: Its van Hove singularities
will not be smeared but are superimposed on a broad
background which is caused by the strong pinning regions
in n(8). In this case the correct A, value can be deter-

Uk —,
' (ai&(8 /po)/(1+k & ),

and to a periodic field variation [Eq. (50) of Ref. 20j '

Bs(r) Ba(r)/(I+k'X') . (8)

Eliminating (tt2& we find that the field fluctuation

(Bg& 2ttoUk/(I+k X ),
for the same elastic (or pinning) energy Uk, is larger at
short wavelengths. Between k 0 (homogeneous
compression) and k tr/tf (shortest wavelength) &Bg& in-
creases by a factor =bl, z/(2»1. Therefore, in large x.

materials even weak pinning forces may increase t)8
above its ideal lattice value (1). Though the dependence
of Uk on 8 and k is not known at present, it is conceivable
that the pinning-caused hB is independent of 8&&8,2,
even as is the ideal M of Eq. (1), and as was observed in
decreasing field in Ref. 5. The fitted A, value would then
be too small.

These uncertainties can be overcome by a more trans-
parent evaluation of ttSR experiments in type-II super-
conductors. As suggested in Ref. 13, the real Fourier
transform of the measured muon spin polarization should
be inspected; this is just the field distribution with stochas-
tic noise. Taking into account that P+ (t) is defined only
for positive times one obtains from Eq. (5) '

n(8) Re[[yJxP+(0)] P+(t)exp( —t'y„Bt)/dt .
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The real, positive, and slowly varying function rr(8) (Fig.
1) is more readily interpreted than the rapidly oscillating
complex function P+ (t) (Fig. 2). After appropriate noise
reduction (filtering and smoothening), the inspection of
n(8) directly reveals whether there is regions of relatively
perfect vortex lattice. After this, either 8+{i) or (prefer-
ably) its Fourier transform (10) may be fitted to an ap-
propriate theory which then yields information both on
vortex pinning and on the penetration depth A,. Computer
simulations show that, e.g., from 10s counted events the
position of the van Hove jump at 8 8 in n(8) can
be determined with high accuracy (reproducibility),
bB sJB & 10, even when its pinning-caused smearing
has a width equal to the width d$2 {1)of the pin-free dis-

trtbutlon.
In conclusion, with the present knowledge it cannot be

excluded that the penetration depths A, obtained from the
relaxation time of the muon spin2 5 are close to the
correct X values, but more likely these are too small since
vortex pinning increases the field variation ~ far above
its perfect lattice value. An improved evaluation of @SR
data by means of Eq. (10) can clarify this point and will

also yield detailed information on ~ortex pinning.
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