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II. Effects on critical-phenomena studies
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The efFects that concentration inhomogeneities in two-component magnetic systems have on the
critical behavior at the second-order phase transition Tz are explicitly determined. Use is made of
the technique developed in the preceding paper (I} to first properly characterize the concentration
variation x ( r) as a function of position r in a prototype diluted Ising antiferromagnet,
Fe„Zn& „F&. Then, with the known dependence of T&(x} on x, simulations are made of the mag-
netic specific-heat anomaly and the quasielastic-neutron-scattering line profile as a function of re-
duced temperature for the random-exchange Ising-model system. The simulations reproduce ex-
perimental measurements on systems with predetermined linear concentration gradients. Errors in
crossover and critical exponents in studies by others of the phase transition region in random mag-
nets are shown to result from neglect or improper treatment of concentration gradient efFects on
critical behavior. It is argued that difFerent distribution functions for concentration gradients,
with the same variance, will lead to difFerent efFective critical behavior; hence knowing the latter is
not suf6cient in predicting the former. This is exemplified in an analysis of a neutron-scattering
experiment whose critical behavior cannot be fitted by any choice of assumed linear gradient.

I. INTRODUCTION

In the preceding paper' (hereafter referred to as I) we
have demonstrated that the, macroscopic concentration
gradient in a particular two-component system
Fe Zn, „F2, can be precisely determined using the opti-
cal birefringence (hn) technique. Since the magnetic or-
dering temperature Tz of a randomly diluted antifer-
romagnet such as Fe„Zn) „F2 varies with the concen-
tration x in a known way, it follows that one would ex-
pect to be able to simulate the critical behavior of the
system, once the concentration distribution is given.
(This assumes the relevant critical exponents and amph-
tude ratios are known. ) We justify a procedure for doing
just that below. We give examples of simulations that
have been made of thermodynamic functions on crystals
whose gradients have been measured by the method de-
scribed in I, and compare the results of the simulations
with the observed critical behavior. The logic of follow-
ing this sequence —6rst determining the spatial variation
in concentration and then using this knowledge to simu-
late the critical phenomena —seems patently obvious.
Nevertheless, almost without exception, the exact oppo-
site sequence has been followed in many studies of criti-
cal behavior in random systems; namely that of trying to
judge the concentration variation from the apparent
rounding of the phase transition.

The reason for following this latter course is one of
expedience. Most critical phenomena experimentalists
do not have ready access to a nondestructive technique
for performing the requisite concentration variation
analysis in random systems. In some instances, a slice is

taken from either end of the crystal to be studied and a
chemical analysis is made to estimate an upper limit on
the average gradient. As is seen in Fig. 7 of I, this pro-
cedure is fraught with danger.

%e show that the true critical behavior is observed
only well outside the region of rounding caused by con-
centration gradients, and therefore one must restrict the
analysis of critical behavior to well outside that region.
Furthermore, we show, in a particular instance, that the
form of the rounded data is particularly insensitive to
the values of the critical exponents, and that it is thus
impossible to extract exponents from the data in the re-
gion of rounding. Even if one is only interested in the
general character of the phase transition and not the de-
tailed critical behavior, gradient-induced rounding, if not
independently known, can lead to incorrect conclusions
about the sharpness (and possibly the order) of the tran-
sition.

II. ASSUMPTIONS UNDKRI. YING SIMULATIONS
OF OBSERVED CRITICAL BEHAVIOR

IN THE PRESENCE OF
CONCENTRATION INHOMOGKNKITIES

Once having established the nature of the macroscopic
inhomogeneity of the distribution of magnetic ions, one
must next consider the effect that this particular kind of
nonrandomness has on the observed critical phenomena.
Various theoretical models of deviations from micro-
scopic randomness have been put forth and their conse-
quences on critical phenomena analyzed. None are
specific to the concentration gradient type of macroscop-
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ic inhomogeneity, but some of the considerations under-
lying these models do have some bearing on the problem
at hand.

The existence of a concentration gradient large
enough so that the fractional vaf1atlon 1n T~ over the
sample would be, say 5T, /T, & 10, intuitively suggests
that rounding of the phase transition to this degree
would be observed 1Q all measured critical phenomena.
The question is—how can one quantify these expecta-
tions'? We propose to analyze the observed behavior of
systems with short-range interaction in terms of a model
which assumes that there is a one-to-one correspondence
between the local concentration x(r) and the value of
T, [x {r)]at the point r. In effect, one presumes there is
no means by which the spins are forced to undergo a sin-
gle collective phase transition over some large region of
volume V (of order of a sizeable fraction of the sample)
at a temperature

T, =— T, x r V.

scopic number when compared with the total number of
spins even in a small crystal: %=10 . Hence, whether
one treats T, as varying on a microscopic scale as a
function of position or as an average over regions of or-
der 5 g'o in size, it matters little when it comes to simu-
lating the critical behavior in crystals of truly macro-
scopic dimensions, i.e., V& 50 mm . Thus in the simula-
tions to follow we mill, in the same manner, assume T,
to be a point function of the concentration x and
presume (following the method discussed in I) that one
can determine x as a function of r.

We note, however, that the resolution of the tech-
niques of I are at best the width of the laser beam (175
pm), and are thus macroscopic on the scale of correla-
tion lengths at any accessible reduced temperature. Oth-
er than truly statistical 6uctuations and chemical short-
range order„which occurs on atomic length scales and
does not therefore limit critical phenomena, the only
concentration variations to be expected in the growth
process are the gradients discussed in I.

The justification for this simplest of all approaches can
be found, for example, in a model of Fahnleb in which he
considered an array of small interacting ferromagnetic
grains each of volume V with a well-defined T, . T,
varies in random fashion from grain to grain, with a
dispersion in the local reduced temperature t; of each
grain

One can then show that the reduced temperature region
r' below which the ensemble of grains would exhibit
critical behavior identical to that of a homogeneous sys-
tem is given by

( Vga/gu)ira

where go is the amplitude of the critical divergence of
the correlation length (4=Co I

r
I

"), d is the space di-
mension, and a is the specific-heat critical exponent
(C=A Ir I

). (The further requirement that a&0 for
there to be a sharp phase transition is consistent with
the Harris criterion ). Roughly speaking, go-ao, the
magnetic lattice spacing, so that V/go=%„ the number
of spins in the volume V. Since 1ja- —10 for either
the pure d =3 Heisenberg or d =3 random-exchange Is-
ing models, one sees from Eq. (3) that N„h &3 for
I,
"

& 10 . Neglecting the factor of 3, one might simply
say N„ot nexceed the reciprocal of the dispersion for
there to be an experimentally accessible critical region.

It is not obvious that one can directly apply Fahnle's
analysis to the concentration gradient situation for
which the variation in T, is not a statistically random
grouping of regions, each with a given T, . However, it
is clear that if the fluctuations in concentration were of a
statistical nature and were such as to produce a value of
(6 )'r =10 3 from the one region to another, Fihnle's
argument would require the individual regions to have
no more than -10 spina (for r' &10 ), a truly micro-

HI. SIMULATIONS OF EFFECTS OF
CONCENTRATION INHOMOGENEITIES ON
CRITICAL BEHAVIOR AND COMPARISONS

WITH EXPERIMENT

A. SyeciSc heat C(T)

If we assume, as argued in the preceding section, that
a one-to-one correspondence exists between the local T,
and the local value of x, we may simulate the efFect of
the smearing of the phase transition on a particular ther-
modynamic function simply by convoluting the (known)
behavior in the absence of a gradient with the distribu-
tion function of transition temperatures; this takes the
form of

C(T)= f dT, IV(T, )[W'I(T T, )/T, I
H(—T T,)-—

+ rl
I
(T T, )/T,

I
H—(T, —T)] .

Here we have chosen the specific heat C ( T) as an exam-
ple, but any other simple thermodynamic function [e.g.,
susceptibility X( T)] could be treated in the same way,
with appropriate changes of exponents and amplitudes.
W(T, ) is the normalized distribution function of T„A
and A ' are the amplitudes above and below T„respec-
tively, a is the specific-heat exponent, and H(x} is the
Heaviside unit function.

While complex forms for W(T, ) may be found in
practice, a particularly simple one is a good representa-
tion of a not uncommon form," namely, that of a concen-
tration gradient that leads to a linear variation of T,
with distance r. Assuming such a variation of T„with
T, &T, &TI„along a sample of uniform cross section,
then IV(T, } is given simply. by 1/{Tb —T, ) for
1;& T, & TI„and by zero otherwise. In this case, with
Tl, —T, « ( Tb + T, )/2:—T„Eq. (4) reduces to



A'[(T —T)' —(T, —T)' ]/[(T —T, )(1—a)T, ] for T&T, ,

C(T)= A(T —T, )' +A'(T„—T)' ]/[Tb —T, )(1 a—)T, ] for T, (T(Tb,
A[(T —T, )' —(T —Ts)' ]j[(Ts —T, )(1—a)T, ] for T&Tb, (5c)
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This function is illustrated in Fig. 1. %'e choose to
plot the quantity d (b n )/d T versus T, rather than C ( T)
versus T because we wish to make a comparison later on
with birefringence measurements of a diluted antifer-
romagnet for which Ttt =68.6 K. d (hn)jdT versus T is
shown for two choices of 5Ttt =Tb —T, along with the
case where 5T„=O, i.e., when no inhomogeneity is

present. The parameters are chosen to approximately
correspond to the d =3 random-exchange Ising model
(REIM); namely, a= —0. 1 and 3 /3'= l.6. We choose
Tz to be unshifted. Tz lies in a region of negatiue curva-
ture between T, and T&, where sharp changes of slope
occur. What is most important is that the peak in

d(b, n)jdT now lies at T„not Tz T~ is. shifted with

respect to the peak by half the extent of the spread of
transition temperature.

To test the sensitivity of the shape of the inhomogene-
ously broadened d (b,n) jdT to the parameters appropri-
ate to d(b, n )jdT in the absence of such broadening, we
have repeated the same simulation but with the parame-
ters of the pure d =3 Ising model; namely, a=+0. 11
and 3/3'=0. 54. Remarkably, the new d(b, n)jdT-
versus-T plot looks very similar to the one obtained with

a= —0. 1 and A /A'=1. 6, even though the REIM case
has a cusp and the pure Ising case has a divergence in
d (bn )/dT. That is to say, the broadened d(hn)jdT for
T, & T & Tb with pure Ising parameters is practically in-

distinguishable from the REIN case, having the same
general shape and dift'ering from it by at most a few per-
cent. The similarity of the simulations for ag0 and
ugO indicates that this is a general property of any
asymmetric function: that Tz lies not at the peak, but is
displaced toward the steep side of the function.

In both REIM and pure Ising cases, we notice that
the broadened d ( 6/n ) /1 T plots and the unbroadened
(no gradient) ones are again indistinguishable when T is

only slightly outside the range of the inhomogeneity in

Tz, and certainly when T departs frorh Tz by more than

—T'
To demonstrate that these calculations correspond to

a realistic physical situation, we have performed a test
bn experiment. A sample of a mixed antiferromagnet
with nominal composition Feo 8Zno 2F2 was selected with
a known, rather large, and nearly linear concentration
gradient. ' From room-temperature scans of An versus
position along the growth axis, illustrated in Fig. 2, and
d (bn ) ldx from Fig. 2 of I, the overall spread in concen-
tration was determined from Eq. (1) of I to be 5x = 1.1%
or 5x/5/ =1.5%em '. This translates into a variation
of its Neel temperature 5T& ——0.9 K, as a consequence
of the fact that for Fe„Zn, „Fz, Ttt(x) =xTtv(1) (Ref. 2)
for 1&x &0.3. From scans perpendicular to the growth
axis, also illustrated in Fig. 2, we see most of the crystal
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FIG. 1. Simulations of the d(hn) jdT critical behavior
d(hn)jdT=A+

~
t

~
using Eq. (5), with REIM parameters,

in the presence of linear concentration gradients. The solid
curve is for no gradient with the Neel temperature T& ——68.6
K. The two curves consisting of short or long dashes corre-
spond to 5T& ——0.2 and 0.9 K, respectively. The arrows indi-
cate the limits of these variations. The average transition tern-

peratures T& are equal to the Tz of the solid curve. Note that
the peaks occur at the lower limit of 5T&, i.e., T& —5T„/2, not
at Tz. The amplitude and ihe gradients used in this variation
correspond to those observed in the sample Feo SZno 2F2 as is
discussed in the text and Figs. 2 and 3.
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FIG. 2. Birefringence (An) scans of the gradient of concen-
tration parallel ( ~~) and perpendicular (t) to the crystal growth
axis of a particular sample with nominal concentration
Feo SZn02F, for which T„=68.6 K. The concentration varia-
tion 5x in both directions is indicated.
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to be uniform ln this direction to within 6x 10, ex-

cept for the edges, which show much larger changes
over a small region.

%'e use the now well-established fact that near the
phase transition, d (hn )/dT-C(T). To ensure that the
d(b, n )/dT-versus-T experiment suffered the maximum
possible broadening efkct from the concentration gra-
dient, we Srst aligned the laser beam to traverse the sam-

ple parallel to the growth direction. In this
con6guration, d (hn )jdt is averaged over the entire con-
centration variation (and hence the entire TN variation)
from one end of the sample to the other.

The observed d(hn) jdT versu-s Tre-suit is shown in

Fig. 3 by the open circles. We find a very much
broadened transition with a shape almost exactly as pre-
dicted in the simulation analysis above: a small peak
with a region of negative curvature corresponding to the
range of temperatures over which TN is spread. The line

through the data is the simulation of Eqs. (5a)-(5c), with
parameters, as in Fig. 1, appropriate to the REIM:
u= —0. 10, A/A'= l.6. The width Tt, —T, has been
chosen to equal that determined by the concentration
variation: 5TN ——0.9 K. Only Ttv and the amplitude
have been scaled to St the data; there are no other ad-
justable parameters. The agreement between experiment
and theory is seen to be excellent.

One of the advantages of d (b,n )/dT versus T over the
conventional C-versus-T experiment is that one may
minimize the effects of concentration gradients by align-
ing the laser beam perpendicular to the growth direction,
thus sampling the minimum concentration variation. '

This experiment was also performed on the same
Feii s+nii zIIFz crystal but with the laser beam traversing
the sample approximately at its midpoint so that
Ttt =Ttt: the results are illustrated in Fig. 3 by the solid
dots. The effect of the spread in transition temperatures
is seen to be much less than one obtains when the beam
is along the gradient. Also, Ttt in this case is seen to be
close to the midpoint of the region of spread with the
beam along the gradient, conSrming that Ttv is indeed in

lk-
xlQ
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~~0.4

0

this region. Although the concentration variation is not
expected to be linear in the direction perpendicular to
the growth axis, the form of Eqs. (5a)-(5c) was used to
fit the data, with a width 5T&-0.2 K, resulting in a
quite satisfactory fit to the data.

Since one expects a power-law dependence to the criti-
cal behavior, it is useful to plot C or d(b, n)jdT versus
log, o ~

t
~

. This is done in Fig. 4 for the simulated data
of Fig. j. for the case where 5T& ——0.9 K. In semilog
plots of this type, a weak cusp (small negative a) appears
as two lines of slight downward curvature for t y0 and
t g0. This intrinsic behavior is indicated in Fig. 4 by
the solid lines. %'hen the reduced temperature is de6ned
with respect to Ttv, i.e., t =(T—Tz)/Ttt, the results in
the presence of a gradient are affected only slightly for
T & T, and T & Tt, (i.e., ~

t
~

&5Ttv/T&). However, for
T, &T&T, (i.e., ~

t
~

&5Ttv/2Ttv), there is an abrupt
departure from intrinsic behavior, and the t ~ 0 and t & 0
curves meet somewhere between the two intrinsic curves,
at a value of d (b,n )/dt appropriate to Ttv.

If t were to be defined with respect to the peak in
d (bn )jdT at T„however, the result would be as shown
in Fig. 4 as the short-dashed lines. Although the data
for t ~0 appears to follow the intrinsic behavior more
closely for somewhat smaller

~

t
~

than in the previous
case, the data for t g0 departs from it at a much larger
value of

(
t

~

.
Thus the range of nearly intrinsic behavior is pushed

out to much larger
~

t
~
. In addition, there is a range of

t &0 which could be mistaken for intrinsic behavior,

x)o
-0.8

I I II
lO' )0 2

I i I Iittl I I I I I I I I
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~ BEAM 4
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T(K)
FIG. 3. The observed behavior of d(hn) jdT vs T in the

critical region, with the laser beam parallel (open circles) and
perpendicular (solid circles) to growth direction, for the
FeosZn02F2 crystal whose gradient is shown in Fig. 2. The
solid and dashed lines are the respective simulations of Fig. 1

using Eqs. (5a)-(5c). See discussion in text.

FIG. 4. Simulated data of d (hn )/dT vs log
~

t ~, as for Fig.

1, for the beam parallel to the gradient with 5T& ——0.9 K and

a= —0. 10. The long-dashed lines indicate the behavior to be

expected if the transition temperature is chosen to be at T&

[i.e., t =(T—TN )/T&]. The short-dashed lines indicate the be-

havior corresponding to having chosen the transition tempera-

ture to be at the peak of d (b, tt) /dT in Fig. 1 [i.e.,
t=(T T, )/T, ]. The critic—al behavior in the absence of a

gradient is indicated by t'he solid lines. The vertical line indi-

cates the boundary of the gradient region. Note that the

departure from the solid lines are more pronounced outside the

gradient region if the transition temperature is chosen to be T,
rather than T&.
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especially in the presence of the inevitable experimental
noise and, if included in the analysis, would lead to
grossly incorrect values of a. %e see, then, that an ac-
curate identification of Tz is essential to restrict the
departure of the data from the intrinsic behavior to the
smallest possible range of

~
t

~

.
There is a lesson to be learned from these two experi-

ments and their simulations. In the presence of a con-
centration gradient, the actual T& to be associated with
an asymmetric peak in C (T) is displaced somewhat to-
ward the steep side of the apparent peak. This is so
whether the true singularity is a cusp or a divergence.
For the linear gradient case, Tz actually lies in the
center of a region of negative curvature.

Why is this of any special importance? If one assumes
the peak of the data rounded by a concentration gra-
dient to be Ttt, one makes an error of about —,

' 5T& in

TN. This may not be of much consequence in, for in-
stance, a measurement of the shift of Ttv with applied
magnetic field, provided the peak maintains the same
shape; however, if the peak changes shape, as it does at
d =3 in the crossover from REIM to random-field Ising
model (RFIM) critical behavior, the error incurred can
be quite serious. In the RFIM case, C and related
functions, such as thermal expansion, exhibit a sym-
metric, logarithmic divergence at the phase transition
T, It is re. adily demonstrated (and obvious) that a sym-
metric function rounded by any symmetric gradient
efFect will still have a peak at T, . Thus no error would
be made when judging what the shift in T, should be in
the RFIM region. But the error made in determining
T& in the REIM region would change the apparent ori-
gin of the RFIM shift, T, (H) TN ~H ~,—and would
thereby affect the value obtained for the crossover ex-
ponent P.

We believe that exactly this mistake has been made in
the interpretation of the thermal expansion (dl/dT) on
Mno ~sZno 25F2 by Shapira et al. They chose the transi-
tion temperature to be at the peak of the dl /dT data for
both H =0, where the peak is clearly asymmetric, and
for 0 g0, where the peak is symmetric. Their analysis
based on these measurements gave an exponent
/=1. 24+0.04, which is equal to the susceptibility ex-
ponent y of the pure Ising model (within experimental
error). Because of this, Shapira et al. interpreted their
result as indicative of crossover to RFIM behavior from
pure Ising, not from REIM behavior. However,
neutron-scattering results on the very same sample clear-
ly yield REIM and not pure Ising results for the other
critical (v, y) exponents. " Furthermore, all of the ex-
ponents measured at x ~0.9 in the Fe„Zn& Fe2 system
also yie1d REIM results. ' ' %e believe the dilemma
can be resolved by simply choosing Tz according to the
results of the preceding section. This yields a value of
Tz approximately 0.070 K higher than the value at the
peak in H =0. We then 6nd the resulting P to be very
close to the expected' and measured' REIM value of
/=1. 4. This is in keeping with Aharony's prediction'
that for the REIM to RFIM crossover 4 ~
y (REIM) =1.31.

8. Neutron scattering

The neutron-scattering technique can provide a wealth
of information for the characterization of phase transi-
tions in magnetic crystals. Ho~ever, unlike the direct
measurement of the magnetic specific heat C, the process
through which the extraction of critical exponents and
amplitudes from the scattering data is made is consider-
ably more indirect. It requires, 6rst, an extensive
analysis of the scattering intensity line shapes at a 6xed
reduced temperature t =(T/T, —1) and, second, deter-
mining how the parameters that characterize the line
profile vary with t. Even in the pure d =3 Ising antifer-
romagnet FeFz (Ref. 15) the analysis of the quasielastic
scattering data is nontrivial, since substantial corrections
must be made for the spectrometer resolution. The in-
terpretations of recent REIM (Ref. 12) and RFIM (Ref.
16) studies in dilute magnetic systems such as

Fe„Zni „Fe2 have additional uncertainty as to the prop-
er theoretical forms for S(q), the Fourier transform of
the spin-spin correlation function to which the scattering
intensity I(q), after proper corrections for instrumental
resolution, is proportional; q is the reduced momentum
transfer. ' Superimposed on all of the above is the com-
plication that arises from the spread in transition tem-
peratures induced by the concentration gradient in crys-
tals of diluted magnetic systems. This is a particularly
severe problem in quasielastic scattering experiments
since large samples, (typically at least a few millimeters
in each dimension), are required for adequate scattering
intensity. The degree to which experimental results are
affected by a spread in concentration has not been fully
appreciated. In part, this is a consequence of having the
magnitude of the gradients, when deduced from the crit-
ical scattering data directly, often underestimated. In
addition, there has been a lack of understanding of how
the data analysis is afFected by the presence of the gra-
dients.

Because of the importance of properly characterizing
the REIM and RFIM critical behavior in diluted mag-
netic systems, we address the above issues by using com-
puter simulations' to make comparison with real experi-
mental data. For purposes of simulation we use the
Lorentzian form for S(q) obtained from the Ornstein-
Zernike approximation'

S(q) =
z z

for q+0,A

+K

where ~=1/g is the inverse correlation length. In the
critical region a. behaves as

a=a(~)
[
t /",

where v is a positive exponent and so+ (so ) is the ampli-
tude for T ~ T, (T ~ T, ).

The Lorentzian form for S(q) is a reasonably good ap-
proximation for the pure Ising antiferromagnet FeF2, '

although deviations from it are observable for
~

t
~

&10 . Recent experiments' on a very homogene-
ous sample Feoz&Zno &4Fz show that a Lorentzian S(q)
also works quite well at H =0 (REIM), despite theoreti-



37 CONCENTRATION INHOMOGENEITIES IN RANDOM MAGNETS. II. . . . 231

cal expectations of non-Lorentzian contributions. [For
H&0 (RFIM), it has been shown experimentally' that
Eq. (6) is not at all adequate and a better approximation
is to include an additional squared Lorentzian term. ]

The efFects that concentration gradients have on the
interpretation of neutron-scattering-determined critical
behavior are quite involved. The gradients enter S(q)
through the x dependence of the transition temperature
T, (x); hence one can think of S(q) as S(q,x). In the
Fe„Zn, „Fz system Tz(x) decreases nearly linearly with

I

x for 1&x &0.3, i.e., T~(x)=xT~(1). Unhke the case
of the specific heat, the averaging of S(q,x) over the
sample is nontrivial in that T, (x) enters via the power-
law dependence of x, which appears in the denominator
of Eq. (6). Furthermore, to relate the observed scatter-
ing intensity I(q) to the correlation function S(q,x), a
substantial correction must be made for the spectrorne-
ter resolution. The observed intensity for s transverse q
scan is, to s good approximation,

I(q)=(IO/V) f f f f S[(q —a), b, c,x]T(a)J.(b)V(c)da db dc dV,
Vol —oo —oo —co

(8)

where T(a), L(b), and V(c) are normalized resolution
functions for the transverse, longitudinal, and vertical
directions, respectively, and the spatially-dependent con-
centration x is accounted for by integrating over the
sample volume Y.

It is clear from Eq. (8) that the resolution correction
to the observed I(q) is quite dependent upon both the
assumed form of S(q) and the variation in x through the
sample. Considering the complexity that Eq. (8) could
take for arbitrary concentration gradients, it would be
virtually impossible to deconvolve the effects of, say,
non-Lorentzian contributions to S(q) from those caused
by the concentration gradient itself —unless one hsd an
independent determination of the latter. The only truly
reliable path to follow is to obtain crystals which are
known to be so homogeneous that the critical behavior
measurements are certain to be unsfFected aboue some
specified reduced temperature

~

t
~

.
The simulations we describe below provide insight as

to how small the gradients must be to ensure that reli-
able critical behavior results can be obtained. The simu-
lation involves using the initial parameters A, v, ao, and

to create a series of q scans for T near Tz using Eq.
(8), including a predetermined concentration gradient.
The resulting simulated data are analyzed in precisely
the same manner as real experimental scattering data by
fitting them to the single Lorentzian line shape of Eq. (6)
with the appropriate resolution corrections, and then
determining the efFective ~. This is repeated for s series
of temperatures in the vicinity of Tz. A power-law At of
the resulting ~ versus

~

t
~

can then be made to deter-
mine the exponent v.

To demonstrate the efrect of a concentration gradient
in the temperature dependence of S(q) near the critical
temperature, we choose to simulate the pure d =3 Ising
model where v, xo+, and xo are known, both from theory
and experiment: v=0. 63, ~o+ =0.45 reciprocal-lattice
units (rlu), and ~0+/~0 -2.' Since the eS'ects of longitu-
dinal and vertical resolution are qualitatively similar, we
need only transverse and vertical resolution functions in
the form of Gsussians, which we choose to have half-
widths at half maxima (HWHM) of 0.0017 and 0.042 rlu,
respectively. (These are characteristic of the resolution
functions in real scattering experiments on good-quality
single crystals. ) The resolution corrections were made

numerically, representing each Gaussian by 11 evenly
spaced points q. The transverse scans were limited to
the range 0.005 &

~ q ~
&0.5, with 42 points more dense-

ly spaced at smaller
~ q ~, as is typical for experimental

scans. (Note that no Bragg-scattering component enters
into either the experiment or the simulation when q is
restricted to

~ q ~
& 0.005, since this is much larger than

the transverse HWHM of 0.0017.) We simulated results
for a cylindrical sample with a linear concentration gra-
dient along the axis, having a total variation of 5x. This
was done by considering the sample to be divided into
125 sections with x, and therefore Ttv(x), increasing
linearly with position. The quantity b, =5x/x=5T~/
Tz is the only relevant parameter in the summation,
~here X and TN are the sample's average concentration
snd average transition temperature, respectively. IpA
was set equal to unity, giving intensities typical of real
experiments. Gaussian noise was added to simulate the
purely statistical noise in I(q) observed in real experi-
mental data.

Figure 5 shows the results of the analysis of the simu-
lated data for 6=0, i.e., no gradient. As expected the
values for a agree with the power-law behavior shown by
the solid curves over the entire range of

~

t
~
.

In Fig. 6 the efFective sc obtained from the best fits to
data with 6=0.002 is shown over the range

~

t
~

&0.005. In this case we see an obvious departure
from the intrinsic power-law behavior (shown by the
solid curve) for

~

t
~

&4, with a clear minimum occur-
ring in the effective x near t =0. Simulations for other
values of 5 are consistent with this and indicate the gen-
eral behavior that important deviations from the correct
power-law behavior occur for

~ r
~

& 6 and that the
effective a. fiattens out at a nonzero value for

~

t
~

& b, /2.
If one attempts to fit this data, excluding only the region
of obvious rounding, one can be seriously misled by the
apparent quality of the fit. Consider, for example, the At
to the simulated values of x in Fig. 6, over the range
0.0oo7&

I
t

I
&0.01. With an exponent v=0. 77, an ap-

parently reasonable fit is obtained (dashed curve in Fig.
6). This serious disagreement between this "eS'ective" v
and the intrinsic v=0.63 indicates that one should be
much more cautious in Atting data near the minimum in
x, and that a much wider range of

~
t

~

should be ex-
cluded from the fits.



232 BELANGER, KING, FERREIRA, AND JACCARINQ

I.I 2
6 = 0.002)
v(a= 0)

0.02
~

t. I „=0.05

0.0l

l l

-0.004 -0.00P. 0.002 0.004

FIG. 5. Simulations of ~ vs t (shown as dots) obtained by
analyzing the simulated quasielastic-neutron-scattering line
shapes in the vicinity of the phase transition with parameters
appropriate to the pure d =3 Ising model. The simulation in-
cludes the effects of instrumental resolution and statistical
noise as described in the text. The agreement with the solid
line which is the power law (~=a'&~&

~

t
~

"I ) used to generate the
"data" is seen to be excellent.

In order to demonstrate that the increase in the
efFective v is symptomatic of the effects of concentration
gradients, we fit a. to power-law behavior for

;„& [r
~

&0.05 for two cases: S=O and a=0.002.
The ratio of the efFective exponents v(0.002)/v(0) is
shown in Fig. 7 as a function of

~
r ~;„. For

~

r ~;„&0.002 the ratio is unity within the error bars.
This is consistent with the observation that the simulat-
ed x agrees with the intrinsic power-law behavior for

~

t
~

~ b, . As
~

t ~;„becomes smaller the ratio sys-
tematically increases.

To see the manifestation of the effects indicated by the
simulations above in real systems, we turn to the ran-
domly diluted antiferromagnets for which the REIM
(H =0) applies. In this instance the exponents are
known theoretically with some accuracy but the ampli-
tude ratios and S(q) are not. [In the RFIM (H&0) case

0.0005
I

O.OOI 0.002
I

0.005

FIG. 7. Ratio of effective exponents v(b =0.002)/v(5, =0)
obtained in power-law fits ~=Kp

~

t ~" as a function of the

minimum value of reduced temperature ~t ~;„used in the

analysis, for two simulations with 6=0 and 5=0.002, for a
gxed

~

r ~,„=0.05. Note that increasing error in

v(b =0.002)/v(5=0) occurs with decreasing choice of
~

t
~

for
~

t ~;„&b, =0.002, while very little error occurs for

~

t ~,„~5 (ratio~1. 0). This error is entirely due to the error
in v(h, =0.002).

60-

ECTlON

even less is known about the critical behavior. ] We
chose to demonstrate the effects of gradients by compar-
ing the neutron-scattering results on two crystals of
Fe„Zn& „F2 for which the measured gradients differ by
more than an order of magnitude. One ' is a crystal of
Feo 5Zno 5F2, where the variation in x over the part of
the sample used for neutron scattering was subsequently
determined to be of order 5x =0.01 (see Fig. 8), and the

0.03

OQ2
s

40-

(A
CL

I-
CO

+ 20—

I

4 (mm)

O.Ol

0
0 0.002

FIG. 6. Simulations of a vs t, as in Fig. 5, for the hypotheti-
cal case of 5=ST&/T~ =0.002, shown as the dots. Significant
deviation of a from the intrinsic power-law behavior (shown as
the sohd line) occurs for

I
r

I &b, . For
I

r
I &~/2, & is at its

minimum value. The best 6t over the range
0.0007&

I
r

I
&0.05 is-shown by dashed line, and is discussed

in the text.

0 2 6 8 (mm&

FIG. S. The measured concentration gradient parallel (z
scan) and perpendicular (y scan) to the crystal-growth direction
of the Fe050Zno &oF2 sample used in the 6rst neutron-scattering
experiment (Ref. 23) on the REIM critical behavior. Although
only 2 mm of the crystal was exposed to the, neutron beam, it
was unfortunately that portion with the maximum gradient.
Hence fox that experiment 5 could have been as large as
5=5x /x =0.02.
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other' is a crystal of Feo4SZnos~Fz where 5x=0.0002
(see Fig. 7 of I). In both cases the concentration gra-
dients were measured using the room-temperature
birefringence technique described in I.

For the higher quality sample, Feo 46Zno 54F2, the
values obtained for K using a Lorcntzlan linc-shape
analysis' follow the best-fit power-law behavior over the
range 10 & ~.t

~
& 10 ' Rs shown in Fig. 9. From the

simulation results just described we would expect devia-
tions from power-law behavior only for

~
1

~
&0.0004:

hence the exponent v and amplitudes Ko+ and Ko ob-
ta'ined over the range 10 &

~
t

~
&10 ' should accu-

rately represent the intrinsic critical behavior.
In contrast, the Feo sZno 5F& sample shows a strong

departure from apparent power-law behavior for

~

t
~

&3&10, as is seen in Fig. 10. The intrinsically
sharp REIM phase transition is obscured by the CHects

of the gradient. [In the case of a d =3 RFIM (H+0)
system such behavior in the very same sample has been
incorrectly interpreted as evidence for the destruction of
tllc phase tralls1tioii. ]

The agreement between the CS'ective a and the best fit

appears to be quite good, possibly better than that be-
tween the best fit and the simulated data in Fig. 6. Nev-
ertheless, these fits, over the range 5X10 &

~

r
~

&10 ' (not for 2)&10 &
~

t
I &10 ' as was incorrectly

stated in Ref. 21), exclude data for r only in the region of
a =const near

~
1

~

-0, as was done in the simulation. It
is therefore reasonable to expect that the efFective ex-
policiits thus obtained shouM dcviatc froin thc 1fl'trlnsic

ones in the same direction as was found in the simula-
tion.

This is indeed the case, as is seen from a comparison
of the parameters obtained for this lower quality sample
(A) and those obtained for the much higher quality
Fea«Znos~Fz one (8). Since the Fe concentrations of
the two are almost the same, and both should represent
the REIM universality class, v and lro+/ao should be

-0.02 -O.GI

0.025-

56.0
T(K)

FIG. 9. x vs T from the results (Ref. 12) of an analysis of
the neutron-scattering line shapes in the very homogeneous
sample I,'6=0.0004) Feo «Zno, ~F2. The solid curve is the best
St to the data for 0.001 &

~
t

~

&0. 1 using the power law in Eq.
(7). The excellent agreement even very close to T, indicates
that the St reliably rejects the intrinsic critical behavior.
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0.0 l

1

0.02
I
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0
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I

42.0 42.5
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l
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FIG. 10. Experimental points and simulations of the K-vs-T

results of the neutron-scattering experiment of Ref. 21. The
solid and dashed curves are dragon for values of an assumed
magnitude of a linear concentration gradient 6 as indicated,
the choice for which is discussed in text. The inability to
reproduce the experimental results is indicative of a nonlinear
concentration gradient. The doubled-arrowed region is the
span of temperature excluded from the original analysis (Ref.
21).

identical for the two crystals. Instead, we see that v in
crystal A is indeed higher (v=0.73+0.02) (Ref. 21) than
it is in crystal 8 (v=0.69+0.01) (Ref. 12). This is pre-
cisely what one expects as has been demonstrated in Fig.
7. Hence we conclude that the higher value of v ob-
tained using crystal A (Ref. 21) reflects the larger spread
in concentration in this sample. Clearly the value for v
obtained in sample 8, where 5=0.0004, morc accurately
represents the intrinsic REIN critical behavior. More-
over, it is in better agreement with theoretical predic-
tions, namely, v=0. 70 (Ref. 23) and 0.68 (Ref. 24). The
observed ratio ~o+/ao also difFers in the two crystals, ' ' '

which again is a direct consequence of the larger gra-
dient ln sample A.

In the same manner in which we analyzed the hn data
where the gradient was known, we have attempted to fit

the neutron-scattering results on Feo 5Zno 5Fz. Two
problems immediately arise. First, when we measure the
concentration gradient, using the method described in I,
we find the variation to be far from linear (see Fig. 8).
Secondly, wc do not know the exact location of the re-
gion of the crystal exposed to the neutron beam.

Despite these shortcomings, wc have tried to approxi-
mate the effects of a gradient-rounded transition by a
simulation in which we assume a linear gradient whose
magnitude we adjust with the expectation of ending a
best 6t over the entire critical region. For the simula-
tion we choose the values v=0.69 and ao+/xo =0.69 ob-
tained from the analysts of the Fe046Zn054F2 data dis-

cussed above. Ko is adjusted so as to provide an accurate
6t for large

~

r ~. We use Gaussian resolution line
shapes with half widths corresponding to values actually
measured in the Feo 5zno 5F2 experiment.

The results were most discouraging, as is seen in Fig.
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10. %'e show the simulation for two values of 4:
5=0.014 and 0.006. The first was chosen so as to
reproduce the experimentally observed minimum value

of K at T =Tz. However, the width of the region of
nearly temperature independent x is seen to be much
broader than the experimental results would allow. If,
instead, one judges the width of the broadened region to
occur at the point where the experimental results first
depart from power-law behavior (i.e., b, =0} and subse-
quently become almost temperature independent, then a
value of 6=0.006 is obtained. But for this choice of 5
the minimum value of v is 40%%uo too low (choosing any
smaller value might slightly improve agreement between
experiment and simulation away from Tz but it does so
at the expense of making the minimum a. even smaller).
Our analysis strongly indicates no assumed value of
linear concentration gradient can reproduce the observed
a-versus-T results; therefore, the gradient cannot be
linear. The simulation results are not particularly sensi-
tive to the resolution parameters used, nor are they
aft'ected much by the replacement of the nearly Gaussian
vertical resolution by a triangular one, an approximation
used in the original Fep&Znp5F2 data analysis. ' Con-
siderations related to more complex gradient distribu-
tions are discussed in Sec. V.

The fact that no choice of an assumed linear concen-
tration gradient can reproduce the experimental results
is indicative of the dangers in trying to judge the nature
and extent of the gradient-induced rounding of the phase
transition using only neutron scattering. The original es-
timate of the extent of the rounding in the exposed
Part of the Fep,Znp 5F2 crystal is indicated in Fig. 10. It
corresponds to a reduced-temperature region

~

t
~

&2
&10 . It is clear from our analysis that this was a un-
duly optimistic assessment. Had the authors ' had an
independent measure of the concentration gradient, they
would assuredly have been more reluctant to extend
their data analysis to include measurements much below

~

t
~

=10 . But, unaware of the shortcomings of the
neutron-scattering technique in this regard, others have
recently stated" in a study of REIM neutron scattering
that "the measurements are limited by macroscopic,
nonstatistical concentration fluctuations; these are best
characterized by the sharpness of the phase transition it
self" (italics added). The results on the Feo&Zno&F2
sample indicate that this is not the case; this technique
yields gradient rounding estimates which are consistently
too small.

%'e have shown that excluding only the region of ob-
vious rounding from analysis of the data leads to values
of v which are too large. Nevertheless, this criterion is
routinely used:" "the overall spread in concentration be-
ing less than 0.1%; we have therefore performed mea-
surciTlcnts down to -4Q 10 in rcduccd tcmpcraturc.
A similar error has apparently been made in the analysis
of a RFEM experiment in the weakly anisotropic system
Mn Znt F2. A minimum in a versus t has been ob-
served, and a gradient-induced rounding of the transition
is inferred. (We believe the rounding to be underes-
timated by a factor of 2, based on the results of the
present simulations. } A power-law fit of ~ versus

~

t
~

is

made, in which T, is arbitrarily chosen to be far below
the region of the minimum in x as seen in their Fig. 4,"
and indeed, below the range of rounding of the transi-
tion. By doing this a value of v= 1.52+0. 13 is obtained.
If, however, the region of rounding is eliminated from
consideration and T, is assumed to be near the minimum
in a, the result for the RFIM exponent v agrees with
that obtained in the strongly anisotropic system
Fcp 46Znp g4F2~ namely v= 1 ~ 0+0. 1 5 ~

Even the qualitative efkct of a concentration gradient
on the shape of the measured ~ versus t is not immedi-
ately obvious from the neutron-scattering data alone.
Thus one finds claims in the literature such as "More
importantly, the data also depart from linearity as
TN(H) is approached. This is not due to sample inho-
mogcneities; it may readily be seen that in a neutron ex-
periment in which the entire profile is fitted, a distribu-
tion of Ttt's causes a to be depressed rather than in
creased. " (italics added). Our analysis above show the
exact opposite to be the case.

IV. CONSIDERATIONS OF THK EFFECTS
OF MORE COMPLEX GRADIENTS

The linear variation of concentration with position
discussed thus far is a somewhat arbitrary idealization of
what actually occurs in the crystal-growth process. Any
other variation would modify the shape of the rounding
behavior to be expected for the specific heat or neutron-
scattering critical behavior, through the distribution
function of concentration W(x). We briefly examine
several more complicated variations and the distribution
functions W(x) corresponding to them. These are
shown in Fig. 11, which though idealizations themselves,
are representative of cases that have actually been ob-
serve (see I). Figure 11(a) illustrates an inflection in con-
centration superimposed on a linear gradient that might
originate from a temperature variation in the growth
process. A quasiperiodic series of these often arises (see
Fig. 2) because of the constitutional supercooling insta-
bility. Figure 11{b) illustrates a reversal of gradient,
such as the one responsible for the "super"
F 0,46Z 0.54F2 sample. %e do not understand the under-
lying mechanism which produces this CSect. Figure
11(c) illustrates a random variation which might be
caused by a very noisy or unstable temperature control.
Figure 11(d) illustrates periodic variations induced by
stirring of the melt during growth via the accelerated
crucible rotation technique (see discussion in I).

In view of the involved analysis already required to in-
terpret the critical behavior associated with the
neutron-scattering experiments, even for the relatively
simple linear gradient case, one cannot help but surmise
that the interpretation would be made considerably more
complex in the presence of any one of the four forms for
W{x) shown in Fig. 11. Choosing T~ and the region of
reduced temperature beyond which it was meaningful to
retain data for the analysis would become increasingly
di%cult to judge —and still more so if the unknown
8'(x) was not symmetric. Needless to say, it would be
virtually impossible to invert the process, that is, deter-
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FIG. 11. Schematic variation of concentration x with posi-
tion z in crystal and the distribution function 8'(x) vs x for (a)
nearly linear gradient, (b) reversal of gradient, (c) random vari-
ation with Gaussian distribution induced by noisy temperature
control in the growth process, and (d) sinusoidal variation in-
duced by accelerated crucible rotation technique (see I). In the
case of Fe„zn& „F2, where T{x)=xT&(1) for 0.3&x &1,
8'(x) ~ 8'{T&), the distribution function of Neel temperatures.

to have a microscopic method of analysis of the actual
sample to be used in critical phenomena experiments,
both to establish the concentration inhomogeneities, and
to choose the best region within a given sample. It is
not sufBcient to have a bulk analysis, either of the actual
sample, or of both ends of the boule, since this is not
sensitive either to short-range fluctuations, or to an
effect such as a gradient reversal.

Once having determined the gradient and assuming it
to be small enough so as to not cause rounding through
most of the critical region, it then is necessary to include
only that data which lies well outside the region of
rounding. However, the most desirable circumstance is
obtained when one chooses a crystal with the smallest
possible concentration gradient, as is the case for the
"super" Feo 46Zno 5&F2 crystal.
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